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Abstract

In a paper from 1886, Martinetti enumerated small v3-configurations. One of his tools
was a construction that permits to produce a (v + 1)3-configuration from a v3-configura-
tion. He called configurations that were not constructible in this way irreducible configura-
tions. According to his definition, the irreducible configurations are Pappus’ configuration
and four infinite families of configurations. In 2005, Boben defined a simpler and more
general definition of irreducibility, for which only two v3-configurations, the Fano plane
and Pappus’ configuration, remained irreducible. The present article gives a generaliza-
tion of Boben’s reduction for both balanced and unbalanced (vr, bk)-configurations, and
proves several general results on augmentability and reducibility. Motivation for this work
is found, for example, in the counting and enumeration of configurations.

Keywords: Configuration, irreducible, partial linear space, construction, enumeration.

Math. Subj. Class.: 05B30, 51E26, 14N20.

1 Introduction
An incidence geometry is a triple (P,L, I) whereP is a set of ’points’,L is a set of ’blocks’,
and I is an incidence relation between the elements in P and L. The line spanned by two
points p1 and p2 is the intersection of all blocks containing both p1 and p2. When there
are at most one block containing pi and pj for all pairs of points, then we may identify
the blocks with the lines. Incidence geometries with this property are called partial linear
spaces.

If a point p and a line l are incident, then we say that l goes through p, or that p is on l.
We say that a pair of lines that goes through the same point p meet or intersect in p.
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Figure 1: Examples of balanced and unbalanced configurations. From left to right: Fano
plane (v = b = d = 7 r = k = 3), Pappus’ configuration (v = b = d = 7 r = k = 3),
Affine plane of order 3 (v = 9 b = 12 d = 3 r = 4 k = 3), 6-regular graph on 8 vertices
(v = 8 b = 24 d = 8 r = 6 k = 2)

A combinatorial configuration is a partial linear space in which there are r lines through
every point and k points on every line [4, 5, 6]. We will use the notation (vr, bk)-config-
uration to refer to a combinatorial configuration with v points, b lines, r lines through
every point and k points on every line. The four parameters (vr, bk) are redundant so that
there is only need for the three parameters (d, r, k), where d := v gcd(r,k)

k = b gcd(r,k)
r =

vr
lcm(r,k) =

bk
lcm(r,k) is an integer associated to the configuration that determines the number

of points and lines. We will refer to (d, r, k) as the reduced parameter set of the (vr, bk)-
configuration. When v and b are not known or not important, we will also use the notation
(r, k)-configuration.

We say that a configuration is balanced if r = k. This implies that the number of points
equals the number of lines and the associated integer, so d = v = b. In this case, we will
use the notation vk-configuration. In the literature, configurations with this property are
also called symmetric. When the configuration is unbalanced, i.e. when r 6= k, then v, b
and d are all different. Examples of balanced and unbalanced configurations are given in
Figure 1.

The following necessary conditions for the existence of configurations are well-known.

Lemma 1.1. The lower bound of the number of points v of an (r, k)-configuration is v ≥
r(k − 1) + 1, and the lower bound of the number of lines b is b ≥ k(r − 1) + 1. Also, the
parameters v, b, r, k always satisfy vr = bk.

We say that a parameter set satisfying these two conditions are admissible. In gen-
eral it is difficult to, given some admissible parameter set, determine if there exists some
combinatorial configuration with these parameters. If this is the case, then we say that the
parameter set is configurable. The (point) deficiency of a configuration with parameters
(vr, bk) is the difference δp = v − [r(k − 1) + 1], and the line deficiency is the difference
δl = b− [k(r − 1) + 1]. In balanced configurations the two deficiencies are equal.

In 1886 Martinetti studied the construction of v3-configurations through the addition of
a point and a line to existing v3-configurations [7, 6]. The construction is as follows. Start
with a v3-configuration and assume that there are two parallel lines {a, b, c} and {a′, b′, c′}
such that a and a′ are not collinear. Add a point p and replace the two parallel lines with
the lines {p, b, c}, {p, b′, c′}, {p, a, a′}. The result is a (v + 1)3-configuration. This con-
struction is illustrated in Figure 2. We call such a construction a (Martinetti) augmentation.
The inverse construction gives the smaller configuration from the larger one through the re-
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Figure 2: Martinetti’s augmentation construction. To the left the two parallel lines in the
original v3-configuration, to the right the new incidences in the constructed (v + 1)3-con-
figuration.

moval of one point and one line. We call the inverse construction a (Martinetti) reduction.
Martinetti called a configuration irreducible if it could not be constructed from another
configuration through an augmentation. In other words, a configuration is irreducible if it
does not allow a reduction.

