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Expected Case for Projecting Points

Sergio Cabello and Matt DeVos
Institute for Mathematics, Physics and Mechanics, Ljubljana, Slovenia
E-mail: cabello@imfm.uni-lj.si

Bojan Mohar
Faculty of Mathematics and Physics, Ljubljana, Slovenia
E-mail: bojan.mohar@uni-lj.si

Keywords: randomized algorithm, unit distance, closest pair

Received: June 14, 2005

Consider a set of n points in the plane with the property that any pair of points is at least at distance one.
We study the expected concentration of the point set after projecting it onto a random graduated line. There
is a lower bound of Ω(

√
n log n) given by Matoušek in [4], and we provide an upper bound of O(n2/3).

Povzetek: Analizirana je gostota točk v ravnini z razdaljo najmanj ena.

1 Introduction
Let P be a set of n points in the plane. For a line L ⊂ R2,
we can project the points P orthogonally onto L, which
we denote by πL(P ). Imagine that the line L is a grad-
uated line, that is, a line decomposed into line segments
(cells) of length one. For a cell c ⊂ L, let Pop(P, c)
be the population of the cell c after the projection, that is
Pop(P, c) = |{p ∈ P |πL(p) ∈ c}|. For a graduated line
L, we say that its concentration Conc(P,L) is the number
of points that its most populated cell gets; that is,

Conc(P, L) = max
c a cell of L

{Pop(P, c)}.

In a recent paper, Díaz et al. [3] consider the algorithmic
problem of computing a graduated line that minimizes the
concentration, that is, they are interested in Conc(P ) =
minL Conc(P, L). However, an asymptotically equivalent
problem was considered by Kučera et al. [4] when studying
a map labelling problem.

Here we are interested in the expected concentration that
a point set has when projecting onto a random graduated
line. Let L(α) be a graduated line through the origin with
angle α with respect to the x-axis, and such that the origin
is the boundary of a cell. We are interested in the expected
concentration EConc(P ) over all lines L(α)

EConc(P ) = Eα [Conc(P, L(α))] ,

where α is chosen uniformly at random. Let us observe
that, for an asymptotic bound on EConc(P ), it is equiva-
lent to consider that the lines L(α) pass through some other
point of R2 instead of the origin.

If the point set P is arbitrarily dense, then it may be that
Conc(P, L) ≥ n/2 for any line L, and so EConc(P ) =
Ω(n). However, the problem becomes non-trivial if we put
restrictions to the density of the point set.

Definition 1. A point set P ⊂ R2 is 1-separated if its clos-
est pair is at least at distance 1.

Our objective1,2 is to bound the value EConc(P ) for
any 1-separated point set. Kučera et al. [4] have shown
that Conc(P ) = O(

√
n log n) for any 1-separated point set

P . More interestingly, they use Besicovitch’s sets [1] for
constructing 1-separated point sets P having Conc(P ) =
Ω(
√

n log n), which implies EConc(P ) = Ω(
√

n log n).
We will show that for any 1-separated point set P we

have EConc(P ) = O(n2/3). Therefore, it remains open
to find tight bounds for EConc(P ).

The rationale behind considering projections onto ran-
dom lines is the efficiency of randomized algorithms whose
running time depends on the expected concentration. As
an example, consider a set of disjoint unit disks and any
sweep-line algorithm [2, Chapter 2] whose running time
depends on the maximum number of disks that are inter-
sected by the sweep line. Choosing the direction in which
the line sweeps affects the running time, but computing the
best direction, or an approximation, is expensive: Kučera
et al. [4] claim that it can be done in polynomial time, and
Díaz et al. [3] give a constant-factor approximation algo-
rithm with O(nt log nt) running time, where t is the di-
ameter of P . By choosing a random projection we avoid
having to compute a good direction for projecting, and we
get a randomized algorithm. The results in this paper be-
come helpful for analyzing the expected running time of
such randomized algorithms.

The rest of the paper is organized as follows. In Sec-
tion 2 we introduce some relevant random variables and
give some basic facts. In Sections 3 and 4 we bound
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EConc(P ) using the first and second moments, respec-
tively.

