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Abstract

This paper presents a modified three-dimensional (3D) 
failure mechanism for determining the 3D passive earth 
pressure coefficient using the upper bound theorem within 
the framework of the limit analysis theory. 
The translational kinematically admissible failure mecha-
nism generalized with a depth of h = 1.0 is considered in 
the analysis. The mechanism geometry presents a volume 
of rigid blocks composed of the central body and two 
lateral rigid bodies, which are connected by a common 
velocity field. The front surface of the central body 
interacts with the retaining wall, while the upper surface 
can be loaded by surcharge loading. The lateral body 
segments represent four- and three-sided polygons in the 
cross section of the central body; therefore, they define the 
polygonal failure surface of the central part. At the outer 
side, each segment of the lateral body is bounded by infini-
tesimally spaced rigid half-cones that describe the envelope 
of a family of half-cones. 
The numerical results of 3D passive earth pressure limit 
values are presented by non-dimensional coefficients of 
passive earth pressure influenced by the soil weight Kpγ 
and a coefficient of passive earth pressure influenced by 
the surcharge Kpq . This research was intended to improve 
the lowest values obtained until now using the limit 
analysis theory.

The results are presented in a graphical form depending on 
the geometrical parameters and soil properties.
A brief description of two world-recognized failure 
mechanisms based on the limit analysis approach, and 
the comparison of three failure mechanism results are also 
presented.
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1 INTRODUCTION

Passive earth pressure acting on the rigid retaining wall 
has been widely studied in the past with a stress on refin-
ing a 2D analysis. The calculations are based either on 
the limit-equilibrium method ([3], [13], [14], [16]), the 
slip line method ([5], [9]), or the limit analysis method 
([2], [6], [11]). Three-dimensional (3D) problems of 
the passive earth pressure were presented by Blum [1] 
to a restricted extent, by Soubra and Regenass [10] with 
a multi-block translation failure mechanism using the 
limit analysis, and by Škrabl and Macuh [12] with a 
rotational hyperbolical failure mechanism. 

This paper presents a new modified 3D translational 
kinematically admissible failure mechanism for deter-
mining the passive earth pressure coefficients within 
the framework of the upper-bound theorem of the limit 
analysis. 

The limit analysis theory determines the limit pres-
sures that provide strict lower or upper bounds to the 
true limit load ([2], [7]). The upper-bound theorem 
ensures that the rate of work due to the external forces 
of kinematical systems in equilibrium is smaller than 
or equal to the rate of dissipated internal energy for all 
kinematically admissible velocity fields that obey strain 
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velocity compatibility conditions and velocity boundary 
conditions, as well as the flow rule of the considered 
materials. 

This analysis considers a general case of frictional and 
cohesive soils (ϕ and c) with the eventual surcharge load-
ing q on the ground surface. The numerical results of the 
3D passive earth pressure are presented in the form of 
dimensionless coefficients Kpγ and Kpq, representing the 
effects of the soil weight and surcharge loading.

The coefficient Kpc , which represents the effects of cohe-
sion, can be determined using the coefficient of passive 
earth pressure due to the surcharge Kpq [5]. 

In conclusion a brief description of two world-recog-
nized failure mechanisms based on the approach of 
limit analysis is presented ([10], [12]). The lowest upper-
bound solutions of the 3D passive earth pressure coef-
ficient given by a new failure mechanism are compared 
with the results relating geometrical parameters and soil 
properties.

2 FAILURE MECHANISM

A new modified translational three-dimensional failure 
mechanism within the framework of the upper-bound 
theorem of the limit analysis has been developed in 
order to optimize the 3D passive earth pressure coef-
ficient [15].

The 3D coefficient is distinguished from the two-dimen-
sional one, by its growing difference, depending on soil 
properties and geometrical data. Therefore, these coef-
ficients are very useful when analysing different kinds 
of geotechnical problems, where a 3D state gives more 
exact and realistic results. For example, it can be applied 
to retaining pile walls in the case of axially spaced piles, 
when the resistance of piles along the embedment depth 
is analysed [15].

