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Abstract: Percolation theory is related to effect of variable range interactions in disordered systems. It permits to characterise the effective properties of
such two-phase systems. This paper presents some examples of application of percolation theory in microelectronics and materials science. The follow-
ing phenomena are discussed: effective conductivity and 1/f noise intensity of model thick-film resistors, the role of dimensional effect on effective
transport properties of planar microelectronic structures, percolation model of VLS| interconnect failures, percolative attempt to response of resistive gas
sensors, explanation of drug release in the frame of percolation theory.

Teorija perkolacije in njena uporaba v znanosti o
materialih in mikroelektroniki
(Drugi del - Poskusi in numeriéne simulacije)

Klju&ne besede: teorija perkolacije, prag perkolacie, aplikacije, znanost o materialih, mikroelektronika, eksponenti kiitiéni, prevodnost elektriéna, prevodnost
toplotna, $um 1/f, keramika kompozitna, upori elektriéni debeloplastni, adhezivi prevodni elektricno, VLSI preboj povezave vezja integraciie zelo visoke

stopnje, senzoriji plinov uporovni

Povzetek: Teorija perkolacije obravnava efekte interakcij s spremenliivim dosegom v neurejenih sistemih. Omogoca karakterizacijo efektivnih lastnosti
takih dvofaznih sistemov. V tem prispevku predstavijam nekaj primerov uporabe teorije perkolacije v mikroelektroniki in znanosti o materialih. Obravnavam
naslednje pojave : efektivno prevodnost in gostoto 1/f $uma modelnih debeloplastnih uporov, viogo dimenziiskih parametrov na efektivne transporine
lastnosti planarnih mikroelektronskih struktur, perkolacijski model odpovedi povezav v VLSI vezjih, perkolacijski pristop k obravnavi odziva uporovnih

detektorjev plinov in na koncu razlago sproséanja zdravilnih substanc iz zdravil v okviru teorije perkolacije.

Introduction

The percolation problem, which was formulated for the first
time in 1957 /1/, is still very attractive and many applica-
tions in various areas of basic and applied science con-
vince us about this. The percolation theory is related to
effects of variable range interactions in disordered systems.
Classical percolation theory describes the effective geo-
metrical and physical properties of random two-phase sys-
tem but it could be also widened on multipercolative or
percolation-like systems /2/. Previous paper /3/ present-
ed percolation phenomenon from theoretical point of view
/3/, especially by using of so-called hierarchical model of
percolation structure. This paper is dealt with chosen ex-
amples of application of percolation theory in microelec-
tronics and materials science. Effective conductivity and
effective 1/f noise intensity of model thick-film resistors,
the implication of dimensional effects on effective trans-
port properties in planar microstructures, percolation model
of VLSI interconnect breakdown, percolative attemptto re-
sponse of semiconducting oxide gas sensor, and explana-
tion of drug release based on this theory are discussed in
more details.

1.  Relations resistance - volume fraction
of active phase and current noise
intensity - volume fraction of active
phase in macroscopically disordered
composites

Experimental dependence of resistivity p (or sheet resist-
ance Rg in the case of film components) on conductive
phase volume fraction v is so-called blending curve. It is
commonly used in analysis of electrical properties of com-
posites. Power law (1) fits blending curve very often

Ro = Ro(v-ve)", (1)

where Rp - constant, v. - critical volume fraction of con-
ductive phase, t - critical conductivity exponent above ve.
Therefore sets of optimal v. and t are looked for various
experimental data. Actually Eq. (1) conform to the first con-
stituent of formula (2)

O, =00 (A +ART "+ )p>p.r>>A  (2)

well known for percolation structures (usually h = 6o/61 =
107"°+107°; therefore second and higher constituents of

141



Informacije MIDEM 31(2001)3, str. 141-152

A. Dziedzic:
Percolation Theory and its Application in ... (Part Il ...)

(2) are omitted in most of experimental works). Based on
Eq. (1) the experimental data presented in log-log scale
should lie near a line with -t slope. Sometimes it is as-
sumed that power law (1) can be applied in the range from
percolation threshold pe and pe + 0.2 /4/.

The v¢ and t optimal values for Ra(ves) curves for systems
based on high structure (HSCB) or medium structure
(MSCB) carbon black are given in Table 1. Moreover Table
2 contains values of vc and ¢ for other powder filler/organic
matrix composites whereas the same parameters for high
temperature cermet thick-film resistors are given in Table 3.

