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Abstract

Given an n3 configuration, a one-point extension is a technique that constructs (n+1)3
configurations from it. A configuration is geometric if it can be realized by a collection of
points and straight lines in the plane. Given a geometric n3 configuration with a planar co-
ordinatization of its points and lines, a method is presented that uses a one-point extension
to produce (n+1)3 configurations from it, and then constructs geometric realizations of the
(n + 1)3 configurations. It is shown that this can be done using only a homogeneous cubic
polynomial in just three variables, independent of n. This transforms a computationally
intractable problem into a computationally practical one.

Keywords: (n, 3)-configuration, geometric configuration, anti-Pappian, rational coordinatization,
elliptic curve.

Math. Subj. Class.: 51E20, 51E30

1 Projective configurations
A projective configuration consists of a set Σ of points and lines, and an incidence re-
lation Π, such that two lines intersect in at most one point. We denote this by (Σ,Π).
For example, a triangle with points A,B,C and lines a, b, c can be represented by the pair
({A,B,C, a, b, c}, {Ab,Ac,Ba,Bc, Ca,Cb}). A configuration (Σ,Π) can also be viewed
as a bipartite incidence graph of points versus lines. We will always assume that the inci-
dence graph of a configuration is connected. Excellent references on configurations are the
recent books by Grünbaum [10], and by Pisanski and Servatius [18].

An n3-configuration is a projective configuration with n points and n lines such that ev-
ery line is incident with 3 points, and every point is incident with 3 lines. There is a unique
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73-configuration, the Fano configuration, and a unique 83-configuration, the Möbius-Kantor
configuration.

An n3 configuration which can be represented by a collection of points and straight
lines in the real or rational plane, such that all incidences are respected, and no two points
or two lines coincide is termed a geometric n3 configuration. In order to show that an n3

configuration is geometric, the usual method is to assign suitable homogeneous coordinates
to its points and lines. We call this a coordinatization of the configuration. A central prob-
lem [10] is to characterize which n3 configurations are geometric configurations, and to find
rational coordinatizations [4, 10, 21, 22, 23] of those that are geometric. Grünbaum [9],
and [10] (p. 151) has conjectured that an (n3) configuration that admits a real coordinati-
zation also admits a rational coordinatization. He considers this the single most important
outstanding problem in n3 configurations [11]. Sturmfels and White [22, 23] have shown
that all (113) and (123) configurations have rational coordinatizations. These configura-
tions were originally discovered by Martinetti [17], and Daublebsky von Sterneck [6, 7].
Sturmfels and White and Bokowski [4, 22, 23] found rational coordinatizations by con-
structing systems of diophantine equations, and then using methods of computer algebra to
solve them, in particular, Grassmannian algebras and Gröbner bases.

A coordinatization of an n3 configuration is usually represented by homogeneous coor-
dinates in the plane, e.g., let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be the homogeneous
coordinates of two points, and let L = (a, b, c) be the homogeneous coordinates of a line.
Then P1 and P2 are incident with L if and only if P1 · L = P2 · L = 0. Equivalently, L
is a multiple of P1 × P2. Consequently there is an exterior algebra that the homogeneous
coordinates generate. If there are n points and n lines, with 3n incidences, there are 6n
variables, and numerous algebraic constraints that the coordinates must satisfy. Bokowski
and Sturmfels [4] used computer-aided algebra to search for rational solutions to these
algebraic constraints. Eventually the constraints can be manipulated to produce a homoge-
neous polynomial with at most 3n variables whose zeros characterize the coordinatizations.
The polynomial has degree bounded by n. The difficulty of this work led Sturmfels and
White [23] to suggest that the problem of finding rational coordinatizations of n3 configu-
rations may be recursively undecidable.

A simpler method of finding a coordinatizing polynomial, without the need of Gröbner
bases and the exterior algebra, was presented in Kocay-Szypowski [15]. The degree of the
polynomial is still bounded by n. This method was used in Kocay [13] to find a rational
coordinatization of the Georges configuration, which is a (253) configuration. In Sturmfels
and White [22, 23], ad-hoc methods were used to find rational roots of the coordinatizing
polynomials for each of the (113) and (123) configurations. There are 31 (113) and 229
(123) configurations.

A note on homogeneous polynomials and their zeros: Homogeneous quadratic poly-
nomials are well understood, see Conway [5]. It is the theory of quadratic forms. Cubic
homogeneous polynomials are much more difficult. When there are three variables, they
include the class of elliptic curves [20]. The rational points on an elliptic curve form a
group. If there are one or more known rational points on the curve, then others can be
found by combining them using the group operation. This generates a countable number of
points. Mordell’s theorem says that these groups are finitely generated, i.e., a finite num-
ber of starting points is needed to find the entire group. It does not say what the group is,
or whether there are any rational points on the curve. And it does not provide a method
to determine if there are any rational points on the curve. Because it is relatively easy
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to do computation in these groups, but simultaneously, there are theoretical difficulties in
characterizing them, these groups are used in elliptic curve cryptographic systems [20].
Homogeneous polynomials of degree four or more are much more difficult, apparently not
amenable to the same techniques. Thus the degree of the polynomial is important.

The purpose of this paper is to present an algorithm which can be used to construct
real or rational coordinatizations of (n + 1)3-configurations from coordinatizations of n3-
configurations, by finding the roots (real or rational) of a cubic homogeneous polynomial in
three variables. The use of a cubic homogeneous polynomial in three variables makes the
formerly intractable problem of finding rational coordinatizations computationally practical
and efficient. Some of the techniques are similar to methods used in the theory of elliptic
curves [3, 20].