In Martinetti’s original paper he gave two infinite families of irreducible v3-configu-
rations. One consisted of the cyclic configurations with base line {0, 1, 3}, starting with
the smallest v3-configuration, the Fano plane. There is therefore at least one irreducible
v3 configuration for each v ≥ 7. The other family gives one irreducible (10n)3-configura-
tion for each n ∈ Z, starting with Desargues’ configuration. Martinetti claimed that these
families of configurations were the only irreducible v3-configurations, with the addition of
three sporadic examples for v ≤ 10; more precisely, Pappus’ (93)-configuration and two
other 103-configurations. In 2007, Boben published a correction of this list, in which the
two sporadic irreducible 103-configurations were shown to be the first elements in two ad-
ditional infinite families of irreducible (10n)3-configurations, showing that there are four
infinite families of irreducible v3-configurations [2].

Theorem 1.2 (Martinetti - Boben). The list of (Martinetti) irreducible configurations are

• the cyclic configurations with base line {0, 1, 3}. The smallest configuration in this
family is the Fano plane,

• the three infinite families T1(n), T2(n), T3(n), on 10n points. The smallest configu-
ration in T1(n) is Desargues’ configuration, and

• Pappus’ configuration.

It results that, of several possible constructions of (v+1)3 configurations from v3-con-
figurations, Martinetti’s construction is just one example. In 2000, Carstens et al. presented
a rather complex set of reductions for which they claimed that the only irreducible config-
uration was the smallest v3 configuration - the Fano plane [3]. However, in 2003, Ravnik
used computer calculations to show that (at least) the Desargues configuration is also ir-
reducible with respect to this set of reductions [8]. In 2005, Boben presented a simpler
definition of reduction in terms of the Levi graph of the configuration. The Levi graph is a
lossless representation of the incidences of the points and lines in form of a bipartite graph
of girth at least six, and if r = k = 3, then it is a cubic graph. In [1], a reduction by the
point p and the line l of the v3-configuration with Levi graph Gv is defined as the Levi
graph Gv−1 of a (v − 1)3-configuration obtained from Gv by removing the point vertex p
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and the line vertex l fromGv and then connecting their neighbors in such way that the result
remains cubic and bipartite. We call this construction a (Boben) reduction. A configuration
is (Boben) irreducible if it does not admit a (Boben) reduction. According to Boben, with
respect to this reduction, there are only two irreducible v3-configurations.

Theorem 1.3 (Boben). The only (Boben) irreducible v3-configurations are the Fano plane
and the Pappus configuration.

This article presents a generalization of Boben’s reduction to (r, k)-configurations for
any r, k ≥ 2, elaborates on the augmentation of v3 and v4-configurations and provides
some results that ensure irreducibility or reducibility in the general case. Augmentation
and reductions of configurations are particularly interesting for the purpose of counting
configurations.

2 Reducibility of balanced configurations
Balanced configurations are better studied than unbalanced configurations. This section
presents results on augmentation and reduction constructions for balanced configurations.

2.1 Augmentation of balanced configurations

The construction presented next is an augmenting construction for balanced vk-configura-
tions.

Definition 1. Let Cv = (P,L, I) be a vk-configuration. Assume that there is a subset of k
points Q ⊆ P and a subset of k lines M ⊆ L, such that

• there is a bijection f : Q→M such that the image of a point q is a line f(q) through
that point,

• two points q, q′ ∈ Q either are not collinear, or are collinear only on the line f(q) or
on the line f(q′), and

• two lines m,m′ ∈M either do not meet, or meet only in the point f−1(m) or in the
point f−1(m′).

Then there is a (v + 1)k-configuration Cv+1, constructed from Cv through the following
augmentation procedure:
For all q in Q, replace each incidence (q, f(q)) with

• the incidence (p, f(q)), where p is a new point, and

• the incidence (q, l), where l is a new line.

Proposition 2.1. The result of the above construction is a (v + 1)k-configuration Cv+1.