Table 1. Values of parameters from Eq. (1) for HSCB/PEI and MSCB/PEI systems cured at various temperatures

T. [K] HSCB/PEI system MSCB/PEI system
Ry [€/[]] Ve t Ry [Q/]] Ve t
523 0,070 0 3,110 1,15 0,0737 3,652
573 0,275 0 2,647 7,31 0,0796 2,695
623 0,264 0 2,554 24,27 0,0841 1,755

Tahle 2. Experimental values of critical volume fraction v. and conductivity index t for conductive powder filler/organic

matrix composites

Conductive powder filler + organic matrix Ve t Ref.
Ketjenblack carbon black (HSCB) + high density 0,020 1,9 5
polyethylene
#45 carbon black + high density polyethylene 0,077 1,9 5
Asahi carbon black + high density polyethylene 0,244 2,0 5
Ketjenblack EC300N carbon black + polystyrene 0,002 2,2 6
Graphite (aspect ratio = 100) + epoxy resin 0= 0,013 2,5 7
Graphite (aspect ratio = 100) + epoxy resin  OL 0,013 2,0 7
Monarch 1100 carbon black (HSCB — 14 nm) + Araldite F 0,005 2,0 8
resin
Sterling ST carbon black (LSCB - 300 nm) + Araldite F 0,175 1,85 8
resin
Carbon fibre (@ =9 pm, [ = 1000 pwm) + Araldite F resin 0,0093 3,0 8
Carbon fibre (@ =9 pum, [ = 3000 pm) + Araldite F resin 0,0024 2,9 9
Low structure CB (200 nm) + high density polyethylene 0,170 2,9 10
SAKAP-6 carbon black (MSCB, surface area - 200 1112/g) + 0,100 2,415
polyesterimide (PEI) resin, 7. = 523 K
SAKAP-6 carbon black + PEI resin with TiO, filler, 0,060 2,709 11
7.=523K
Graphite (aspect ratio = 10) + PEl resin, 7. = 523 K 0,140 1,133 11
Graphite (aspect ratio = 10) + PEI resin with TiO filler, 0,145 1,461 11
7T.=523 K
Flammuss101 carbon black + linear low density 0,24 1,8 12
polyethylene
Vulcan P carbon black + linear low density polyethylene 0,24 5,0 12
Ag (500 nm) + polystyrene 0,12 1,3 12
Au (1000nm) + polystyrene 0,12 1,8 12
Pd (200 nm) + polystyrene 0,19 2,9 12
Ketjenblack high structure carbon black + polymer 0,0003 2,0+0.2 13
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Table 3. Experimental values of critical volume fraction ve and conductivity index t for high temperature cermet thick
resistive film (inorganic matrix ~ usually lead borosilicate glass)

Conductive phase + inorganic matrix v, t Ref.
IrO, (0,074 um)” + glass (2 (m), ;=973 K 0,052 2,945 14
[rO; (0,074 wm) + glass (2 um), 7= 1073 K 0,0221 4,716 14
IrO, (0,074 um) + glass (2 um), 7;= 1148 K 0,0087 4,782 14

RuO, (0,010 um) + glass (0,55 wm) 0,0373 4,01 15
RuO, (0,010 um) + glass (1,60 pm) 0,0237 2,49 16
RuO; (0,285 um) + glass (1,60 pwm) 0,0401 5,38 16
Ru0, (0,040 pm) + glass (0,55 um) 0,0149 2,10 17
RuO, (0,0127 um) + glass (0,18 pum) 0,0413 2,65 18
RuO, (0,170 pm) + glass (0,18 wm) 0,1074 2,87 18
Pb,Ru, 07 (0,060 um) + glass, 7y = 998 K 0 4.5 19
Pb,Ru, 05 (0,0058 wm) + glass 0,035 2,796 20
Pb,Ru,O; (0,075 um) + glass 0,09 2,000 20
Pb;Rh; 015 (0,040 um) + glass, 7p= 998 K 0,025 4,1 19
Bi,Ru,07 (0,0047 um) + glass 0,02 2,04 20
B1,Ru,05 (0,042 pum) + glass 0,09 1,99 20

Values of Ry are from the range of tens - several hundred
m&2/sq for HSCB-based system and about two orders larg-
er for MSCB-based one (Table 1). This corresponds with
resistivity of about 2,5x10° and 2,5 10™ Qm, respectively
for nominal thickness of the film equal to 25 pum. Values of
Ro for IrO2/glass composites are situated between 0.6 and
6 Q/sq /14/. Increase of curing temperature leads to de-
crease of conductivity index t. These changes for MSCB/
PEl system are much larger than for HSCB/PEl one.