An elliptic curve is a cubic polynomial that can be expressed in the form

y2 = ax3 + bx2 + cx + d

The rational points on an elliptic curve form a group. See [20] for further information on
these groups.

Theorem 1.1 (Mordell’s theorem). If a non-singular plane cubic curve has a rational
point, then the group of rational points is finitely generated.

Methods that originated with Diophantus [1] are used to find the rational roots of elliptic
curves [20]. We use similar methods to construct coordinatizations of n3-configurations.
As there can be very many rational points on an elliptic curve, there can be also be very
many different rational coordinatizations of an n3 configuration. They are related in a way
that is similar to the group operation of an elliptic curve. In general, it seems to be difficult
to characterize when a rational coordinatization is possible. However the method presented
here is very fast in practice, and can be automated.

We begin with a 1-point extension [14] in an n3 configuration, which extends it to an
(n+1)3 configuration, and which leads to the coordinatization algorithm. This extension is
different from Martinetti’s extension [17], which is described in Grünbaum [10] (p. 89). As
pointed out in [10], it is in general quite difficult to characterize exactly which configura-
tions are generated by an inductive construction which produces an (n + 1)3 configuration
from an n3 configuration. This is true even if the construction can easily be described. In
[14] the configurations that can be built using a 1-point extension are characterized.

Theorem 1.2 (1-Point Extension). Let (Σ,Π) be an n3-configuration. Let a1, a2, a3 be
3 distinct points in Σ, and let `1, `2, `3 be 3 distinct lines in Σ such that a1 = `1 ∩ `2,
a2 = `2 ∩ `3 and a3 ∈ `3, where a3 6∈ `1. We can represent this in tabular form as

(Σ,Π) `1 `2 `3 · · ·
a1 a1 a2 · · ·
b1 a2 a3 · · ·
b2 b3 b4 · · ·

where the dots indicate other points of the configuration. Here the points in each column
are incident with the line at the top of the column. Let `′ be the third line containing a1.
Suppose further that if `′ ∩ `3 6= ∅, then `′ ∩ `3 = a3. Construct a new configuration
(Σ′,Π′) as follows. Σ′ = Σ∪{a0, `0} where a0 is a new point and `0 is a new line. Define
the new incidences as Π′ = Π−{a1`1, a2`2, a3`3} ∪ {a1`3, a2`0, a3`0, a0`0, a0`1, a0`2}.
We can represent this in tabular form as
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(Σ′,Π′) `0 `1 `2 `3 · · ·
a2 a0 a1 a1 · · ·
a3 b1 a0 a2 · · ·
a0 b2 b3 b4 · · ·

Here the dots represent exactly the same points as in the previous table. Then (Σ′,Π′) is
an (n + 1)3-configuration. (Refer to Figure 1.)
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`2

`3
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a2 a3
`0

`1

`2

`3
(Σ,Π) (Σ′,Π′)

(a)
initial points and lines

(b)
after 1-point extension

Figure 1: A 1-point extension with 3 points, before (a), after (b).

Example. The Fano configuration can be represented by the following table.

Fano `1 `2 `3 `4 `5 `6 `7
1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3

Choose `1, `2, `3 as indicated, and choose a1 = 2, a2 = 3, a3 = 6, and let a0 = 8.
Notice that the third line containing a1 is `′ = `6, which intersects `3 in a3 = 6. Then
by Theorem 1.2, the following table represents an 83-configuration, which is known to be
unique.

83-config `0 `1 `2 `3 `4 `5 `6 `7
3 1 2 2 4 5 6 7
6 4 5 3 5 6 7 1
8 8 8 4 7 1 2 3

The diagram of Figure 1 illustrates the 1-point extension schematically, showing the inci-
dences altered by the extension. The method uses three points a1, a2, a3 and three lines
`1, `2, `3 sequentially incident, with a new point a0 and line `0 added. It can be generalized
to m points a1, a2, . . . , am and m lines `1, `2, . . . , `m sequentially incident, see Kocay [14]
for more details. This is indicated in Figure 2 for m = 4. When m = 4, the 1-point exten-
sion theorem has the following abridged form.

Theorem 1.3 (1-Point Extension with 4 points and 4 lines). Let (Σ,Π) be an n3-configur-
ation. Let a1, a2, a3, a4 be 4 distinct points in Σ, and let `1, `2, `3, `4 be 4 distinct lines in
Σ such that a1 = `1 ∩ `2, a2 = `2 ∩ `3, a3 = `3 ∩ `4, and a4 ∈ `4, where a3, a4 6∈ `1, `2,
and a1 6∈ `4.
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Let `′1 be the third line containing a1, and `′2 be the third line containing a2. Suppose
further that if `′1 ∩ `3 6= ∅, then `′1 ∩ `3 = a3; and if `′2 ∩ `4 6= ∅, then `′2 ∩ `4 = a4.
Construct a new configuration (Σ′,Π′) as follows. Σ′ = Σ ∪ {a0, `0} where a0 is a new
point and `0 is a new line. Define the new incidences as Π′ = Π − {a1`1, a2`2, a3`3,
a4`4} ∪ {a1`3, a2`4, a3`0, a4`0, a0`0, a0`1, a0`2}.

Then (Σ′,Π′) is an (n + 1)3-configuration. (Refer to Figure 2.)

When one point extensions are generated by computer, it is necessary to name them,
so that the extensions generated can be identified. We have used the following naming
convention. Here a configuration (Σ,Π) is assumed, but is not explicitly indicated in the
notation, as this will be clear from the context.