Proof. In Cv , two points q, q′ ∈ Q are either not collinear, or collinear on f(q) or f(q′).
Since the incidences (q, f(q)) and (q′, f(q′)) have been removed in Cv+1, it is clear that in
Cv+1, the points in Q are collinear only once, on the line l. Analogously, in Cv two lines
m,m′ ∈M either do not meet, or meet only in the point f−1(m) or in the point f−1(m′).
Since the incidences (m, f−1(m)) and (m′, f−1(m′)) have been removed in Cv+1, it is
clear that in Cv+1 the lines in M meet only once, in p. This also shows that any point
in Cv+1 is collinear with p at most once, and that any line in Cv+1 meets l at most once.



K. Stokes: Irreducibility of configurations 173

Indeed, the points in Cv+1 that are collinear with p are the points on the lines in M , and
since these lines only meet once in Cv+1, we see that any point in Cv+1 is collinear with p
at most once. Also, the lines in Cv+1 that meet l are the lines through the points in Q, and
since these points are collinear only once, in l, we see that any line in Cv+1 meets l at most
once. Now, these are the only incidences affected by the construction, and consequently, it
is proved that Cv+1 is a partial linear space with v + 1 points and v + 1 lines. Finally, it is
clear that there are k points on each line and k lines through every point, so that Cv+1 is a
(v + 1)k-configuration.

Remark 2.2. The observant reader will find that there are other augmentation constructions
which cannot be directly realized by following the steps described above. However, if
we allow a final swapping of the incidences involved in the construction, then also these
constructions may be described using Proposition 2.1. One example of this is Martinetti’s
augmentation. Consider Q = {a, a′, a′′} and M = {{a, b, c}, {a′, b′, c′}, {a′′, b′′, c′′}},
such that {a, b, c} and {a′, b′, c′} are parallel lines and a and a′ are not collinear, and no
restrictions other than those in Proposition 2.1 are put on a′′ and {a′′, b′′, c′′}, and define
f(a) = {a, b, c}, f(a′) = {a′, b′, c′} and f(a′′) = {a′′, b′′, c′′}. Replace the ocurrences of
the points in Q on the lines inM with incidences to a new point p so that the resulting lines
are {p, b, c}, {p, b′, c′}, {p, b′′, c′′}, and put the points in Q on a new line {a, a′, a′′}. Now
swap the incidences (p, {p, b′′, c′′} and (a′′, {a, a′, a′′}) to obtain Martinetti’s construction.
We see that the original line {a′′, b′′, c′′} is then left untouched, in consistency with the fact
that Martinetti’s construction only involved two lines.

Using Proposition 2.1 it is not difficult to prove the following well-known result.

Corollary 2.3. There is a v3-configuration for all admissible parameters.

Proof. Any v3-configuration is augmentable. Indeed, if the v3-configuration has a triangle,
then its three points Q = {q1, q2, q3} and its three lines M = {m1,m2,m3} together with
the map f(qi) = mi satisfy the conditions in Proposition 2.1. For an illustration of the
augmentation in this case, see Figure 3. If the configuration has no triangles, then consider
a path starting at a point q1 of three lines l1, l2 and l3, intersecting in two points q2 and q3.
Then Q = q1, q2, q3 and M = {m1,m2,m3} satisfy the conditions of Proposition 2.1.
Therefore there is a (v + 1)3-configuration whenever there is a v3-configuration. The
smallest v3-configuration is the Fano plane, with v = 7, and the result follows.

When k is larger than 3, the situation is more complex. Indeed, the projective plane of
order 3 is a 134-configuration which is not augmentable. However, if a v4-configuration
has at least deficiency one, then it is augmentable.

Corollary 2.4. There is a v4-configuration for all admissible parameters.

Proof. Any v4-configuration of deficiency at least one is augmentable. Indeed, if the
deficiency is at least one, then there are points Q = {q1, q2, q3, q4} and lines M =
{m1,m2,m3,m4} forming either a quadrangle with M as sides and Q as vertices, or
an open path q1m1q2m2q3m3q4m4 such that the conditions of Proposition 2.1 are satis-
fied. Therefore there is a (v + 1)4-configuration whenever there is a v4-configuration. The
smallest v4-configuration is the projective plane of order 3, and there exists also a 144-con-
figuration. This latter configuration has deficiency one, and the result follows.
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Figure 3: The new (squared) point and the new (plotted) line of a (v+1)3-configuration to
the right, added to a triangle in the original v3-configuration to the left.

2.2 Reduction of balanced configurations

The inverse of the augmentation construction is the reduction.

Definition 2. A reduction of a balanced configuration (P,L, I) is a triple (p, l, f ′) where
p is a point, l is a line, and f ′ is an injective function f ′ : Q′ →M ′, where

• Q′ = {q ∈ P : q ∈ l and q 6= p}, and

• M ′ = {m ∈ L : p ∈ m and m 6= l},

such that q is not collinear with r ∈ f ′(q), except possibly through l or with p. A configu-
ration is reducible if it admits a reduction. Otherwise it is irreducible.