The infinite cluster should appear at ve = 0.15 for 3D net-
work /21/ and universal value of conductivity index t should
be approximately equal to 2 /2/ in the case of "classical”
percolation model (binary distribution of connections, ran-
dom close package). However, as is shown in Tables 1, 2
and 3, the experimental values of v and t are very differen-
tiated and far from universal ones. Some reasons of this
fact could be connected with experiment conditions and
they are outside the scope of this paper. However there is
a question if it is possible to find arguments in percolation
theory explaining so various values of v and t. And the
answer is positive. For example the order function, con-
nected with ratio between spheres representing conduc-
tive and insulative phases, is introduced sometimes in 3D
discreet lattices. In the case of high-temperature cermet
thick film resistor this is the ratio between glass (¢) and
conductive phase (@) mean grain size /22,23/ and the
using Monte Carlo simulation one should notice the de-
crease of v¢ from 0.165+0.003 to 0.0197+0.0022 when
X = ¢/@is increased from 1 to o /15/; the index t is
constant. This parameter could be changed in 3D discreet
lattice only for multithreshold percolation. For example the

RuO2/glass system with two percolation threshold vgy =
0.1 and ve2 = 0.2, i.e. described by equations R = R(v -
0" and R = Ra(v,1- 0,27 can be fitted with compara-
ble accuracy by formula R = Ra(v - 0,130 /18/.

The continuum percolation model (problem of spheres with
ao characteristic dimension, distributed randomly into the
continuous medium of the second phase) is more appro-
priate when amorphous polymer is used as organic matrix.
The distance between such hard spheres can be freely
small (not restricted to ap scale). Such medium is called
SC (Swiss-cheese) or RV (random void) if v > ve and phase
2 (here ideal insulator) creates random spherical precipita-
tion in continuous phase 1 built from conductive material.
The opposite case, i.e. conductive spheres embedded in
continuous insulative matrix is called IRV (inverted random
void) or ISC /24/. Calculation of critical indices in such
models is shown for example in /24/.

The distance between spheres in RV medium is equal to §
{0 << ap). Therefore using the Weak Link Model /3/ for RV
or IRV media we have the bridge consisted of resistors with
resistances dependent on 8. The critical conductivity in-
dex t =1y, for IRV and 7 = t,, + 0.5 for RV model (for 3D
medium) has been found when hA(S) distribution is uniform
if &ao —> O /24/. But when we have more general as-
sumption, that

W(S)ee 67 (3)

where w is less then 1, then conductivity is described by
new, nonuniversal critical index 7 given by Eq. (4)
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f=t,, +utw-1)/(1-0)-turo>1
and

t=t,, -ifurws<l, (4)
with u=d —3/2 for RV model and u=d/2-1 for IRV
model (d - system dimensionality) /25/. The same perco-
lation theory permits to accept wide range values of f ~ not
only near 2 (characteristic for 3D IRV model) or 2.5 (oblig-
atory for 3D RV model).

The concept of excluded volume, i.e. volume near the ob-
ject where it is forbidden to put the centre of the other
object with similar shape /26/, permits to explain very small
values of percolation threshold v in continuum percola-
tion model. Percolation threshold is related to total exclud-

ed volume <£2 > according to formula

2X

£, )0
v, =l—exp ——< o) =1-exp(-N,Q2) (5)

(2.)

where N, - critical volume density of objects in the medi-

um, £2-volume of single object, <!2€> averaged excluded
volume connected with single object and its spatial direc-

tion. Value of <.Qm.> is dependent on precipitation geome-

try. The analysis of excluded volume for cylindrical element
with length / and diameter @ terminated by two identical
semispheres (Fig. 1) is given below. It was proved in /26/
that veoc @// approximately and this explains very small
values of percolation threshold.

\\j_\;“/“ \@( e

Fig. 1. Cylindrical element composed of carbon black
grains in 3D space

Very long chains of individual carbon black grains, kept
together by van der Waals forces, are characteristic for high
structure carbon black. Replacing such a chain by cylin-
drical element with | = n® length, where n - number of
grains in the chain and @ - mean diameter of single HSCB
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grain we get the following equations for Q and <Qe>

Q=10 /6+1D*(n-1)/4 (6)

(Q

[

3 LY
>=4TE3€D +27td53(n——1)+—---———n@ (}22 1>2 (7)

and the same v¢ is given by formula (8)

4,2
Ve El—exp{—_) (8)
6n

A few values of v are placed in Table 4. It is worth to note
that v¢ = 0.075 was found for MSCB-based system (Table
1) and this conform to chain consisting of 10 grains (n =
10).