Definition 1.4. A 1-point extension using three lines `1, `2, `3 and three points a1, a2, a3
is denoted Ext(`1, `2, `3; a1, a2, a3). A 1-point extension using four lines `1, `2, `3, `4 and
four points a1, a2, a3, a4 is denoted Ext(`1, `2, `3, `4; a1, a2, a3, a4), and so forth.

When the starting n3 configuration has a real or rational coordinatization, we want to
use its coordinatization to find a real or rational coordinatization of the resulting (n + 1)3
configuration. Both Theorems 1.2 and 1.3 are needed for the extension algorithm.
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Figure 2: A 1-point extension with 4 points, before (a), after (b).

2 The coordinatization algorithm
Let the points of a geometric n3 configuration (Σ,Π) be {a1, a2, . . . , an} and let the lines
be {`1, `2, . . . , `n}. Let the homogeneous coordinates of ai be Pi, and the homogeneous
coordinates of `i be Li. These can be either real or rational. Then point ai is incident on
line `j if and only if Pi · Lj = 0. Suppose that a 1-point extension is applied to (Σ,Π)
to obtain an (n + 1)3 configuration (Σ′,Π′), using three points and lines of (Σ,Π), as in
Figure 1. We can assume that the points and lines are labelled so that the extension uses
points a1, a2, a3 and lines `1, `2, `3 as in Figure 1, and adds a0 and `0.

Let G denote the incidence graph, also known as the Levi graph, of (Σ,Π). The sub-
graph induced by {a1, a2, a3, `1, `2, `3} is a path of length five, since a3 6∈ `1, and because
the girth of the incidence graph must be at least six. After the extension, a0 and `0 are
added. Let G′ be the new incidence graph. The subgraph now induced is illustrated in
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Figure 3(a), since the girth of the incidence graph must be at least six. The significant fea-
ture of this subgraph is the hexagon induced by {a0, a1, a2, `0, `2, `3}. We now look for a
shortest path Q in the incidence graph, not using any edges of the hexagon, from any one
of {a0, a1, a2} to any one of {`0, `2, `3}. This is easy to do using a breadth-first search of
the incidence graph. Note that the shortest path may possibly contain a3 and/or `1. Q must
contain at least two internal vertices, i.e., one point and one line. Let the endpoints of Q be
ai and `j . If u is an internal vertex of Q, then u is not incident with the other vertices `k on
the hexagon (where k 6= j), or there would either be a shorter path than Q, or else the girth
requirement would not be satisfied. Similarly, u is not incident with the other vertices am
on the hexagon (where m 6= i).
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induced subgraph for Figure 1 (b)
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a3

a4
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`3
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induced subgraph for Figure 2 (b)

Figure 3: An induced subgraph of the incidence graph of (Σ′,Π′) of Figures 1 and 2.

We now have a theta subgraph in the incidence graph, that is, two vertices (ai and
`j), connected by three internally disjoint paths. When m = 4, the situation is similar.
The vertices a1, a2, a3, a4, `1, `2, `3, `4 of Figure 2(b) determine a path of length 7 in the
incidence graph G. After the extension, the subgraph of G′ determined by Figure 2(b) is
illustrated in Figure 3(b). It is necessary that this be an induced subgraph for the coordi-
natization algorithm. We now look for a shortest path Q in the incidence graph, not using
any edges of the octagon, from any one of {a0, a1, a2, a3} to any one of {`0, `2, `3, `4}.
Let the endpoints of Q be ai and `j . Once again we find that Q must contain at least two
internal vertices, and again we have a theta-subgraph, Θ. The algorithm requires that this
be an induced theta subgraph. The incidence graph is 3-regular, so that vertices ai and `j
are adjacent only to vertices of Θ. All other vertices of Θ are adjacent to exactly one vertex
not in Θ. We now look for a coordinatization of (Σ′,Π′) such that all points and lines have
the same coordinates as in (Σ,Π), except for the points and lines of Θ.

Let the homogeneous coordinates of ai be (x, y, z), where x, y, z are real or ratio-
nal indeterminates, according to whether the coordinatization of (Σ,Π) is real or rational.
Then Θ contains three internally disjoint paths Q1, Q2, Q3 from ai to `j . We follow each
path, and execute the following statements, assigning coordinates to its vertices in terms of
x, y, z. For each vertex not in Θ, its homogeneous coordinates are those of (Σ,Π). These
are known constants. The algorithm below constructs coordinates for the vertices of Θ in
terms of x, y, z, by starting at ai, and successively following each path Qm of Θ to `j . Note
that if L and L′ are homogeneous coordinates of lines, then the cross product L×L′ gives
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the homogeneous coordinates of the unique point which is the intersection of the two lines.
Similarly P × P ′ gives the homogeneous coordinates of the unique line containing points
with coordinates P and P ′.

procedure FOLLOWPATH(ai, `j , Qm)
comment: follow a path Qm of Θ from ai to `j , assigning coordinates

u← ai
v ← first vertex on path Qm after ai
while v 6= `j

do



if v is a point

then


let ` be the unique adjacent line not in Θ
let L be the known coordinates of `
let L′ be the assigned coordinates of u
P ← L× L′

assign P as the coordinates of v

else


let a be the unique adjacent point not in Θ
let P be the known coordinates of a
let P ′ be the assigned coordinates of u
L← P × P ′

assign L as the coordinates of v
u← v
v ← next vertex on path Qm after u

comment: every vertex of Qm except for `j now has coordinates assigned

Observation. Once the algorithm FOLLOWPATH() has been executed for each path of
Θ, all vertices of Θ except for `j have homogeneous coordinates assigned such that each
coordinate is a linear homogeneous function of x, y, z.

