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A novel 2DGE protein-segmentation algorithm
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Abstract. Two-dimensional gel-electrophoresis (2DGE) images show the expression levels of several

hundreds of proteins where each protein is represented as a blob-shaped spot of grey level values. The
spot detection, i.e. the segmentation process, has to be efficient as it is the first step in the gel
processing. Such extraction of information is a very complex task. In this paper we propose a novel
spot detector that is basically a morphology-based method with the use of a seeded region growing as
a central paradigm and which relies on the spot-correlation information. The method is tested on our

synthetic as well as on real gels with human samples from SWISS-2DPAGE (two-dimensional

polyacrylamide gel electrophoresis) database. A comparison of results is done with a method called
Pixel Value Collection (PVC). Since our algorithm efficiently uses local spot information, segments

the spot by collecting pixel values, and its affinity with PVC, we named it Local Pixel Value
Collection (LPVC). The results show that LPVC achieves similar segmentation results as PVC, but is

much faster than PVC.
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Nov algoritem za segmentacijo 2DGE slik

Povzetek. V tem ¢lanku predlagamo nov algoritem za
segmentacijo proteinov na 2DGE slikah. Algoritem je
zasnovan na morfologkih temeljih, uporablja semena za
segmentacijo in uposteva korelacijo med sosednjimi pro-
teini.

Kljuéne besede: analiza slik, proteomika, segmentacija

1 Introduction

Computer vision is a research line which tries to ex-
tract as much information from images as possible.
Biomedical image analysis continues to be an active
area of research, with many encouraging results, but
also with a number of difficult problems still to be
addressed [1].

Two-dimensional gel electrophoresis (2DGE) is
one of the methods able to separate thousands of pro-
teins [2]. Different cell samples can exhibit even more
than 2,000 proteins. On such a 2-D gel image, two
coordinates characterize each protein: its isoelectric
point and its molecular weight. Along one dimen-
sion, proteins are sorted electrophoretically accord-
ing to their pH gradient. They stabilize at points
where their net charge is zero. Along the other di-
mension, proteins separate according to their molec-
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ular weight. Thus, the isoelectric point and the mo-
lecular weight uniquely identify a protein spot in a
gel. The separated proteins can be stained with diffe-
rent dyes so that they are amenable to imaging. The
gels are scanned and normally stored in a database.
The process, though lengthy and subject to enormous
experimental uncertainty, is still much cheaper than
other competing technologies.

The image available at http://www.expasy.org/-
cgi-bin/map2/noid?LIVER_HUMAN shows a typical
image of a 2D gel (notice also a part of it in the cir-
cular area of the first image in Figure 2). Just by
glancing at it, the reader can imagine how hard a
task it is for any automated algorithm to accurately
identify hundreds of protein spots among the various
kinds of noise, and also to compare and match pro-
teins over several gels when presented with multiple
copies of gels made from similar cell samples.

There is a critical need for image analysis that
will enable accurate, rapid and reliable spot detection
[3]. The spot detection, i.e. segmentation, process
has to be efficient as it is the first step in the gel
processing. Namely, inaccurate spot detection has
clear ramifications for the spot matching process.

Before we go to the explanation of our algorithm,
let us first take a look at the basic approaches to
spot detection: Edge detection algorithms are tra-
ditionally used in such scenarios [5, 6]. Mathemati-
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cal morphology-based methods are also widely used
[4, 7, 8]. Popular methods include watersheds by
immersion [9], marker-based watersheds [8] and H-
domes method [7]. The scale space blob detection
method can help us to select the markers [10, 11],
which is seldom trivial. Our algorithm is basically a
morphology-based method using seeded-region grow-
ing as a central paradigm (see The Image Processing
Handbook for standard algorithms [12]).

2 Materials and methods
2.1 Algorithm

In our case we are dealing with 8-bit grayscale im-
ages, i.e. 256 values are possible. Gel images are
normally very noisy, so we first have to reduce the
influence of noise on the subsequent processing, to
smooth the image. We do that by applying a 3x3
Median filter [12] and then reducing the image size
to the width of 500 pixels (with maintained aspect
ratio), which also speeds up next steps of the algo-
rithm. In the process of noise reduction we conform
to the rule that in any fitting or smoothing operation
the window size has to be smaller than the features
of interest [12]. Thus, in this preprocessing step we
reduce the noise and end up with more compact re-
presentation of spots.
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Figure 1. Basic principle of LPVC illustrated on a simple
representation of an image intensity cross-section.

Since our algorithm efficiently uses local spot in-
formation and segments the spot by collecting pixel
values, we named it Local pixel value collection
(LPVC). Figure 1 gives the basic principle of LPVC:
Find the peak (the darkest) value for each spot. For
each peak locally in the semi-user defined neigh-
borhood the spot grows to its boundaries by go-
in% through the local intensity range with the user-
defined step. The following pseudo-code explains the
algorithm 1n more details as it gives its basic steps;
note that we have two user specified parameters: the
initial number of the nearest neighbors used in the
segmentation of each spot (NN) and the step size
through the local intensity range (STEP):

{
FindBackground() ;
FindPeaks () ;
EliminateNonPeaks () ;
FindNearestNeighbors();
for each peak do
{
if all NN outside ROI //Region Of
Interest
enlarge NN and ROI;

for darkest to lightest intensity
value in ROI in STEPs do
{

ThresholdROIQ) ;
SegmentSpot () ;
ApplySpotCriteria();

MarkAcceptedSpotInResultImage();
}

The details about each step are given in the conti-
nuation.