Table 4. Values of critical volume fraction ve for medium
structure carbon black or high structure carbon
black used as active phase (calculated on the
basis of Eq. (8))

Type of & [nm] n Ve
carbon
black
MSCB 40 3 0,2081
MSCB 40 10 0,0748
MSCB 40 30 0,0223
HSCB 6 100 6,9x10°
HSCB 6 300 2,3x10°
HSCB 6 1000 7,0x10™
HSCB 6 3000 2,3x10™

It is worth to add that Eq. (1), i.e. one of the basic equa-
tions for percolation theory, has been applied successfully
in semiquantitative analysis of resistivity changes of poly-
mer thick-film resistors during high hydrostatic pressure
compression /27/. The increase of pressure causes de-
crease of resistor volume. But because of significant com-
pressibility differences between carbon black and polymer
the effective volume fraction of conductive phase increas-
es with pressure. This fact leads to such resistance de-
crease that they are in agreement with Eq. (1).

The noise intensity C versus carbon black volume fraction
vee and curing temperature T is shown in Fig. 2. In gener-
al it is visible that increase of active phase amount or in-
crease of curing temperature leads to noise intensity de-
crease.

The below power law

C=Clv-v )" (9)
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uum percolation theory gives an explanation of C e (Rp)"

@280°C 5 dependence and observed values of index 77. The reader
mzo L o 300°C o especially interested in index 7 values both for other poly-
2 3507°C g MSCB+G mer as well as high temperature cermet thick-film resistors
167 g £0 A O should find useful information in /29/, too.
& &g " a ¢
Bt =2, wsce “8 e 107 :
© | Hecee ° A s MSCB+G
10 g ]
24 4 g 1075
107 ¢ 2 o
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Fig. 2. Noise intensity C versus volume fraction veg of 10774
carbon black (+ graphite for (MSCB+G)-based
system) in carbon black/polyesterimide thick- "
film resistors cured at various temperatures 107"
where Cy - constant and k - noise critical index is used 25
very often in description of C(v) experimental data. Actual- 10 10? '
ly Eq. (9) conform to the first constituent of formula (10)
C,(r>0,7>>A)=Cr™* +C,h*c™" (10)
1075 -
well known for noise intensity of percolation structures L
above percolation threshold. MSCE _.,.:/cg/ &
Values of vc and k for HSCB/PEI and MSCB/PE| systems 0y ® g
are given in Table 5. The C constant is weakly dependent ] m/jf"'
on curing temperature. Kind of active material affects this 10 o ,{"__.-"
parameter much stronger ~ it is about 3 orders smaller for Ko 3 %
HSCB-based resistors than for MSCB ones. The index ris E ] . A
decreased when curing temperature is increased. Much 0 g@d & / A
larger changes of this parameter are observed for MSCB- 3 //
based composites. ’
The dependencies of R as well as C versus volume frac- 1o 3 . A WA EOD
tion of active phase are described by power laws (1) and ® hiA 100
(9), respectively. This is why 1/f noise could be presented 10 | . ‘. R *IHS oo
in the form of C versus Rp plot (Fig. 3). This has the advan- 108 107 10t 108 1p® 1’
tage that only clearly electrically measurable quantities fe 0,0
appear on both axes and the C versus Rp can be present- ] [0
ed as
Co< (Ro)! (11) Fig. 3. Noise intensity C versus sheet resistance Rg

and values of index 7 for particular investigated carbon/
polyesterimide systems and various curing temperatures
are shown in Table 6. As has been proven in /29/ contin-

for carbon black/polyesterimide (open symbols)
and carbon black/polyimide (full symbols -
these data refer to results of Fu et al /28/)
resistors

Table 5. Variation of Eq. (9) parameters for HSCB/PE! and MSCB/PE| systems cured at various temperatures

T, [K] HSCB/PEI system MSCB/PEI system
C; [m’] Ve C, [m3] v, K
523 3,24-10% 0 3,200 2,17-10°% 0,0737 3,038
573 4,07-10% 0 3,035 1,07.10% 0,0796 2,297
623 3,08-107% 0 2,980 8,07-10%° 0,0841 2,000

145



Informacije MIDEM 31(2001)3, str. 141-152

A. Dziedzic:
Percolation Theory and its Application in ... (Part 1l ...)

Table 6. Values of index n from C e (Rp)" relationship calculated by least square method