There are three vertices of Θ adjacent to `j . Let their coordinates be P, P ′ and P ′′.
Define the polynomial p(x, y, z) = P · P ′ × P ′′.

Observation. p(x, y, z) is a cubic homogeneous polynomial in x, y, z.

Note that by projective duality we could equally well follow the paths in the other
direction, from `j to ai, starting with (x, y, z) as the coordinates of `j .

Theorem 2.1. If there is a coordinatization of (Σ′,Π′) such that all points and lines
not in Θ have the same coordinates as in (Σ,Π), then the values of x, y, z must satisfy
p(x, y, z) = 0.

Proof. The three points incident on `j all belong to Θ, with coordinates P, P ′, P ′′. There-
fore P · P ′ × P ′′ = p(x, y, z) = 0. Note that the coordinates of `j can be taken as any one
of P × P ′, P × P ′′ or P ′ × P ′′.

Thus, if there is a coordinatization of (Σ′,Π′) of the type we are looking for, we can
find it by solving p(x, y, z) = 0 for x, y, z. In general, there will be many values (x, y, z)
with p(x, y, z) = 0. They do not all give valid coordinatizations. According to the current
coordinatization of (Σ,Π), we want the values to be either real or rational. We will use a
method that originated with Diophantus (see [1]), as frequently used in the theory of elliptic
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curves [3, 20]. Now the groups defined by elliptic curves are used for cryptography, because
it is relatively easy to calculate with them, but a characterization of the groups appears to be
algorithmically intractable. A similar situation exists in the search for coordinatizations of
n3 configurations. But if we can find suitable values of x, y, z such that p(x, y, z) = 0, then
a real or rational coordinatization of (Σ′,Π′) can be relatively easy to find. The method
described below works very effectively.

Lemma 2.2. Let ` be any one of the three lines adjacent to ai in Θ, and let its coordinates
be L. Let a be the unique point not in Θ adjacent to `, and let its coordinates be P . If
(x, y, z) is set equal to P , then p(x, y, z) = 0.

Proof. If (x, y, z) = P , then L = P × (x, y, z) = (0, 0, 0). Each subsequent vertex on
this path in Θ will have coordinates (0, 0, 0), so that `j will also have coordinates (0, 0, 0).
Therefore p(x, y, z) = 0.

As there are three lines in Θ adjacent to ai, this gives three different points (x, y, z)
with p(x, y, z) = 0. None of these give coordinatizations of (Σ′,Π′), because (0, 0, 0) is
not a valid homogeneous coordinate. However, we can now proceed as follows.

Suppose that p(x, y, z) = 0, for some value (x, y, z) = (u, v, w). The equation
p(x, y, z) = 0 defines a cubic curve in the projective plane. The tangent line at point
(u, v, w) has the equation x∂p/∂x + y∂p/∂y + z∂p/∂z = 0, where the partial derivatives
are evaluated at (u, v, w). This is a linear equation in (x, y, z). As long as at least one par-
tial derivative is non-zero, say ∂p/∂z, we can solve for the associated variable, and obtain
z = −[x∂p/∂x + y∂p/∂y]/[∂p/∂z] along the tangent line. This is substituted into the
cubic homogeneous polynomial p(x, y, z) = 0 to obtain q(x, y) = 0, where q(x, y) is a
cubic homogeneous polynomial in x, y. At this point, we can divide by y3 to obtain the cu-
bic polynomial q(x/y, 1) = 0 in one variable x/y. Now q(x/y, 1) = 0 has three roots, of
which one, x/y = u/v, is already known (note: if v = 0, use y/x = v/u instead). The tan-
gent line has double contact (see [3]) with the curve p(x, y, z) = 0 at (x, y, z) = (u, v, w).
Therefore we can divide q(x, y) by vx− uy twice to obtain a linear homogenous equation
h(x, y) = 0. The single root of h(x, y) is then easy to find, even over the rational numbers.
Combining this with the expression for z, we obtain another root (x, y, z) = (u′, v′, w′) of
p(x, y, z) = 0.

This new value for (x, y, z) is now substituted into the coordinates for the vertices of Θ,
and the coordinates (which are linear homogeneous functions of x, y, z) of all vertices of Θ
are evaluated. It is then quickly determined whether this produces a valid coordinatization
of (Σ′,Π′). The conditions that must be satisfied are:

1. All points must have inequivalent homogeneous coordinates;

2. All lines must have inequivalent homogeneous coordinates;

3. P · L = 0 only if point P is incident with line L.

If some points or lines coincide, or if unwanted incidences are produced, then the method
can be repeated, starting from (x, y, z) = (u′, v′, w′). Either a new point (u′′, v′′, w′′) will
be found, or else a value previously found will recur, and so forth.

This can be done for each of the three lines in Θ adjacent to ai, which frequently
produces a number of valid coordinatizations of (Σ′,Π′).

There is still another possibility. The coordinates of any two of the three lines in Θ
adjacent to ai determine a line in the projective plane, intersecting the curve p(x, y, z) = 0
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in two known points. The third point of intersection is then easy to find. This calculation
allows a sequence of points satisfying p(x, y, z) = 0 to be found. We can then continue
with the tangents from these points, or take any two known roots on the curve to find
another. The number of points on the curve that can be generated from the starting values
can be either finite or countably infinite, as this is the situation that holds for rational points
on elliptic curves (see [20]).

We summarize this method as two theorems.