2.1 SuPPosITIONS AND LIMITATIONS

The following suppositions and limitations are applied:

a) Soil characteristics present a homogeneous, isotropic 
Coulomb material using the associative flow rule 
obeying Hill’s maximal work principle [4].

b) The translational failure mechanism is bounded by 
a polygonal sliding surface in the x-y plane, a rigid 
block of the dimensions b h⋅  (b = width, h = height) 

in the y-z plane, and the envelope of a family of half-
cones at both lateral sides, with a horizontal backfill.

c) The redistribution of the contact pressures over 
the entire height h = 1 for the passive pressure due 
to the soil weight is triangular and is assumed to 
be inclined at the constant friction angle δ at the 
soil–structure interface.

d) The velocity at the soil–structure interface is assumed 
to be inclined at δ to the wall in order to respect 
normality conditions [8]. 

e) The work equation is obtained by equating the rate 
of external work done by external forces to the rate 
of internal energy dissipation along different velocity 
discontinuities.

f) The resulting value of passive earth pressure is 
defined by:

P K h b K q hb K c hbp p pq pc= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅γ γ
2

2
        (1)

where γ is the unit weight of the soil, q is surcharge 
loading, and c is cohesion. 

2.2 VELOCITY FIELD FORMULATION

The new translational three-dimensional kinematically 
admissible failure mechanism is shown in Fig. 1, where 
the cross-section and plane view of the lateral part of 
the failure mechanism are schematically presented. The 
Cartesian co-ordinate system is selected with the y-axis 
along the wall. The optimal polygonal sliding surface 
in the x-y plane consists of a final number of rigid 
segments, the mechanism is dimensionless with a height 
of h´= 1 (see Fig. 2).

Figure 1. The scheme of the cross-section and plane view of 
the three-dimensional failure mechanism lateral plane.
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A cross-section of the proposed failure mechanism with 
the velocity field is presented in Fig. 2. The individual 
segment j has a starting point (xopt , yopt)j and a final point 
(0, Yopt)j , where the variables are calculated during the 
optimization procedure (see Fig. 2a). 

The kinematically-admissible velocity field (see Fig. 2b) 
is composed of j = 7 rigid segments bounded by the 
embedment point O (0, -1), and the final point (Xopt , 0). 
In general, the number of segments can be varied. The 
kinematics of the segments velocities Vi  are inclined at 
an angle of αj + ϕ to the horizontal axis, and the inter-
segment velocities Vj,j+1 are inclined at an angle of
βj,j+1 - ϕ to the horizontal axis. The mechanism is defined 
by 2n–1 angular parameters αj (j = 1, ..., n–1) and 
βj,j+1 (j = 1, ..., n). The movement of each of the n rigid 
segments accommodates the movement of the whole 
failure mechanism soil mass, and its movement accom-
modates the movement of the retaining structure. Figure 2b. The velocity field of the failure mechanism.

Figure 2a. The cross-section of the failure mechanism.

The segment velocities Vi  and the inter-segment veloci-
ties Vi,i+1 are given by

V Vj j
j j j
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The kinematically admissible velocity field is consistent 
with the normality condition (at the angle ϕ to the 
sliding surface) not only in the x-y plane of the interface 
between rigid segments (as shown in Fig. 2) but also on 
the interfaces perpendicular to this plane.
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2.3 GEOMETRY OF RIGID LATERAL 
BODIES

The geometry of the failure mechanism presents rigid 
space-segments consisting of a central part and two 
lateral rigid bodies constituted of the family of half-cone 
envelopes. 

Fig. 3a presents the envelope of a family of cones of the 
first segment of the lateral body where the s-t is the local 
coordinate system and x-y the global system.

Figure 3a. Geometry of the first segment.

Figure 3b.  The envelope of a family of half-cones.

The parametrical equation of a circle in the coordinate 
system (z, s) is:

z Ri i i= ⋅cosϑ         (4)

s Ri i i= ⋅sinϑ         (5)

where Ri is the radius of the cone, and ϑi  is the angle of 
deflection of a tangent to a curve, as a consequence of 
the differential dR ds .

The radius of the cone Ri  in the local coordinate system 
(t, s) is obtained with:

R t t tg t s tg tgi s t i i i i( )− = −( )⋅ = − ⋅( )⋅φ β φ         (6)

where β   is the angle between the global (x, y) and the 
local (t, s) coordinate systems. 

The point on the envelope of a family of cones is defined 
by dR ds  and ϑ  (see Fig. 3b): 

dR
ds

tg tg a tg tgi

i
i i=− ⋅ ≡ ⇒ = ⋅( )β φ ϑ ϑ β φsin sin       (7) 

Each point coordinate of the envelope of a family of 
half-cones in the local coordinate system is defined by:

s k t n k
s s
t t

n s k ti i
k

k
k k= ⋅ + ⇒ =

−
−

∧ = − ⋅0

0

        (8)

t n
tg ki

i

=
⋅ −φ ϑsin

        (9)

Transformation from the local to the global coordinate 
system leads to:

x x t s
y y t s

i j i j i j

i j i j i j

= + ⋅ − ⋅

= + ⋅ + ⋅
0

0

,

,

cos sin
sin cos

α α

α α
        (10)

where x yj j0 0, ,;  is the distance from the origin of 
the global coordinate system to the first point on the 
segment j = 1.