2 Preliminaries
Let P = {p1, . . . , pn} be a 1-separated point set, and let
di,j = d(pi, pj). We use the notation [n] = {1, . . . , n}.
Without loss of generality, we can restrict ourselves to
graduated lines passing through the origin. Let L(α) be the
line passing through the origin that has angle α with the x-
axis, and let p∗(α) be the orthogonal projection of a point
p onto L(α). Consider the following random variables for
the angle α

Xi,j(α) =

{
1 if d

(
p∗i (α), p∗j (α)

) ≤ 1,
0 otherwise;

Xi(α) =
n∑

j=1

Xi,j(α);

Xmax(α) = max{X1(α), . . . , Xn(α)};

X(α) =
n∑

i=1

Xi(α) =
n∑

i=1

n∑

j=1

Xi,j(α),

where α is chosen uniformly at random from the values
[0, π). In words: Xi,j is the indicator variable for the event
that p∗i (α) and p∗j (α) are at distance at most one in the pro-
jection; Xi is the number of points (including pi itself)
whose projection is at distance at most one from p∗i (α);
Xmax is the maximum among X1, . . . , Xn; and X counts
twice the number of pairs of points at distance at most one
in the projection. It is clear that P[Xi,i = 1] = 1 for any
i ∈ [n]. Otherwise we have the following result.

Lemma 1. If i 6= j, then

P[Xi,j = 1] =
2 arcsin 1/di,j

π
.

Proof. Assume without loss of generality that pi is placed
at the origin and pj is vertically above it, on the y-axis. See
Figure 1. We may also assume that the line L(α) passes
through pi. Because di,j ≥ 1, there are values α such
that Xi,j(α) 6= 1. The angles that make Xi,j(α) = 1
are indicated in the figure. In particular, if β is the angle
indicated in the figure, and we choose α uniformly at ran-
dom, then P[Xi,j = 1] = 2β

π . The angle β is such that
sin β = 1

di,j
, and so β = arcsin 1

di,j
. We conclude that

P[Xi,j = 1] = 2β
π = 2 arcsin 1/di,j

π .

The first observation, which is already used for the ap-
proximation algorithms described by Díaz et al. [3], is that,
asymptotically, we do not need to care for the graduation,
but only for the orientation of the line. In particular, the
random variables Xi contain all the information that we
need asymptotically.

Lemma 2. We have
EConc(P ))

2
≤ E [Xmax(α)] ≤ 2 EConc(P ).

3 Using the first moment
Using that the closest pair of P is at least one apart, we get
the following result.

Lemma 3. For every i ∈ [n], we have

∑

j∈[n]\{i}

1
di,j

= O(
√

n).

Proof. Without loss of generality, assume that i = n. Let
nd be the number of points in P whose distance from pn is
in the interval [d, d + 1). We have

∑

j∈[n−1]

1
di,j

=
∞∑

d=1


 ∑

di,j∈[d,d+1)

1
di,j


 (1)

≤
∞∑

d=1


 ∑

di,j∈[d,d+1)

1
d


 (2)

=
∞∑

d=1

nd

d
. (3)

Observe that if we have two sequences (ai)i∈N and (bi)i∈N
of nonnegative numbers such that

∑j
i=1 ai ≤

∑j
i=1 bi for

all j ∈ N, then
∑∞

i=1
ai

i ≤ ∑∞
i=1

bi

i . That is, the sum
is maximized when the values concentrate on the smallest
possible indexes. Let Nd be the maximum number of 1-
separated points that you can have in an annulus of inner
radius d and exterior radius d+1, and let D be the smallest
value such that n <

∑D
d=1 Nd. We have n =

∑
nd and∑j

i=1 ni ≤
∑j

i=1 Ni for all j ∈ [D], and from (1) we
conclude

∑

j∈[n−1]

1
di,j

≤
∞∑

d=1

nd

d
≤

D∑

d=1

Nd

d
. (4)

We need to estimate the values Nd. For the lower bound,
placing points at distance one in the circle of radius d, we
get Nd = Ω(d). For the upper bound, we can use a pack-
ing argument to show that any 1-separated point set inside
the annulus has O(d) points. Indeed, if we place a disk
of radius 1/2 centered in each point of a 1-separated point
set inside the annulus, they must have disjoint interiors and
cover an area of Θ(Nd). Moreover, all these disks are con-
tained in an annulus of inner radius d − 1 and exterior ra-
dius d + 2, which has an area of Θ(d). We conclude that
Nd = Θ(d), and therefore D = O(

√
n). Using (4) we get

∑

j∈[n−1]

1
di,j

≤
D∑

d=1

Nd

d
≤

O(
√

n)∑

d=1

O(d)
d

= O(
√

n).