Theorem 2.3. Let (x, y, z) = (u, v, w) be a rational solution of the cubic homogeneous
polynomial p(x, y, z) = 0. If at least one of ∂p/∂x, ∂p/∂y, ∂p/∂z evaluated at (x, y, z) =
(u, v, w) is non-zero, then the tangent line x∂p/∂x+y∂p/∂y+z∂p/∂z = 0 intersects the
curve in another rational point.

Theorem 2.4. Let (x, y, z) = (u1, v1, w1) and (x, y, z) = (u2, v2, w2) be two rational
solutions of the cubic homogeneous polynomial p(x, y, z) = 0. Then the line containing
(u1, v1, w1) and (u2, v2, w2) intersects the curve in another rational point.

In practice, we want at least two of the partial derivatives to be non-zero at (x, y, z) =
(u, v, w). For if two of them are zero, then solving for the third variable forces one of x, y, z
to be zero. This invariably leads to a solution which does not give a valid coordinatization.
(However, it can then be used to find another rational solution.)

Once a valid coordinatization of (Σ′,Π′) has been found for a suitable value (x, y, z) =
(u, v, w), this process can be repeated, and more coordinatizations can be found. In general,
numerous coordinatizations for a given configuration can be found in this way. They are
inter-related through tangents to the cubic polynomial p(x, y, z), and through lines contain-
ing pairs of rational solutions, similar to the relation between points of the group of rational
points on an elliptic curve.

Example. We begin with a rational coordinatization of a (93) configuration, shown in
Figure 4. This is the (93) configuration listed as (93)2 in Figure 2.2.1 of [10], and as 9.2 in
[2]. It is cyclic and self-dual, with an automorphism group of order 9. The two “parallel”
lines `4 and `8 meet in point a9 at infinity. Similarly `5 and `7 meet in a8 at infinity, and
lines `1 and `3 meet in a2 at infinity. These three points at infinity are all contained in the
line `6, which is the “line at infinity”. The drawing is based on the rational coordinatization
of the configuration given by the coordinates shown in Table 1.

Table 1: Rational coordinates of the 93 configuration of Figure 4.

P1 = (2, 4,−3) L1 = (1, 1, 2)
P2 = (−1, 1, 0) L2 = (2,−1, 0)
P3 = (1, 2,−3) L3 = (1, 1, 1)
P4 = (1, 1,−1) L4 = (0, 3, 2)
P5 = (0, 0, 1) L5 = (3, 0, 2)
P6 = (1, 0,−1) L6 = (0, 0, 1)
P7 = (2, 2, 3) L7 = (1, 0, 1)
P8 = (0, 1, 0) L8 = (0, 1, 0)
P9 = (1, 0, 0) L9 = (1,−1, 0)

A 1-point extension using four points Ext(`1, `9, `4, `6; a4, a7, a9, a8), as in Figure 2,
is then done. (This example using 4 points was chosen instead of one using 3 points,
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Figure 4: A 93 configuration.

because the resulting (103) configuration has a “nice” drawing.) Observe that a4 = `1∩`9,
a7 = `9 ∩ `4, a9 = `4 ∩ `6, and that a8 ∈ `6. The third line through a4 is `7. It
intersects `6 in a8, as required for the 1-point extension. The result of the extension is the
103 configuration shown in Figure 5. It is (103)6 in Grünbaum [10]. Lines `1, `3 and `6
in Figure 5 meet in point a2 at infinity. Points and lines whose coordinates did not change
from (93) are drawn in heavier lines. (But note that the scaling of the two diagrams may be
slightly different.)

In order to find a rational coordinatization of it, we first find a theta subgraph by search-
ing for a shortest path from one of a4, a7, a9, a10 to one of `9, `4, `6, `10, where a10 and
`10 are the new point and line that were added. The theta subgraph is shown in Figure 6.
It consists of the octagon of Figure 3(b) and the shortest path just found. This is partly
indicated in Figure 5. The “corners” of the theta subgraph, a4 and `10, are shaded light
grey. With the aid of Figure 6, the paths can be traced out in Figure 5.

We now assign homogeneous coordinates (x, y, z) to `10, as it is one of the “corner”
vertices of the theta subgraph, and using the coordinates of Table 1 for the points and
lines not in the theta subgraph, we calculate coordinates for those of the theta subgraph
in terms of (x, y, z). Each point or line of the theta subgraph (except for the “corner”
vertices) is adjacent to exactly one line or point not in the theta subgraph. The adjacent
vertices can be determined from Figure 5. The calculated homogeneous coordinates are
linear homogeneous forms, shown in Table 2. Note that homogeneous coordinates can
be multiplied by a constant without changing the configuration. Therefore sometimes the
coordinates in Table 2. were multiplied by −1, or a common factor was removed from the
individual coordinates in order to simplify them. We then find that p(x, y, z) = L9·L7×L4,
which is expanded to

p(x, y, z) = −4x3 + 4x2y + 4x2z + 7xz2 − 16xyz + 11yz2 − 6z3

where a common factor of six has been removed from each term. The partial derivatives
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Figure 5: The extended 103 configuration.
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Figure 6: A theta subgraph in the 103 configuration.
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are

∂p/∂x = −12x2 + 8xy + 8xz − 16yz + 7z2

∂p/∂y = 4x2 − 16xz + 11z2

∂p/∂z = 4x2 − 16xy + 14xz + 22yz − 18z2

We have three known solutions to p(x, y, z) = 0, namely

(x, y, z) = L1 = (1, 1, 2) (which makes P10 = (0, 0, 0)),
(x, y, z) = L5 = (3, 0, 2) (which makes P8 = (0, 0, 0)),
(x, y, z) = L6 = (0, 0, 1) (which makes P9 = (0, 0, 0)).