Lemma 2.5. If a configuration (P,L, I) admits a reduction as in Definition 2, then there
is a reduced configuration (P \ {p}, L \ {l}, Ĩ) obtained from (P,L, I) by replacing the
incidences (p, f ′(q)) and (q, l) for q ∈ Q′ with the incidences (q, f ′(q)) and removing the
point p and the line l.

Proof. Each point is on the same number of lines, and each line goes through the same
number of points in (P \ {p}, L \ {l}, Ĩ) as in (P,L, I). The definition of f ′ ensures that
any two lines in (P \ {p}, L \ {l}, Ĩ) meet in at most one point.

Lemma 2.6. The reduction is the inverse construction of the augmentation.

Proof. Let Cv = (P,L, I) be a vk-configuration with a set Q = {q1, . . . , qk} of k points
and a set M = {m1, . . . ,mk} of k lines satisfying the requirements in Proposition 2.1.
Consider the incidences in the augmented (v+1)k-configurationCv+1 which are not inCv .
These incidences are (p, f(qi)) and (qi, l), for i ∈ {1 . . . k}. Also consider the incidences
that were removed from Cv in the construction of Cv+1, (qi, f(qi)), for i ∈ {1 . . . k}. As
described in Remark 2.2 and Remark 2.8, some of the incidences involved in the augmen-
tation may be swapped afterwards. This is only relevant if the incidences is of the form
(p, f(qi)) and (qi, l) (which produces the incidence (p, l), so that the new point and the
new line are incident). In this case, let Q′ = Q \ {qi} and M ′ = M \ {f(qi)}, otherwise,
let Q′ = Q and M =M ′. Define the reduction (p, l, f ′) with f ′ : Q′ →M ′ the restriction
of f to Q′. This is a well-defined reduction, since q ∈ Q′ is not collinear with any point
r on f(q) in Cv+1 except possibly with p or through l. Replace the incidences (p, f(q))
and (q, l) for q ∈ Q′ with the incidences (q, f(q)) and remove the point p and the line l.
This reduction produces a vk-configuration with the same incidences as Cv , hence equal to
Cv .
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Observe that according to Definition 2, a balanced configuration is irreducible exactly
if it is impossible to remove one point and one line and obtain a new configuration, through
modifications that only affect the incidences of the removed point and line. This is the
same definition of irreducibility as the one used by Boben in the case of v3-configurations,
although he expressed it in terms of the Levi graph. Martinetti’s irreducibility is the special
case in which the removed point p is on the removed line l = {p, a, a′}, so that Q′ =
{a, a′}, M ′ = {{p, b, c}, {p, b′, c′}} and f ′ : Q′ → M ′ is defined by f ′(a) = {p, b, c}
and f ′(a′) = {p, b′, c′}. The reduction then consists in removing p and l and replacing the
appearances of p in m ∈ M with f ′−1(m). Note that no incidence swapping was needed
when describing Martinetti’s reduction in terms of Definition 2.

The somewhat awkward definition of reducibility for balanced configurations can also
be restated as follows.

Corollary 2.7. A balanced configuration vk is reducible if and only if it contains one line
l and one point p, such that the points qi on l and the lines mi through p can be labelled
so that qi is not collinear with any point on mi except possibly through l or with p, for
i ∈ [1, k].

Proof. Indeed, the function f(pi) = li for pi 6= p gives a reduction (p, l, f).

Remark 2.8. The general form of the augmentation and reduction constructions implies
that the resulting configuration may fail to be connected. However, there is choice in the
constructions. It is always possible to make the resulting configuration connected. In prac-
tice, this can be achieved by swapping two incidences located in different connected com-
ponents, as described for example in [9]. That is, if (p, q) and (p′, q′) are two incidences in
two different connected components, then replace these incidences with (p, q′) and (p′, q).
By repeating this process as long as the configuration have at least two connected compo-
nents, eventually a connected configuration is obtained. If the incidences (p, q) and (p′, q′)
are not incidences of the old configuration, but instead both come from the augmentation
or the reduction construction, then the incidence swapping gives a configuration that would
have resulted from another choice in the construction. Note that Martinetti’s augmentation
is described in this way in Remark 2.2.