Lemma 4. For every i ∈ [n] we have E[Xi] = O(
√

n).
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Figure 1: For Lemma 4. We consider what random lines L(α) through pi that give Xij = 1

Proof. Because Xi =
∑n

j=1 Xi,j and the linearity of the
expectation, we have

E[Xi] =
n∑

j=1

E[Xi,j ] =
n∑

j=1

P[Xi,j = 1]

= 1 +
∑

j∈[n]\{i}
P[Xi,j = 1]

= 1 +
∑

j∈[n]\{i}

2 arcsin(1/di,j)
π

.

Observe that the function arcsin(x) is convex for x ∈
[0, 1], and therefore we have arcsin(x) ≤ (π/2)x for all
x ∈ [0, 1]. We then have

E[Xi] = 1 +
∑

j∈[n]\{i}

2 arcsin(1/di,j)
π

≤ 1 +
∑

j∈[n]\{i}

1
di,j

,

and using Lemma 3 we conclude that E[Xi] = O(
√

n).

Using the first moment method, we can show that for
any 1-separated point set P it holds that EConc(P ) =
O(n3/4). For this, consider a 1-separated point set P and
its associated random variable X . We have X =

∑
Xi,

and because of Lemma 4 we conclude E[X] = O(n
√

n).
We claim that, for any value t > 0, if we have

Xmax(α) ≥ t, then X(α) ≥ t2/4. Intuitively, if some
Xi = t, then there are Θ(t2) pairs of points at distance at
most one from each other, and so contributing to X . The
formal proof of the claim is as follows. Let i be an index
such that Xi(α) ≥ t. Then, either to the right or to the
left of p∗i (α), the projection of pi onto L(α), there are at
least t/2 points p∗j (α) at distance at most one from p∗i (α).
Assume that those points are to the left and let P̃ ⊂ P
be the set of those points. We have |P̃ | ≥ t/2. For any
pj , pj′ ∈ P̃ we have Xj,j′(α) = 1, and therefore we have

Xj(α) ≥ t/2 for all pj ∈ P̃ . We conclude that

X(α) ≥
∑

pj∈P̃

Xj(α) ≥
∑

pj∈P̃

t/2 ≥ t/2 · |P̃ | ≥ t2/4,

and the claim is proved.
We have shown that for any value t > 0 we have

[Xmax ≥ t] ⊆ [X ≥ t2/4],

and using Markov’s inequality we conclude

P[Xmax ≥ t] ≤ P[X ≥ t2/4] ≤ 4E[X]
t2

≤ O(n
√

n)
t2

.

Let r = bn3/4c. Since Xmax only takes natural num-
bers, we have

E[Xmax] =
n∑

t=1

P[Xmax ≥ t]

=
r∑

t=1

P[Xmax ≥ t] +
n∑

t=r+1

P[Xmax ≥ t]

≤
r∑

t=1

1 +
n∑

t=r+1

O(n
√

n)
t2

≤ r + O(n
√

n)
∫ n

r

1
t2

dt

≤ n3/4 + O(n
√

n)
(

1
r
− 1

n

)

= O(n3/4).

Using Lemma 2 it follows that EConc(P ) = O(n3/4).
However, observe that this bound will be improved in next
section.

We would like to point out that the random variables
Xi do not have a strong concentration around their ex-
pectation. Therefore, we cannot use many of the results
based on concentration of the measure that would reduce
the bound on EConc(P ). To see this, consider the ex-
ample in Figure 2. The point pi is the center of a disc of
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n3/4

n1/4

pi

Figure 2: Example showing that Xi is not concentrated around its expectation.

radius n3/4, and we consider a circular sector with arc-
length n1/4. This region is grey in the picture. Imag-
ine that we place a densest 1-separated point set P in-
side the grey region. Asymptotically, since the region has
area Θ(n), such a point set P has Θ(n) points. Consider
the lines L(α + π/2) passing through pi. If α is chosen
uniformly at random, the line L(α) intersects the grey re-
gion with probability n1/4/(2πn3/4) = Θ(1/

√
n), and

in that case Xi(α + π/2) = Θ(n3/4). We conclude that
E[Xi] = Θ(n1/4), but P[Xi = Ω(n4/3)] = Θ(1/

√
n), and

so Xi does not concentrate around its expectation.

4 Second moments
Lemma 5. For every i ∈ [n] we have E[X2

i ] = O(n).