The tangent line at (x, y, z) = L1 = (1, 1, 2) has equation 2x + 4y − 3z = 0. Solving
for 2x = −4y + 3z, substituting this into p(x, y, z) = 0, and removing common factors
gives

q(y, z) = 4y3 − 4y2z + yz2

The point L1 on the tangent line has (y, z) = (1, 2) so that q(y, z) is divisible twice by
2y − z. We find that

q(y, z) = 6y(2y − z)2

Therefore the third point of intersection of the tangent with p(x, y, z) = 0 occurs when
y = 0. Then since 2x + 4y − 3z = 0, we can take z = 2, and obtain 2x = −4y + 3z = 6,
giving (x, y, z) = (3, 0, 2). This does not give a valid solution, as it makes P8 = (0, 0, 0).

Table 2: Homogeneous coordinates for the theta subgraph.

L10 = (x, y, z)
P10 = L10 × L1 = (2y − z, z − 2x, x− y)
P8 = L10 × L5 = (2y, 3z − 2x,−3y)
P9 = L10 × L8 = (−z, 0, x)
L9 = P10 × P5 = (z − 2x, z − 2y, 0)
L7 = P8 × P6 = (2x− 3z,−y, 2x− 3z)
L6 = P9 × P2 = (x, x, z)
P7 = L6 × L5 = (−2x, 2x− 3z, 3x)
L4 = P7 × P3 = (4x− 3z, x, 2x− z)

We then try the tangent line at (x, y, z) = L5 = (3, 0, 2), which has equation 2x+ y−
3z = 0. Solve for y = 3z − 2x and substitute this into p(x, y, z) to obtain

q(x, z) = 4x3 − 16x2z + 21xz2 − 9z3

The known solution is (x, z) = (3, 2), so that this is divisible twice by 2x− 3z, giving

q(x, z) = (x− z)(2x− 3z)2

We find that the third intersection point with the curve p(x, y, z) = 0 occurs when x = z.
Without loss of generality, we take (x, y, z) = (1, 1, 1). If we then calculate the coordi-
nates, we find that L10 and L6 both have coordinates (1, 1, 1), which is not acceptable.
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However, this gives another rational point on the curve, so we find the tangent line at
(x, y, z) = (1, 1, 1). It is −5x− y + 6z = 0. We substitute y = 6z − 5x into p(x, y, z) to
obtain

q(x, z) = 2x3 − 9x2z + 12xz2 − 5z3

The known solution is (x, z) = (1, 1), so that this is divisible twice by x − z, giving
q(x, z) = (2x − 5z)(x − z)2. The third point of intersection is therefore (x, y, z) =
(5,−13, 2). This value of (x, y, z) is then found to give a valid coordinatization of the 103
configuration found. The coordinates that result are shown in Table 3.

At this point, the algorithm could continue, and find the tangent line at (x, y, z) =
(5,−13, 2) to look for more rational coordinatizations. Or the known rational points on the
curve could be taken two at a time, as the line containing two points intersects the curve
in a third rational point, and so forth. In practice, very many rational coordinatizations
can be found in this way from a single theta subgraph of a single one-point extension of a
geometric configuration.

Table 3: Rational coordinates of the 103 configuration of Figure 5.

P1 = (2, 4,−3) L1 = (1, 1, 2)
P2 = (−1, 1, 0) L2 = (2,−1, 0)
P3 = (1, 2,−3) L3 = (1, 1, 1)
P4 = (−14,−4, 27) L4 = (14, 5, 8)
P5 = (0, 0, 1) L5 = (3, 0, 2)
P6 = (1, 0,−1) L6 = (5, 5, 2)
P7 = (−10, 4, 15) L7 = (4, 13, 4)
P8 = (−26,−4, 39) L8 = (0, 1, 0)
P9 = (−2, 0, 5) L9 = (−2, 7, 0)
P10 = (−14,−4, 9) L10 = (−5, 13,−2)

We now start from the 103 configuration of Figure 5, with the rational coordinatization
given in Table 3. There is a one-pont extension Ext(`10, `6, `3; a9, a2, a6) that can be done,
resulting in an 113 configuration. Its incidence table is given in Table 4. This configuration
is isomorphic to configuration (113)X in Martinetti [17]. The new point and line added
are a11 and `11. We use a theta subgraph to find a rational coordinatization of it. The theta
subgraph consists of the three paths [a9, `3, a2, `11], [a9, `6, a11, `11], [a9, `8, a6, `11].

There are many rational coordinatizations that result. One of them is shown in Table 5.
We see that the integer coordinates are getting bigger. This is the single greatest obstacle
that the algorithm has to deal with. One of the questions that needs to be addressed is how
to limit the number of digits in the integers that arise. It is very easy for integer overflow to
occur after several successive extensions have been done.

The Desargues configuration cannot be obtained by a 1-point extension (see [14]). The
“anti-Pappian” (see [8, 16]) is the only non-geometric 103 configuration. Rational coor-
dinatizations of all the other (103) configurations, can be easily found using one-point
extensions of the (93) configurations in this way. Then rational coordinatizations of all the
(113) configurations can be found from the (103) configurations, which then extend to co-
ordinatizations of all the (123) configurations. The author has written a computer program
to generate coordinatizations from a theta subgraph in a one point extension. It produces
thousands of them very quickly. Currently the program has to be run individually for each
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starting configuration, and the resulting output files must be individually collated and then
tested for isomorphisms.