3 Unbalanced configurations
It is not possible to reduce unbalanced configurations through the removal of one point and
one line. This is a consequence of the necessary condition for the existence of a config-
uration vr = bk. Indeed, vr = bk implies that (v − 1)r/k = vr/k − r/k = b − r/k
so that (v − 1)r 6= (b − 1)k, whenever r 6= k. In this context, the reduced parameter set
(d, r, k) is useful - the parameter set (d, r, k) is admissible for every integer d satisfying
d ≥ gcd(r, k)(r(k − 1) + 1)/k. Therefore, a reduction should, given a (d, r, k)-configu-
ration, produce a (d − 1, r, k)-configuration through the removal of an appropiate number
of points and lines, using only modifications that affect the incidences of these removed
points and lines. More precisely, the number of points to remove is k/ gcd(r, k) and the
number of lines is r/ gcd(r, k).

3.1 Augmentation of unbalanced configurations

In [9] we described a construction of a (d1 + · · · + dn + 1, r, k)-configuration from n
configurations with parameters (d1, r, k), . . . , (dn, r, k). By applying this construction to
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a single configuration with parameters (d, r, k), one obtains a (d + 1, r, k)-configuration
through an augmentation construction. The requirement for this construction to work is that
the original configuration contains a set of rk/ gcd(r, k) pointsQ and a set of rk/ gcd(r, k)
lines M with a special property.

Definition 3. Let Cd = (P,L, I) be a (d, r, k)-configuration. Assume that there is a
multiset Q of rk/ gcd(r, k) (not necessarily distinct) points in P and a multiset M of
rk/ gcd(r, k) (not necessarily distinct) lines in L such that

• there is a bijection f : Q→M such that the image of a point q is a line f(q) through
that point,

• Q can be partitioned into r/ gcd(r, k) parts, each of cardinality k, such that two
points q and q′ in each part, either are not collinear, or are collinear only on the line
f(q) or on the line f(q′), and

• M can be partitioned into k/ gcd(r, k) parts, each of cardinality r, such that two
lines m and m′ in each part either do not meet, or meet only in the point f−1(m) or
in the point f−1(m′).

Then there is a (d + 1, r, k)-configuration, constructed from Cd through the following
augmentation procedure:
For all q in Q, replace each incidence (q, f(q)) with

• the incidence (p, f(q)), where p is a point from a set R of k/ gcd(r, k) new points,
in a way that ensures that each point in N is on exactly r lines, and

• the incidence (q, l), where l is a line from a set N of r/ gcd(r, k) new lines, in a way
that ensures that each line in N contains exactly k points.

Proposition 3.1. The result of the above construction is a (d+ 1, r, k)-configuration.

The proof of Proposition 3.1 is only slightly more involved than the proof of Propo-
sition 2.1, which is the special case r = k. For more details of in the general case, see
[9].

Example 3.2. The finite affine plane of order 3 is a (3, 4, 3)-configuration (P,L, I) with 9
points and 12 lines (see Figure 1). Label the points P as 1, . . . , 9 so that the lines L are

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9},

{2, 4, 9}, {3, 5, 7}, {1, 6, 8}, {3, 4, 8}, {1, 5, 9}, {2, 6, 7}.

An augmentation requires 12 points and 12 lines, and we use M = L, Q the multiset
consisting of P with the three points 1, 2, 9 repeated, and the bijection f : Q→M defined
by

f(11) = {1, 2, 3} f(12) = {1, 6, 8} f(21) = {2, 4, 9}
f(22) = {2, 6, 7} f(3) = {3, 5, 7} f(4) = {3, 4, 8}
f(5) = {1, 5, 9} f(6) = {4, 5, 6} f(7) = {1, 4, 7}
f(8) = {2, 5, 8} f(91) = {3, 6, 9} f(92) = {7, 8, 9}

where x1 and x2 denotes the first and the second occurrence of x in Q. This gives, with the
new points p1, p2, p3 and the new lines l1, l2, l3, l4, a (4, 4, 3)-configuration with 12 points
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1, . . . , 9, p1, p2, p3 and 16 lines

{p1, 1, 4} {p1, 2, 3} {p1, 5, 7} {p1, 6, 8}
{p2, 2, 5} {p2, 6, 7} {p2, 3, 8} {p2, 4, 9}
{p3, 3, 6} {p3, 4, 5} {p3, 1, 9} {p3, 7, 8}
{1, 3, 7} = l1 {2, 4, 8} = l2 {5, 6, 9} = l3 {1, 2, 9} = l4.