Proof. Assume without loss of generality that di,j ≥ di,k

whenever j > k; that is, the points are indexed according
to their distance from pi. Like above, we assume that the
line L(α) passes through pi. We have

E[X2
i ] = E


 ∑

j,k∈[n]

Xi,jXi,k




≤ E

2

∑

j

∑

k≤j

Xi,jXi,k




= 2
∑

j

E


Xi,j

∑

k≤j

Xi,k




We claim that E
[
Xi,j

∑
k≤j Xi,k

]
= O(1), and so the

result follows.
To prove the claim, observe that if Xi,j(α) = 1, then

all the points pk that have Xi,k(α) = 1 need to be in the
strip (or slab) of width two having L(α + π/2) as axis;
see Figure 3, where this strip is in grey. Because of a
packing argument, in this strip there are O(di,j) points pk

that satisfy di,j ≥ di,k. Therefore, by the way we in-
dexed the points, we conclude that, if Xi,j(α) = 1, then(∑

k≤j Xi,k

)
(α) = O(di,j). In any case, we always have

(
Xi,j

∑
k≤j Xi,k

)
(α) = O(di,j). Therefore

E [ Xi,j

∑

k≤j

Xi,k ] =
n∑

t=1

t · P

Xi,j

∑

k≤j

Xi,k = t




≤
n∑

t=1

O(di,j) · P

Xi,j

∑

k≤j

Xi,k = t




= O(di,j)
n∑

t=1

P


Xi,j

∑

k≤j

Xi,k = t




≤ O(di,j) · P [Xi,j = 1]

= O(di,j)
2 arcsin 1/di,j

π
= O(1).

This finishes the proof of the claim and of the lemma.

Theorem 1. For any 1-separated point set P we have
EConc(P ) = O(n2/3).

Proof. Let P be a 1-separated point set and consider the
random variable T (α) =

(∑
i X2

i

)
(α). By Lemma 5 we

have E[T ] =
∑

i E[X2
i ] = O(n2). The rest of the proof

resembles the argument in the previous section.
We claim that, for any value t > 0, if we have

Xmax(α) ≥ t, then T (α) ≥ t3/8. The proof is as follows.
Let i be an index such that Xi(α) ≥ t. Then, either to the
right or to the left of p∗i (α), the projection of pi onto L(α),
there are at least t/2 points p∗j (α) at distance at most one
from p∗i (α). Assume that those points are to the left and let
P̃ ⊆ P be the set of those points. We have |P̃ | ≥ t/2. For
any pj , pj′ ∈ P̃ we have Xj,j′(α) = 1. Therefore for all
pj ∈ P̃ we have Xj(α) ≥ t/2, and X2

j (α) ≥ t2/4. We
conclude that

T (α) ≥
∑

pj∈P̃

X2
j (α)

≥
∑

pj∈P̃

t2/4 ≥ t2/4 · |P̃ |

≥ t3/8,

and the claim is proved.
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pi

pj

L(α)

11

Figure 3: For the proof of Lemma 5. For any angle α we
have

(
Xi,j

∑
k≤j Xi,k

)
(α) = O(di,j).

We have shown that for any value t > 0 we have

[Xmax ≥ t] ⊆ [T ≥ t3/8],

and using Markov’s inequality we conclude

P[Xmax ≥ t] ≤ P[T ≥ t3/8] ≤ 8E[T ]
t3

≤ O(n2)
t3

.

Let r = bn2/3c. Since Xmax only takes natural num-
bers, we have

E[Xmax] =
n∑

t=1

P[Xmax ≥ t]

=
r∑

t=1

P[Xmax ≥ t] +
n∑

t=r+1

P[Xmax ≥ t]

≤
r∑

t=1

1 +
n∑

t=r+1

O(n2)
t3

≤ r + O(n2)
∫ n

r

1
t3

dt

≤ n2/3 + O(n2)
(

2
r2
− 2

n2

)

= O(n2/3).

Using Lemma 2 it follows that EConc(P ) = O(n2/3).

Trying to use the same ideas with higher moments of
Xi does not help. Consider for example the 1-separated
point set P consisting of all n points in a horizontal row
of length n, and let p1 be the leftmost point. We have

E[X3
1 ] = Θ(n2), and in general E[Xp

1 ] = Θ(np−1) for
all naturals p > 2. From this we can only conclude weaker
results of the type EConc(P ) = O(np/(p+1)).

Conclusions
We have studied the expected concentration of project-
ing 1-separated point sets onto random lines, a parameter
that is relevant for sweep-line algorithms when the direc-
tion for sweeping is chosen at random. We have shown
that, if P consists of n points, the expected concentration
EConc(P ) is O(n2/3), while the best known lower bound
is Ω(

√
n log n). Therefore, it remains to close this gap.

Acknowledgements
The authors are grateful to Jiří Matoušek for the key ref-
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