Table 4: The 113 configuration extended from Figure 5.

`1 `2 `3 `4 `5 `6 `7 `8 `9 `10 `11
1 1 2 3 1 7 4 5 4 8 2
2 3 3 4 7 9 6 6 5 10 6
10 5 9 7 8 11 8 9 10 11 11

Table 5: Rational coordinates of the 113 configuration extended from Table 3.

P1 = (2, 4,−3) L1 = (1, 1, 2)
P2 = (16,−34, 9) L2 = (2,−1, 0)
P3 = (1, 2,−3) L3 = (28, 19, 22)
P4 = (−14,−4, 27) L4 = (14, 5, 8)
P5 = (0, 0, 1) L5 = (3, 0, 2)
P6 = (−136, 4, 123) L6 = (27,−15, 22)
P7 = (−10, 4, 15) L7 = (4, 13, 4)
P8 = (−26,−4, 39) L8 = (1, 34, 0)
P9 = (−748, 22, 933) L9 = (−2, 7, 0)
P10 = (−14,−4, 9) L10 = (−5, 13,−2)
P11 = (−64,−14, 69) L11 = (37, 28, 40)

3 In practice
Given an n3 configuration (Σ,Π), it is relatively easy to write a computer algorithm that
searches for all possible one-point extensions Ext(`1, `2, `3; a1, a2, a3) or Ext(`1, `2, `3, `4;
a1, a2, a3, a4), and extends (Σ,Π) to an (n + 1)3 configuration (Σ′,Π′), in all possible
ways. We also want a coordinatization of (Σ′,Π′) when (Σ,Π) is geometric. For each ex-
tension (Σ′,Π′) found, the coordinatization algorithm of the previous section can be used
to look for a coordinatization of (Σ′,Π′). There are various situations that one has to be
aware of when programming this.

1. The polynomial p(x, y, z) is a cubic homogeneous polynomial in three variables.
Sometimes a cubic polynomial will factor into the product of three linear homoge-
neous polynomials, or a linear and quadratic polynomial. In these cases the algorithm
will not succeed. This happens occasionally in practice. It will usually be detected
when the tangent is found. Not every extension (Σ′,Π′) has a coordinatization ex-
tended using a given theta subgraph. However, another theta subgraph can be chosen
in this case.

2. The tangent at (x, y, z) = (u, v, w) is a linear homogeneous polynomial. It may be
identically 0. In this case the extension does not succeed.

3. The tangent at (x, y, z) = (u, v, w) may be be a monomial, e.g., x = 0. This does
not tend to produce valid coordinatizations.
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4. Suppose that the tangent at (x, y, z) = (u, v, w) is ax+by+cz = 0. Solving for one
variable, e.g., cz = −ax − by and substituting this into p(x, y, z) gives the reduced
polynomial q(x, y) = 0, which is divisible twice by vx − uy. It can happen that
q(x, y)/(vx − uy)2 is a monomial, e.g., q(x, y) = x(vx − uy)2. This gives x = 0,
from which we find the solution (x, y, z) = (0,−c, b). This frequently occurs as a
special case.

5. The general case is when q(x, y) factors into (vx − uy)2(rx + sy). In this case the
solution is cx = cs, cy = −cr and cz = −as + br, or equivalently, (cs,−cr,−as +
br) is taken as the solution. The majority of solutions fall into this case.

6. The algorithm stores an array of solutions (x, y, z) = (u, v, w) to p(x, y, z) = 0.
Initially there are three such points (u, v, w) known, and they are known not to give
valid coordinatizations of (Σ′,Π′). They are placed on the array of solutions. For
each (u, v, w) on the array, the tangent is used to find another possible solution,
which is appended to the array. The solutions on the array are then taken in pairs
(u1, v1, w1) and (u2, v2, w2), to find more solutions, which are also appended to
the array. The algorithm proceeds to build an array of all solutions (u, v, w) that
can be obtained by these methods. This is similar to generating the elements of a
group. Typically a potentially infinite number of solutions will be found, so that a
limit must be placed on the maximum number allowed. The algorithm can stop with
the first valid coordinatization found, or it can look for some maximum number of
valid coordinatizations. It can easily find thousands of valid integer coordinatiza-
tions. However, the values of the integers u, v, w rapidly become enormous if a large
number of coordinatizations is required, causing integer overflow even when 64-bit
integers are used. The author has programmed it to find a maximum of three valid
coordinatizations for each extension (Σ′,Π′) found, using 64-bit integers, and using
only one theta subgraph. More theta subgraphs could be chosen.

If (Σ,Π) is an n3 configuration, there will be various (n+1)3 configurations that can be
produced from it by one-point extensions. If (Σ′,Π′) is such an (n+1)3 configuration, then
there are usually very many different extensions of (Σ,Π) that give rise to an isomorphic
(Σ′,Π′). Each extension will have up to three coordinatizations found. And this same
(Σ′,Π′) may also arise by a one-point extension from another n3 configuration, which will
also produce numerous coordinatizations of (Σ′,Π′). The result is thousands of integer
coordinatizations for (Σ′,Π′) when n = 10, 11 or 12. Graph isomorphism software is
used to distinguish and recognize the various configurations that are produced. The author
has used the software of [12], although others could also be used. The configuration is
represented by its Levi graph, with an initial partition of vertices into points and lines.

This method of finding coordinatizations is much simpler than that of [22, 23] because
it only requires finding the roots of cubic homogeneous polynomials with three variables,
whereas [23] states that solving their general diophantine equations for (n3) configurations
is likely to be recursively undecidable.