System
Curing HSCB/PEI MSCB/PEI (MSCB + G)/PEI
temperature
523 K 1,03+0,05 0,83+0,08 1,14£0,09
573 K 1,15%0,03 0,86%0,05 1,07£0,07
623 K 1,17£0,05 1,14%0,05 1,10£0,06

Lets discuss once again so various values of v¢, t and k as
have been received from fitting of experimental R(v) and
C(v) data for carbon black/polyesterimide composites.
Values of v, and proper constants in Eq. (1) and (9} (Ro or
C1) are determined in principle by applied active phase.
On the other hand curing temperature affects significantly
values of critical indices. Similarly as many literature data
(please see Table 2 and 3) they do not respond to classi-
cal percolation model, where critical exponents depend
only are on the dimension of the network and not on its
internal structure. So large differences can be explained
by very attractive Balberg ideas connected with

- the concept of excluded volume which permits to
obtain extremely small values of percolation thresh-
old starting from ve = O,

- modification of system microgeometry by introduction
of power distribution of distance between spheres
embedded in continuum medium of second phase.

The concept of excluded volume fully explains so signifi-
cant differences of critical volume fraction in HSCB/PE!
and MSCB/PEI systems. But the problem of nonuniversal
values of t, kK and 17 = k/t is not so obvious. Nonuniversal
value of t can be calculated from Eqg. (4). Similarly Balberg
/25/ proposed the formula for calculation of nonuniversal
value of xin dependence of universal kus, system dimen-
sionality d and index w from Eq. (3).

K=Ky, for 2utz+w<]

K":K”,l-l—(2u+z+w—l)/u for 2u+z+wz1
and v + w <1

K’":/(lm+(z+1~(0)/(1—(u)for u+rwzl, (12

where d, u, was in Eq. (3), z=d - 1/2 for RV model and
z =d/2 for IRV model.

Theoretical shapes of H{w), k{w) and n(w) for 3D random
void model are shown in Fig. 4. The values of t, Kk and 1
calculated for HSCB/PEI as well as MSCB/PEI systems
(Tables 1, 5 and 6) are also placed in Fig. 4. As one could
notice the ranges of w values responding to them are dif-
ferent for particular critical indices. Therefore the problem
of nonuniversality of critical indices is still open and appli-
cation of Balberg conception for interpretation of conduc-
tivity and 1/f noise mechanisms needs further verification.
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Fig. 4. Dependence of critical exponents t, k. and nin
3D random void model as a function of index @
characterizing the distribution of distances
between hard insulating spheres in continuum
conductive phase

2. Dimensional effects in percolative
systems

Classical model of percolation theory is applied under def-
inite conditions:

- the film should be considered as infinite (with respect
to the size of the individual elements),

- the particles have to be spherical, monodispersive and
have an isotropic conductivity.

Theoretical, numerical and experimental works have been
conducted for cases, when the above assumptions have
not been preserved. So far Shklovskii /30/, who consid-
ered the critical conductivity behaviour near the percola-
tion threshold in an anisotropic two-component system, and
Neimark /31/, who calculated the electrophysical proper-
ties of percolation film with a finite thickness, have pre-
sented the most formal analyses. But none of papers took
into account both finite film thickness and anisotropic shape
of fillers, whereas sometimes (for example in conductive
adhesive joints) it is necessary to include both matters into
theoretical analysis.

Lets consider 3D medium with L, W, H>> Eswhere L, W, H
- length, width and height of structure and £z - correlation
length for 3D system. One should remember that correla-
tion length is the average distance between adjacent nodes
and in 3D system
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& =ay(p-ps) " (13)

According to standard, two-component percolation model
when the concentration of “good” conductors, p (with re-
sistivity p7) exceeds the percolation threshold pe (p > pes)
the effective resistivity

pe:pl(p_'pcﬁ)—[} (14)

where {3 - universal conductivity index for 3D-system (f3 =
2). Theoretical description of film from Fig. 5 (H< &z and L
= W > &3) demands replacing of initial L x L x H cuboid by
set of proper H x H x H cubes.