The partition of Q was

{1, 3, 7}, {2, 4, 8}, {5, 6, 9}, {1, 2, 9}

and the partition of M was

{{1, 2, 3}, {1, 4, 7}, {3, 5, 7}, {1, 6, 8}},

{{2, 4, 9}, {2, 5, 8}, {3, 4, 8}, {2, 6, 7}},

{{3, 6, 9}, {4, 5, 6}, {1, 5, 9}, {7, 8, 9}}.

3.2 Reduction of unbalanced configurations

The inverse of the augmentation construction is a reduction, which is a generalization of
the reduction described in Definition 2.

Definition 4. A reduction of an unbalanced configuration (P,L, I) is a triple (R,N, f ′)
where R is a set of k/ gcd(r, k) points, N is a set of r/ gcd(r, k) lines, and f ′ is a bijection
between multisets f ′ : Q′ →M ′, where

• Q′ = {q ∈ P : ∃l ∈ N : q ∈ l and q 6∈ R}, and

• M ′ = {m ∈ L : ∃p ∈ R : p ∈ m and m 6∈ N},

such that q is not collinear with r ∈ f(q), except possibly through one of the lines in
N or with one of the points in R. Both Q′ and M ′ are multisets and as such they may
contain some element more than once. A configuration is reducible if it admits a reduction.
Otherwise it is irreducible.

Lemma 3.3. If a configuration (P,L, I) admits a reduction as in Definition 4, then there
is a reduced configuration (P \ R,L \ N, Ĩ) obtained from (P,L, I) by replacing the
incidences (p, f ′(q)) and (q, l) for q ∈ Q′ with the incidences (q, f ′(q)) and removing the
points in R and the lines in N .

Proof. Each point is on the same number of lines, and each line goes through the same
number of points in (P \ {p}, L \ {l}, Ĩ) as in (P,L, I). The definition of f ′ ensures that
any two lines in (P \R,L \N, Ĩ) meet in at most one point.

Lemma 3.4. The reduction is the inverse construction of the augmentation.

Proof. Let Cd be a (d, r, k)-configuration with a set Q = {q1, . . . , qrk/ gcd(r,k)} of points,
a set M = {m1, . . . ,mrk/ gcd(r,k)} of lines and a bijection f : Q → M , satisfying the
requirements of Definition 3. Consider the incidences in the augmented (d + 1, r, k)-
configuration Cd+1 which are not in Cd. These incidences are (p, f(qi)) and (qi, l), for
i ∈ {1 . . . rk/ gcd(r, k)}, for some p ∈ R and some l ∈ N (if no swapping is allowed).



178 Ars Math. Contemp. 10 (2016) 169–181

Also consider the incidences that were removed from Cd in the construction of Cd+1,
(qi, f(qi)), for i ∈ {1 . . . rk/ gcd(r, k)}. If we allow, for some set of indices I , the inci-
dences (qi, l) and (p, f(qi)), i ∈ I , to be swapped afterwards, making the lines in N and
the points in R incident, then let Q′ = Q \ {qi : i ∈ I} and M ′ = M \ {f(qi) ∈ I},
otherwise, let Q′ = Q and M = M ′. Define the reduction (R,N, f ′) with f ′ : Q′ → M ′

the restriction of f to Q′. This is a well-defined reduction, since q ∈ Q′ is not collinear
with any point r on f(q) in Cd+1 except possibly with some p ∈ R or through some l ∈ N .
For all p ∈ R and all l ∈ N , replace the incidences (p, f(q)) and (q, l) for q ∈ Q′ with
the incidences (q, f(q)) and remove the point p and the line l. This reduction produces a
(d, r, k)-configuration with the same incidences as Cd, hence equal to Cd.

Remark 3.5. Remark 2.8, regarding the connectedness of the result of the augmentation
and the reduction constructions, is valid also for unbalanced configurations.

4 Irreducibility and reducibility in configurations
We would like to characterize the set of irreducible configurations. The results presented
next provide some progress in this direction.

4.1 Irreducibility in small configurations

The smallest (r, k)-configurations are the linear spaces, whenever they exist. Examples of
linear spaces are projective and affine planes. The inexistence of smaller (r, k)-configu-
rations clearly implies that the linear spaces are irreducible. However, as the next results
states, there are also other (r, k)-configurations that are necessarily irreducible because
they are small.

Lemma 4.1. Any (r, k)-configuration with point deficiency δp < k− (r+k)/ gcd(r, k) or
line deficiency δl < r − (r + k)/ gcd(r, k) is irreducible.