So far, the author has used this method to produce integer coordinatizations of all the
geometric (103), (113) and (123) configurations. As n increases, the integer coordinates
rapidly tend to have more and more digits, so that it is necessary to filter them somewhat
to limit the number of digits in the coordinates. If fixed size integers are used (e.g. 64
bits), overflow can soon occur, which limits the number of coordinatizations found. It is
advantageous to choose a coordinatization of (Σ,Π) to extend from, whose coordinates



142 Ars Math. Contemp. 15 (2018) 127–145

are “small” integers. Very many coordinatizations of (Σ,Π) are then obtained. This is the
case with n = 10, 11, 12, 13, where thousands of coordinatizations are easily found. If
multi-precision integer arithmetic is used, it is likely that coordinatizations can be found
for nearly any fixed n.

The number of distinct (133) configurations is 2036 (see [10], p. 69). One of these is
a Fano-type configuration, as described in [14], and therefore does not arise as a one point
extension. Using ad-hoc methods, the author has shown that it is geometric, and in fact has
a rational coordinatization. The other 2035 (133) configurations can all be constructed as
one point extensions of (123) configurations. All of them are geometric, and all have ratio-
nal coordinatizations. The coordinatization algorithm finds many integer coordinatizations
of them. One of them was much more difficult than all the others, requiring integer coordi-
nates with up to 22 digits in the intermediate calculations, and 13 in the final coordinates.
For this one configuration, the algorithm was carried out by hand using Maple [24] as a
calculator with unlimited precision. Maple was also used for constructing a coordinatiza-
tion of the Fano-type configuration. The description of the coordinatizations is too long to
include here. An article containing the details is currently in preparation.

4 Additional coordinatizations
Suppose that (Σ,Π) is an n3 configuration for which an integer coordinatization is known.
We would like to find more integer coordinatizations. One method is this.

1. Find an induced theta subgraph Θ in the incidence graph of (Σ,Π). This is most
easily done by finding an induced cycle of reasonable length, and then finding a
suitable path across the cycle. The path must have odd length.

2. The vertices not in Θ are to keep their current coordinates. One of the vertices of de-
gree three in Θ is chosen to have coordinates (x, y, z), with values to be determined.

3. The algorithm FOLLOWPATH() is used to assign coordinates that are homogeneous
linear forms to the vertices of Θ of degree two. A polynomial p(x, y, z) is constructed
using the second vertex of degree three of Θ. Solutions of p(x, y, z) = 0 are found
as in the previous section.

This allows us to find “related” coordinatizations of (Σ,Π). The author has used this
method to produce many rational coordinatizations of the (93) configurations, which can
then be used as starting points for the generation and coordinatization of the (103) con-
figurations and beyond. A given Θ may not produce any additional coordinatizations. In
general, different choices of Θ will produce different results. This method is less reliable
that the extension method of the previous section. The reason seems to be that the poly-
nomial p(x, y, z) frequently has large integer coefficients, resulting in solutions which lead
to integer overflow. For some configurations (Σ,Π), no additional coordinatizations are
found like this. For others, it gives dozens of new coordinatizations.

5 Real coordinatizations – the anti-Pappian
The previous sections are concerned with using one-point extensions to find rational coordi-
natizations of n3 configurations. Theorems 2.3 and 2.4 also apply to real coordinatizations.
The anti-Pappian [8, 16, 19] is the only (103) configuration that is not geometric. It cannot
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be coordinatized over any field, as shown in [8, 16]. However, it can be coordinatized over
the quaternions [16].

The anti-Pappian can be obtained by a one-point extension from a geometric (93) con-
figuration (it is (93)3 in [10] and 9.1 in [2], a self-dual configuration with an automorphism
group of order 12). When the extension algorithm is applied to find a coordinatization, it is
necessary to divide polynomials. It is easy to divide polynomials with integer coefficients,
as the division is always exact. However, when a computer works with real numbers, they
are represented as floating point numbers, and round-off error is always present. Conse-
quently division will always leave a non-zero remainder, which is usually very small, even
when the division is theoretically exact. A suitably small number is then replaced by zero,
e.g. 10−9. When Pi · Lj is evaluated to test for incidence of a point and line, the result
will usually not be exactly zero, due to round-off error, even if they are incident. So if
Pi · Lj is sufficiently close to zero, it must be considered to be zero. Thus, it is possible
to have a point and line not exactly incident, but very, very close to incident, for example,
|Pi · Lj | ≤ 10−9. Thus, a near-coordinatization can be found. Every real coordinatization
found using floating point numbers is in fact a near-coordinatization.

Figure 7: A near-coordinatization of the anti-Pappian configuration.

When the coordinatization algorithm is applied to the extension that produces the anti-
Pappian, several near-coordinatizations are found, even though the anti-Pappian cannot be
coordinatized over the reals. One of them is shown in Figure 7.

Question. Let ε be a small positive real value, and let ∆ be a fixed positive real value,
e.g., ∆ = 1. How small can ε be chosen so that there is a near-coordinatization of the
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anti-Pappian configuration such that |Pi · Lj | ≤ ε for all points Pi and lines Lj which are
incident, and |Pi · Lj | ≥ ∆ if Pi and Lj are non-incident?

Grünbaum [10] (p. 151) also asks whether there are any n3 configurations with n > 10
which are non-geometric? One place to look for them is the Fano-type configurations
of [14], as they cannot be constructed using a one point extension, and so are not accessible
to the cubic-polynomial-based coordinatization algorithm. The smallest Fano-type config-
uration is the unique (73). The next one is a (133) configuration (which is geometric).
Then (143).
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