Fig. 5. Lx L x H cuboid with percolative structure and
equivalent 2D system received as a result of
real-space renormalisation procedure

In vertical direction (it corresponds with situation in adhe-
sive joint) all H x H x H cubes are connected in parallel.
Knowing the properties of such unit cubes it is possible to
apply standard 2D percolation model, where above the per-
colation threshold (p > pc2) the resistance of equivalent 2D
system can be expressed as

.
R = rl((p "pf%dj (15)

and 1, = pja, /aoz, p1 - resistivity of "good” conductor

phase (p1<<p2), ao - the minimal scale of the system un-
der consideration (e.g. the bond length in the case of lat-
tice models).

However for structures with thickness H less than or of the
order of correlation length we have so-called fractal (or
2.5D) regime. Modelling of such 2.5D system as 2D sys-
tem consists in calculation the dependence of r; on H.
Therefore

Py~ -
Rys = 1 (H)(H ey (16)
Pe2

where Ry s - resistance of the film in fractal regime, r{(H) -
resistance of H x H x H cube, Py - concentration of cubes
with ri(H) resistance, pcz - percolation threshold in 2D sys-
tem, {2 - critical conductivity index for 2D system.

This means that for calculation of effective resistance (con-
ductance) in fractal regime it is necessary to know the de-
pendence of r{H) and probability of proper conductive re-
alisation. Such a study, showing the critical behaviour of
effective conductivity {c.} and effective resistivity {0e}, av-
eraged over the large numbers of realisation in percolation
systems, on the length scale L, has been presented in
/32/. Next, the analytical analysis has been widened for
systems with weak nonlinearity /33/.

To include the shape of metallic fillers into the model it is
assumed that all metallic particles are replaced by ellip-
soids. The different shape of real particies (e.g. needles,
fibres or flakes) can be projected by different ratios of ellip-
soid semiaxes a, b, ¢ (Fig. 6).

AZ

Gvert

Fig. 6. Shape of ellipsoid representing conductive filler
and structure of termination made of
isotropically conductive adhesives
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Moreover, for model simplicity, it is taken that particles in-
side termination are monodispersive and their semiaxes
are parallel to proper coordinate axes (but their centres
are distributed randomly inside the termination volume).
According to /32/ the quantity r1(H) from Eq. (3) is calcu-
lated for system within the fractal regime as for percolation
system inside smearing region, where this region is de-

scribed by 7, = (H / c)_”"3 . Inside 7w one can meet struc-

tures associated with percolation above and below perco-
lation threshold, i.e. bridge with resistance Ry (with proba-
bility Py} and interlayer with resistance Rz (with probability
1-Py).

Omitting the subsequent stages of calculation and based
on /30-33/ we can write the final formula for unit conduct-
ance as

P =20, s s s o gy

026—(q3+1)/1/3 H((B‘V}H)/V} [(H/C)‘”V} —’L’]

G,

(17)

where 1 = (p— p )/ p.sand parameter of ellipsoid defor-

mation i.e. geometrical anisotropy of conductive grains &
=c/b <<]

When we are in deeply fractal regime i.e. (H /¢)™""" >> Il

(such situation is characteristic for conductive adhesive
joints /34/) we can present the above equation as

Gy 11 =007 (4 haP e ™ (19)

vert
where h=0,/0; << 1and @3 =13+ Qs

Considering the week nonlinearity of both components the
unit vertical conductance can be written as

G. o, L(HY™" L HY™? T +T
Tz Py 2(—~) +13ia 4[;—) Agbf,]f[

LZ c c [ H
o, (HY ™ A HY™ T tT
+[—2(~) 1424 4[—} ApE 12
clec c ¢ Ty

(20)

where wy = (t3 +v3)/v3, w2 = (3t3-V3)/V, Wa = wq = (V3 ~
qs)/vs, Agn - the voltage drop across the film thickness H
and parameter of ellipsoid deformation ¢ = ¢/b.

Based on analogy between voltage susceptibility and noise
intensity we have the following formula for effective noise
intensity of structure within the fractal region.

CE=C (H /)M ((H/c)‘v3 —r3)

n C2112a4 (H /C)((13+2r3+?_v3+1)/v3 ((H /C)_V3 —31'3) (21)
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This formula is valid independently on the ellipsoid shape
i.e. ratio between ellipsoid semiaxes.

The above equations permit to take into consideration the
shape of conductive fillers, ratio between the metal parti-
cle sizes and termination geometry, ratio between the con-
ductivity of "good” and “bad” conductors and volume con-
centration of active phase related to percolation threshold.
In order to facilitate numerical simulations it is necessary
to know values of three basic universal exponents n (char-
acteristic for system geometry), t and g (characteristic for
conductivity above and below the percolation threshold)
both for 2D and 3D systems.