The envelope of a family of cones for the first segment 
(j = 1) is defined by the equations (4) to (10), while for 
other blocks (j = 2, M) it is based upon the equation:
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        (11)

where ϑi j,  is the deflection angle on the envelope at 
point i of segment j. 

Fig. 4 presents the scheme of the envelope of the third 
segment and its surface plane. 

After the angle ϑi j,  is known at each of the analysed 
cones, the envelope of a family of cones can be 
uniformly defined by Eqs. (8) - (10). Fig. 5 presents the 
ground plane along the x-axis of the last segment. 
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Figure 5. The ground plane of the failure mechanism along the 
x-axis.

On the basis of these results, the volume of the separate 
block j and finally the volume of the whole failure mech-
anism needed in the work equation of the upper-bound 
theorem of the limit analysis can be calculated. The work 
equation and the background of the limit analysis has 
been explained in detail ([7], [10], [12]), therefore no 
attention will be paid to the background of the theory in 
this paper.

Considering the work equation for the condition of 
equality between the external rate of work and internal 
rate of dissipation along the velocity interface for no 
cohesive rigid-plastic material, the coefficients can be 
written by:

K
g
fpγ

γ

γ

=   ;  K
g
fpq

q

q

=         (12)

where fγ and gγ denote the reduced values of the rate of 
work due to the passive earth pressure and the rate of 
work due to the unit weight of the ground at Kpγ = 1, and 

Figure 4. The scheme and the surface plane of the failure mechanisms third segment.

fq and gq  denote the reduced values of the rate of work 
due to the passive earth pressure and the rate of work 
due to the surcharge loading on the backfill surface at 
Kpq = 1.

The coefficient Kpc , which represents the effects of cohe-
sion, can be determined using the coefficient of passive 
earth pressure due to the surcharge Kpq [5]:

K
K

pc
pq=
−1/cos
tan

δ

φ
        (13)

3 NUMERICAL RESULTS

With the numerical analysis, the most critical non-
dimensional three-dimensional passive earth pressure 
coefficient is obtained, where all variables are calculated 
by considering the scalars and the rigorous system of 
equality and inequality constraints. The Solver optimiza-
tion tool of Microsoft Excel, together with the general-
ized-reduced-gradient method, was used during the 
numerical process. 

The scalars, constraints and variables:

- geometry scalars are points (0,0) and (0,-1), ratio b/h,
- material scalars are soil properties  ϕ,  δ, 

′ = ′= ′=γ 1 0 0. , q c ,
- variable points on x-axis (Xopt, 0)j=7 and on the

y-axis (0, Yopt)j   ,
- variable points on sliding surface (xopt, yopt)j=1, M  ,
- inequality equation of the angles α αj j≤ −+1 0 01.  

and β π φj ≤ −/2  ,
- inequality equation of points on the 

y-axis y yj j≥ ++1 0 001. .
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The results of three-dimensional passive earth pressures 
are presented in the form of dimensionless coefficients 
Kpγ  and Kpq  representing the effects of soil weight and 
surcharge loading, respectively. They are calculated for 
different soil characteristics for ϕ ranging from 15° to 
45°, for three values of δ/ϕ (δ/ϕ = 0, 0.50 and 1.00), and 
for three values of b/h (b/h = 0.25, 1 and 10).

Fig. 6 presents the critical failure mechanism in the x-y 
plane for different soil characteristics. The following 
conclusion has been re-established from these results: 
any increase of the soil friction angle ϕ influences the 
failure mechanism; and while the volume of the failure 
mechanism increases, the shape of the sliding surface 
becomes more curved and the length of the last segment 
on the x-axis increases continuously.

Figure 6. Critical failure mechanism in the x-y plane for ′ = ′= ′=γ 1 0 0. , q c , b/h = 0.25 and ϕ = 25 ÷ 45°.