Proof. In a reducible configuration there are points Q′ and lines M ′ and a bijection f ′ :
Q′ → M ′ such that q ∈ Q′ is not collinear with any of the k points on f ′(q) ∈ M ′,
except possibly with some of the k/ gcd(r, k) removed points R, or through some of the
r/ gcd(r, k) removed lines N . This condition is equivalent to requiring that f ′(q) ∈ M ′
does not meet any of the r lines through q, except possibly on some of the k/ gcd(r, k)
removed points R, or through some of the r/ gcd(r, k) removed lines N . But, if the point
deficiency v − [r(k − 1) + 1] is smaller than k − (r + k)/ gcd(r, k), then for any point q
there is no line m such that q is only collinear with the points on m on either some points
in R or through some lines in N , so the configuration must be irreducible. Analogously,
if the line deficiency b − [k(r − 1) + 1] is smaller than r − (r + k)/ gcd(r, k), then for
any line m there is no point q = f ′−1(m) such that m does not meet any of the points
through q, except if it is a line in N or if the intersection point is a point in R, and again,
the configuration must be irreducible.

This bound is sharp in the meaning that there are reducible (r, k)-configurations of
deficiency δp = k − (r + k)/ gcd(r, k) and δl = r − (r + k)/ gcd(r, k). For example, the
Möbius-Kantor 83-configuration, with deficiency δp = δl = 3−(3+3)/3 = 1, is reducible.
Indeed, for v3-configurations, Lemma 4.1 is only relevant for deficiency 0. From [1] we
know that the irreducible v3-configurations are the Fano plane (of deficiency 0) and the
Pappus’ configuration. However, Pappus’ configuration has deficiency 3, so Lemma 4.1
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does not apply. But when k is larger than 3, then Lemma 4.1 can imply the irreducibility
of more than one (r, k)-configuration. Indeed, for r = k = 4, the two configurations 134
and 144 must be irreducible, for r = k = 5, the configurations 215 and 235 have deficiency
0 and 2, so they are both irreducible. There is no configuration with parameters 225. For
r = k = 6, the configurations 316 and 346 are both irreducible, since they have deficiencies
0 and 3, hence smaller than 4. There are no configurations 326 and 336. For k = 7, the only
configuration with deficiency strictly smaller than 5 that is known to exist is of deficiency
2, with parameters 457. There are no configurations 437 and 447. If the configurations 467
and 477 exist, then they are irreducible. For a reference on the existence and non-existence
of small balanced configurations, see for example [5].

4.2 Irreducible configurations and transversality - Pappus’ configuration

The irreducibility of the Fano plane can be explained by Lemma 4.1. The reason why
Pappus’ configuration is irreducible is different, and based on transversality.

A transversal design TDλ(k, n) is a k-uniform incidence geometry on kn points, al-
lowing a partition of k groups of n elements, such that any group and any block contain
exactly one common point, and every pair of points from distinct groups is contained in
exactly λ blocks. A transversal design TDλ(k, n) is resolvable if the set of blocks can be
partitioned into parallel classes of blocks, such that each class forms a partition of the point
set.

When λ = 1, then the design is a (knn, n2k)-configuration, and we call the blocks lines.
There is a TD1(k, n) whenever there is an affine plane of order n and k ≤ n. Indeed,
just take the points on k lines in a parallel class of the affine plane and restrict the rest of
the lines to these points. Pappus’ configuration can be constructed in this way from the
affine plane of order 3, by restricting to the points on all the 3 lines in one of its 4 classes
of parallel lines. Since the points on these 3 lines are all points in the affine plane, in
this case the construction consists of eliminating one parallel class of lines from the affine
plane. By instead restricting to the points on only two lines in one of the parallel classes,
a transversal design TD1(2, 3) is obtained, which is a (63, 92)-configuration, that is, the
bipartite complete graph on 6 vertices.

Lemma 4.2. A resolvable transversal design TD1(k, n) is irreducible if

k ≥ (k + r)/ gcd(r, k) + 1.