Neimark's analysis and results have been also used by Liang
and Li /35/ to study the thermal conductance. They shown,
that there exist a thickness effect on thermal conductivity
of thin layers of disordered composites (similar to electri-
cal conductivity). For limited layers (m - number of layers
with unit thickness in vertical (normal) direction) the ther-
mal conductivity in the normal direction is

Ky = kilp, +(p—pym""3 im™37" (22)
where k1 is the thermal conductivity of good thermal con-
ducting phase. The thermal conductivity for the in-plane
(horizontal) direction is

27 /v 2
k/l()l‘ = kl’n(ln Il ([7 - pcy_ (23)

This means that the thermal conductivity increases in verti-
cal direction with decreasing thickness while the in-plane
conductivity declines.

3. Percolation model of metal oxide gas
sensors

Metal oxide gas sensors seem be the simplest type chem-
ical sensors - the sensitive layer of these devices consist
of a microcrystalline (or nanocrystalline) metal oxide film.
Contrary to simple construction the gas detection mecha-
nism is complex, representing interactions between vari-
ous gaseous molecules and defects at or near surfaces or
grain boundaries. It is based on variations of the charge-
carrier concentration within a depletion layer at the grain
boundaries in the presence of reducing or oxidizing gas-
es, which leads to changes in the height of the energy bar-
riers for free charge carriers. Except of many phenomeno-
logical explanations also percolation theory has been ap-
plied for analysis of response of gas sensitive-resistors very
recently /36,37/.

For example Ulrich et al /37/ show that there are transi-
tions between conducting and insulating stage for some
nanocrystalline grains of gas-sensitive layer. Such a grain
becomes an insulating (is totally exhausted of free charge
carriers) when its diameter is below a critical value, ®cit.
They calculate the net number of free electrons from every
grain, which can contribute to the conduction process as
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4 @, 0
Nﬁ-ee = 5”(5) ny = (Noxy = Nyo)
?,
(@2(3) = @D,y k) (24)

where no - density of electrons in grain, @- grain diame-
ter, Ngxy - initial surface density of oxygen adsorbed at
the grain surface, N, - surface density of chemisorbed

gas species and f(P,d,,k) - function taking into ac-
count that after sintering the surface exposed to the ambi-
ent atmosphere is smaller than the surface of sphere with
diameter @ (value of function f depends on @, diameter of
neighbouring grains @,y and local coordination number
K).

For Niree < O grain is insulating, for Niee = 1 is conducting
and for O < Npee £ 1 the number of free electrons Niee
should be considered as probability that the grain is con-
ducting. Moreover, according to the percolation theory in
order to connect sensor electrodes the concentration of
conducting grains must exceed the percolation threshold
Pe. This percolation concentration leads to a detection lim-
it. Therefore the variation of conductance and the same
the gas sensitivity is very high for concentration of detect-
ed gas p just slightly above pc. As it is seen from Eq. (24)
the model of Ulrich et al /37/ connects appearing perco-
lation effects of nanocrystalline metal oxide gas sensors
with morphology of sensitive layer very strongly.

4.  Reliability of VLSI circuits and
percolation

Itis well known that VLSI chips reliability is determined by
the interconnect failure, which consists in the breakdown
of the path connectivity. Moreover, the gate oxide break-
down is important in the case of CMOS VLS circuits. On
the other hand much works have been done to explain di-
electric or electrical breakdown phenomena of percolative
metal-insulator composites (please see for example /38-
40/). Therefore it is nothing strange that percolation theo-
ry has been applied very recently for reliability analysis of
VLSI circuits.

For example a biased percolation mode! /41-43/ is used
for simulation of interconnect failures. Thin-film conductors,
which create wire connections between particular transis-
tor structures, can be treated as a large two-dimensional
network of identical resistor elements deposited on an in-
sulating substrate with temperature Tyo. Because of two dif-
ferent operation modes (constant current and constant
voltage) there are two opposite cases when degradation
occurs. Single defect corresponds to a zero resistance
value of an element (short circuit model) for constant volt-
age operation mode and to an infinite value of resistor ele-
ment (open circuit model) for constant current operation
mode. The total film degradation is reached when exist one
continuous path of defects between lattice contacts.

Therefore the degradation is synonymous with the conduc-
tor-insulator transition in open circuit model and conduc-
tor-superconductor transition for short circuit model. More-
over the biased percolation model assumes that the deg-
radation starts because of spontaneous creation of some
initial defects. When the constant current is applied in such
resistor network then the creation of defects causes an
increase of the current flowing in the neighbourhood resis-
tors, especially those located in the region perpendicular
to the contact direction. Therefore a significant extra Joule
heat occurs inthis region together with a significant increase
of the local temperature.