ϕ = 25°

ϕ = 30° ϕ = 35°

ϕ = 40° ϕ = 45°
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From Fig. 7, it can be established that the length Xopt = L7 
and, consequently, the volume of the failure mechanism 
is maximal at ϕ = 45° and δ = ϕ ; these values decrease 
by lowering the soil friction angle. The friction angle at 
the soil–structure interface δ essentially influences the 

results, and the geometrical factor b/h has the largest 
influence at the minimum soil friction angle ϕ = 25° in 
the region b/h = 0.25 to b/h = 1; however, at b/h > 1 the 
influence of the geometry parameters declines. 
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Figure 7. The last segment length along the x-axis Xopt = L7 against b/h for different δ and ϕ. 
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Figure 8 (also on previous page). Non-dimensional coefficients of Kpγ against ϕ, δ and b/h.
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Figure 9. Non-dimensional coefficients of Kpq against ϕ, δ and b/h.
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Figs. 8 to 9  represent the values of the coefficients Kpγ 
and Kpq for different values of b/h, different shear angles 
and friction quotients between the retaining structure 
and the backfill soil. 

The analysis results show that for the values of Kpγ and 
Kpq , which decrease essentially by increasing the ratio
of b/h, the coefficients resemble the value in the 2D state 
at b/h = 10; likewise, the failure mechanisms of 2D and 
b/h = 10 have similar shapes [5]. Also the friction angle 
at the soil–structure interface δ plays an important role, 
as by increasing the ratio of  δ/ϕ  the coefficients Kpγ and 
Kpq increase essentially. The results from Figs. 8 to 9 can 
be used in geotechnical practice.

4 COMPARISON WITH THE 
EXISTING SOLUTIONS

The three-dimensional passive earth pressure acting 
on a rigid retaining wall has been re-established using 
a simplified translational failure mechanism [10] and a 
rotational log spiral failure mechanism [12]. Follows a 

brief presentation of these two world-recognized failure 
mechnisms.

4.1 MULTI-BLOCK FAILURE
MECHANISM M

nt
  

Soubra and Regenass [10] published a truncated multi-
block translational failure mechanism referred to as 
Mnt , which has been improved from his two previously 
proposed mechanisms, i.e. the one-block mechanism M1 
and the multi-block mechanism Mn. The improvement 
from Mn has been obtained by a volume reduction of the 
final block, and from M1 by increasing the number of 
blocks from one to n.

Fig. 10 presents the cross-section and the plan view of 
the Mnt mechanism. In this improved mechanism, the 
lower plane and the lateral planes of the last block of the 
Mn mechanism are truncated by two portions of right 
circular cones with vertices at Dn-1 and D´n-1, respec-
tively. The right (left) cone is tangential to the lateral 
plane BDn-1Dn (B´D´n-1 D´n ) and the lower plane DnD´n 
Dn-1D´n-1.
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Figure 10. The cross-section and the plane view of the Mnt translational failure mechanism by Soubra and Regenass [10].
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Fig. 11 presents the velocity field of the Mnt  mechanism. 
The soil mass of each block moves with the velocity Vi  
inclined at an angle of  βI + ϕ  to the horizontal direc-
tion. The inner-block velocity Vi-1,i  is inclined to the 
inner planes of ϕ, and to the outer velocities, as shown 
in Fig. 11. The wall moves with the velocities Vo and Vo,1 
representing the relative velocities at the soil-structure 
interface. All of these velocities are parallel to the verti-
cal symmetrical plane xOy.

A comparison between this failure mechanism and the 
one presented in this paper can be made while both 
models are translational, using the same suppositions. 
The difference from the presented failure mechanism 
in this paper can be seen from Figs. 2 and 9. The Mnt 
mechanism of Soubra and Regenass [10] has two major 
differences from the presented modified failure mecha-
nism, i.e. all blocks have the same starting point, which 
is the origin of the x-y coordinate system, and just one 
portion of the right circular cones is used on each side in 
the lateral plane.  

4.2 3D ROTATIONAL HYPERBOLICAL 
FAILURE MECHANISM 

Škrabl and Macuh [12] developed this approach within 
the framework of the limit analysis theory. Similar to 
the mechanism described before, it is based on a three-
dimensional rotational hyperbolical failure mechanism 
(see Fig. 12). This failure mechanism represents the 
extension of the plane slip surface in the shape of a log 
spiral (Fig. 13). 

The outer sides are laterally bounded by a curved and 
kinematically-admissible hyperbolic surface, which 
is defined by enveloping the hyperbolical half cones 
and part of the case surface of the leading half cone. 
Every point along the retaining wall height (1-0, see 
Fig. 12) has an exactly defined hyperbolic friction cone. 
A common velocity field connects all the bodies. The 
difference from this mechanism and the presented 
modified failure mechanism can be seen in Fig. 2 and 
Figs. 12 to 13. 