Proof. Let T = TD1(k, n) be a resolvable transversal design. Let p be a point in T and
m1, . . . ,mr the lines through p. Then m1, . . . ,mr are in different parallel classes. Let l be
a line in T and q a point on l. Then q is collinear with all points on the lines m1, . . . ,mr

except one on each line, which belong to the same group as q (q is not collinear with
itself). At most (r + k)/ gcd(r, k) of these incidences will not obstruct a reduction, since
a reduction removes k/ gcd(r, k) points and r/ gcd(r, k) lines. Therefore, since the point
p and the line l were chosen arbitrarily, if k ≥ (k + r)/ gcd(r, k) + 1, then it is not
possible to find a reduction of T that removes p and l (and possibly other points and lines).
More precisely, there is no f ′ mapping q to mi, for some i, such that q is not collinear
with any point on mi, except possibly with the k/ gcd(r, k) removed points or through the
r/ gcd(r, k) removed lines.
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Note that this proves that Pappus’ configuration, which is a TD1(3, 3), is irreducible,
but it does not prove the same fact for the TD1(2, 3). Indeed, the latter is reducible, as is
any graph with deficiency high enough. Observe that the deficiency of a transversal design
TD1(k, n) satisfies d = n − 1 ≥ k − 1, so that these irreducible configurations are not
covered by Lemma 4.1.

4.3 Reducibility in large configurations

When the deficiency is large enough, then reducibility can be ensured.

Lemma 4.3. A (vr, bk)-configuration is reducible if b ≥ 1 + r+ r(k − 1)(r− 1) + r(r−
1)2(k − 1)2

Proof. Given a point p there are at most r + r(k − 1)(r − 1) + r(r − 1)2(k − 1)2 lines
containing at least one point at distance one or two from p. This bound is attained if the
configuration is triangle-, quadrangle-, and pentagonal-free. If the configuration contains
an additional line l, then l contains only points at distance at least three from p. In other
words, the points on l are not collinear with any point that is collinear with p. This implies
that the configuration is reducible.

In a balanced vk-configuration, the number of lines b equals the number of points v.
Therefore, in this case the bound also takes the form v ≥ 1 + k + k(k − 1)2 + k(k − 1)4.
This is not a sharp bound, indeed, for v3-configuration it can only ensure reducibility for
v ≥ 64, but we know that all v3-configurations are reducible for v ≥ 10.

The irreducibility of vk-configurations with v between these lower and upper bounds,
is still in general an open question. It is of course possible to test a given configuration,
by hand or with the help of a computer. However, for exact enumeration purposes it is of
course interesting to have exact general results.

5 Conclusions
We have seen that it is possible to define irreducibility not only for (vk) configuration,
but for (vr, bk)-configurations in general. Augmentation and reduction constructions for
(vr, bk)-configurations have been defined in a general manner, and several general results
on augmentability and reducibility have been described. Irreducibility has been proved
for configurations with point deficiency δp < k − (r + k)/ gcd(r, k) or line deficiency
δl < r − (r + k)/ gcd(r, k), and for (some) transversal designs TD1(k, n). A TD1(k, n)
has point deficiency n−1 = r−1 and line deficiency r2−rk+k−1. For r = k = 3, these
are the only irreducible configurations, and at this point, no other irreducible configurations
are known in the general case. There is an upper bound for irreducibility requiring the
number of lines to satisfy b < 1 + r + r(k − 1)(r − 1) + r(r − 1)2(k − 1)2. This bound
is not sharp, and a better bound would probably set the point deficiency closer to r.

The author is aware of at least two applications of augmentations and reductions of
configurations. One is the enumeration of configurations, the other is the use of configu-
rations in cryptography and coding theory. When a configuration is used to define a key-
distribution scheme, and new parties join or leave, augmentation and reduction construc-
tions can modify the structure while minimizing the costs of key-reassignment. However,
it is important to be aware of the fact that the constructions described in this paper may fail
to preserve interesting properties.
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[6] B. Grünbaum, Configurations of Points and Lines, American Mathematical Society, Provi-
dence, RI, 2009.

[7] V. Martinetti, Sulle configurazioni piane µ3, Annali di mat. pura ed applicata 15 (1887), 1–26.

[8] E. Steffen, T. Pisanski, M. Boben and N. Ravnik, Erratum to [Reduction of symmetric configu-
rations n3, Discrete Appl. Math. 99 (1–3) (2000) 401–411], Discrete Applied Mathematics 154
(2006), 1645–1646.

[9] K. Stokes and M. Bras-Amorós, Patterns in semigroups associated with combinatorial config-
urations, in: M. Izquierdo, S.A. Broughton, A.F. Costa, R.E. Rodrı́guez (eds), Riemann and
Klein Surfaces, Automorphisms, Symmetries and Moduli Spaces, Contemporary Mathematics
629, American Mathematical Society, Providence, RI, 2014, 323–333.