The mathematical notation is the following

E,
W, :exp(~—k-8%*J (25)
o

where Wa is probability of local defect generation, kg is
the Boltzmann constant, and Ty is the local temperature at
the resistor o given by

T, =Ty + Ar,i’ (26)

and A is the key parameter responsible for the coupling
between current and device degradation (value of A de-
pends on the heat coupling of each resistor to the sub-
strate), ro-and iy are the resistance of a single network ele-
ment and the current flowing in it, respectively. Subsequent
evolution stages of biased percolation model and its appli-
cation (for example to electromigration in metallic lines) one
could find in /44-49/.

The breakdown of thin gate oxide layer, which can be de-
fined experimentally as a large increase in conductance,
occurs as soon as a critical density of neural electron traps
in the oxide is reached. Degraeve et al /50/ simulated
breakdown of thin SiO2 layers based on percolation ap-
proach and verified such simulations with experimental re-
sults. Since the breakdown occurs at a critical electron
trap density therefore conduction via generated traps is a
plausible breakdown mechanism. This phenomenon has
been simulated in the following way:

- atestsample with fixed dimensions has been defined,

- electron traps have been generated at random posi-
tions inside this volume,

- asphere with a fixed radius r has been defined around
the generated traps,

- condugtion between two neighbouring traps has been
possible when their spheres overlapped,

- the breakdown has appeared when a conducting path
has been created from one interface (which has been
an infinite set of traps) to the other.

Stathis /51/ has modelled oxide breakdown using perco-
lation formalism for very small samples, comparable to the
lattice spacing. He shown, that the critical defect density
exhibits a strong decrease with thickness below 5 nm, then
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becomes constant below 3 nm. For the second value the
oxide thickness becomes less than the defect size. There-
fore a single defect near the oxide centre is sufficient to
create a continuous path across the sample in a 3-nm thick-
ness limit.

5. Application of percolation theory in
pharmacy

Many pharmaceutical tablets are composed of binary inert
matrices where water-soluble, finely dispersed drugs are
embedded in an insoluble carrier material. Such drugs are
released in a patient system by diffusion. Percolation theo-
ry is a relatively novel approach to design and characteri-
sation of solid dosage forms and controlled drug release
properties of such matrix system. Some papers related to
this topic (as e.g. /52-57/) one can find in International
Journal of Pharmaceutics.

Tablet components usually have quite various electrical
properties. For example the difference in electrical con-
ductivity reaches to several orders of magnitude. There-
fore the direct resistance measurement of tablets and then
resistivity calculation can indicate the presence of perco-
lation threshold /52/. A sudden resistivity drop indicates
the presence of infinite clusters of both phases. Moreover
such information may provide a valuable tool for explana-
tion of changes observed in dissolution process of matrix
tablets. Below the percolation threshold the drug release
isincomplete. It has been also proved that so-called “com-
bined percolation threshold” is characteristic for multicom-
ponent tablet systems and therefore they can be reduced
to a binary one /54/.

Such a simple experiment and percolation attempt makes
easier more rational design of pharmaceutical solid dos-
age forms. This is an interesting problem in which manner
the percolation theory can help to control the drug release
properties. Diffusion and conductivity are very similar be-
cause both describe transport processes. It is well known
from percolation theory that the normal diffusion laws are
not valid below the percolation threshold but above pc the
diffusion coefficient D obeys the following power law

D= xDy(p-p.) (27)

where yDg represents a scaling factor and t - conductivity
exponent /2/. The references /53,57/ confirm both ana-
Iytically as well as experimentally that tablet's conductivity
and dissolution rate process can be successfully modelled
by the same basic equation of percolation theory and that
both processes scale in an identical way.

6. Conclusions

This paper shows that percolation theory is still alive. As
one can notice new problems, for example the role of finite
geometry and dimensional effects on the form or charac-
teristic power laws, are solved using novel models of per-
colation structures. The application range of percolation

150

theory in microelectronics and materials science is very
wide. It can be applied in so different areas as reliability of
VLSI circuits and novel design concept of pharmaceutical
tablets. Of course the presented and discussed examples
do not fulfil the problem. Therefore a few subsequent ap-
plications, as for ionic composites or for AC transport phe-
nomena in two-phase percolative systems, will be present-
edin /58/.
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