Figure 11. The velocity field of the Mnt mechanism.
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Figure 12. Scheme of the rotational hyperbolical failure mechanism.

Figure 13. Log spiral slip surface of the mechanism.
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4.3 COMPARISON OF THE RESULTS

The results for the dimensionless 3D passive earth 
pressure coefficients were compared to the results for 
other types of failure mechanism using the upper-bound 
theorem ([10], [12]). Table 1 shows the results for Kpγ , 

and Table 2 the results for Kpq for different values 
of ϕ, δ and b/h. The highest differences are at ϕ = 45° and 
b/h = 0.25; by lowering the friction angle ϕ and increas-
ing the value b/h the differences decrease, the smallest 
value being at ϕ = 25° and b/h = 10.
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Kpγ (Soubra and Regenass) Kpγ  (Škrabl and Macuh) Kpγ  (proposed model)
b/h 0.5 1.0 10.0 0.5 1.0 10.0 0.5 1.0 10.0

ϕ (º) δ/ϕ
25 0.5 10.135 6.873 3.748 9.733 6.579 3.687 9.368 6.346 3.627

1.0 14.599 9.445 4.620 13.699 9.058 4.782 12.598 8.394 4.495
35 0.5 30.545 19.006 7.951 26.859 16.699 7.426 25.356 15.844 7.209

1.0 57.371 33.627 11.708 49.308 29.814 12.044 43.675 26.561 10.860
45 0.5 176.444 96.248 23.101 107.038 60.919 19.397 86.218 50.080 17.420

1.0 338.705 184.474 43.854 249.114 140.401 42.041 215.048 121.667 36.648

Table 2. Comparison of Kpq  results depending on parameters ϕ, δ and b/h.

Figure 14. Comparison of the results for Kpγ and Kpq against b/h for δ/ϕ = 1 and  δ/ϕ = 0,  ϕ = 15°, 30°, 45°.
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Kpγ (Soubra and Regenass) Kpγ  (Škrabl and Macuh) Kpγ  (proposed model)
b/h 0.5 1.0 10.0 0.5 1.0 10.0 0.5 1.0 10.0

ϕ (º) δ/ϕ
25 0.5 7.963 5.779 3.770 7.360 5.539 3.625 7.296 5.027 3.253

1.0 12.776 8.798 5.004 10.985 7.809 4.885 10.431 7.360 4.579
35 0.5 22.855 15.150 8.150 20.779 13.709 7.320 19.847 13.533 7.079

1.0 54.064 33.202 13.730 40.135 25.839 12.857 37.509 24.229 12.131
45 0.5 178.689 99.555 26.684 104.658 61.825 23.293 88.334 53.074 20.652

1.0 379.494 212.364 59.215 239.688 140.857 51.747 207.888 122.938 45.991

Table 1. Comparison of Kpγ  results depending on parameters ϕ, δ and b/h.
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Fig. 14 presents a comparison of the coefficients Kpγ and 
Kpq for ϕ = 15°, 30° and 45°, б/ϕ = 1 and  б/ϕ = 0 against 
the ratio b/h. 

The comparison of these results shows that the differ-
ence in the coefficient is the greatest at ϕ = 45°, at low 
ratio b/h = 0.25, and б/ϕ = 0. 

5 CONCLUSIONS

The modified translational failure mechanism presented 
in this paper was developed for the improvement of the 
3D passive earth pressure coefficients. The approach 
used is based on a new translational three-dimensional 
failure mechanism within the framework of the upper-
bound theorem of the limit analysis. The geometry of 
the kinematically-admissible failure mechanism presents 
a rigid space-block consisting of a central part and two 
lateral rigid parts of a family of cone envelopes.

In the past the three-dimensional passive earth pressure 
was determined by a translational failure mechanism 
[10] and a rotational hyperbolical failure mechanism 
[12]. A description of these two failure mechanisms is 
briefly presented in this paper for a better understanding 
of differences between all three failure mechanisms.

The numerical results for a limit value of 3D passive 
earth pressure are presented graphically by a non-
dimensional coefficient of passive earth pressure influ-
enced by the soil weight Kpγ and a coefficient of passive 
earth pressure influenced by the surcharge Kpq . 

A comparison of the results for all three mechanisms 
shows that the difference in the coefficient increases with 
any improvement in soil properties and lowering the 
ratio b/h.
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