The next step after preprocessing is to dyna-
mically identify the background. This is achieved
by applying a two-step Otsu thresholding technique
[13]. The input to Otsu thresholding technique is a
histogram of the input image, which is then divided
in two classes and the inter-class variance is mini-
mized. Since a number of spots in the gel image are
weakly expressed, we soften the border between the
two classes, namely, spots and background, by apply-
ing the Otsu technique in two steps. First we calcu-
late the basic threshold and then this value is used
to calculate the new, softened threshold based only
on pixels in the image that are lighter than the cal-
culated threshold. This dynamically obtained global
threshold is then used to eliminate the background.
(Note that we can apply this technique also locally
on the image parts to better capture local proper-
ties of the background.) For more details about the
technique see [13].

To identify spots, we interpret the intensity as the
third dimension information in the input image. We
employ another operator in the 3x3 window size to
identify local peaks. The peak is established if the
pixel in the middle has the same or darker value as
all surrounding, neighboring pixels. Generally, this
operator is called 8-neighborhood filter [12].

Now that we have the information about peaks,
we can correlate them in order to investigate spot
sizes. But first we have to find the center of mass
of each peak as they could be saturated, i.e. a re-
gion bigger than one pixel can be labeled as peak.
Normally, each spot is, among other information, re-
presented by its z and y coordinate of the peak [14].
In order to do this, we employ seeded-region grow-
ing [12]. A seed can be the first pixel in the peak
region and we recursively visit all the pixels in the
peak region. In this way we calculate for each peak
its center of mass. For more details about the seeded-
region growing method see [12].

The first step towards establishing correlation of
spots is to find the nearest neighbors for each identi-
fied peak. For this task Euclidean distance [12] seems
the most logical choice.

Now that we have this correlation information for
each peak, we can eliminate some obvious non-peaks



based on the following condition: If the peaks are
close together (we experimentally set this distance to
d < 6 pixels) and at the same time they have similar
intensity values (Aipeaks < 3), while the intensity
of the lightest pixel on the path between the peaks
is too similar to the intensity of the lightest peak
(Aipath < 3), then we eliminate the lightest peak in a
pair from further processing. The condition describes
the fact that in such cases we are probably dealing
with only one spot and not two.

As mentioned above, we have two user specified
parameters, which are used in the continuation of
the algorithm: IV is the initial number of the nearest
neighbors used in the segmentation of each spot (NN
in pseudo-code) and S is the step size through the
local intensity range (STEP in pseudo-code).

In the next step we again find Npax = 8 (Nmax >
N) nearest neighbors for each kept peak.

For each kept peak we do the following using the
preprocessed image (remember that this is the input
image from which we eliminated noise): The region
of interest is defined as an inner circle around the
peak of interest with the radius defined by the trun-
cated integer value of the distance to the N-th near-
est neighbor (note the black mask in Figure 2). If all
N — 1 nearest neighboring peaks are outside of this
region, then we increase N by one. This is repeated
until at least one nearest neighbor is not inside the
region of interest.
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Figure 2. Illustration of LPVC segmentation of a single
spot: in the circular region of interest we go through the
local intensity range from the peak of interest intensity to
the lightest intensity value, threshold the region of inte-
rest at each desired level, segment the temporary spot
and test it if it is a real spot. The first figure gives the
region of interest with the peak of interest centered in
it and all in processing used local information. The last
figure gives the last accepted spot by LPVC technique.
All other figures illustrate which pixels are kept in the
processing and how the spot of interest grows while we
move through the intensity range.

We find the lightest intensity value in the region
of interest and we move inside the constrained in-
tensity range from the peak of interest intensity to
the lightest intensity value with step S (Figure 2):
Firstly, we threshold the region of interest with the
temporary intensity value. (For further details about
thresholding see [12].) Secondly, we segment the tem-
porary spot by applying the seeded-region growing
method, where the peak of interest is our seed. (For
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more details about the seeded region growing method
see [12].) Thirdly, after the temporary spot is seg-
mented, we check if it meets the criteria for the real
spot. The criteria are the following: If there is a
darker intensity value in the temporary spot than the
peak intensity value, then we are not dealing with the
real spot. We are not dealing with the real spot also
if there is more than one peak kept in the temporary
spot. Furthermore, if the number of pixels in the
temporary spot is big enough (> 5), we check if it
has a range of densities which peak centrally. If not,
then we are not dealing with the real spot. Now we
check if it is approximately elliptical and if not, we
are again not dealing with the real spot. The last cri-
terion checks if the temporary spot size covers almost
full region of interest. If so (> 80%), the temporary
spot is not treated as the real spot. Thus, the tem-
porary spot that meets all spot criteria is accepted as
the real spot. Note that all the spot criteria accept
the first, the second and the last one, which are spe-
cific for our algorithm, are also part of the algorithm
in [4], with which we compare our results. The values
are the same in both implementations. A short de-
scription of this approach is given in the continuation
of the paper.

When all the peaks are processed in this way, we
end up with the segmented image and a linked list
of information about each spot. As we will see in
the next section, this information includes volume of
each spot, which is one of the basic information used
in the comparison of results.

2.2 Evaluation methodology

Unfortunately, we cannot simply count true positives
(real spots), false positives etc. in the real gel images,
since the ground truth information is not available.
Moreover, when it comes to the human factor such
information is very subjective and varies even if the
same person tries to provide this information at dif-
ferent occasions (e.g. try to mark the same image
after one month and compare the markings). Fur-
thermore, such counting would not be informative
enough, because it does not say anything about the
segmentation accuracy of the individual spots.

To be as objective as possible, we evaluated the
efficiency of LPVC technique in two steps: Since
the ground truth for real gel images is not avail-
able, we first generated synthetic gel images, which
are generated based on desired ground truth. In this
way the quantitative, numerical comparison is feasi-
ble. Then we performed the experiments on real gel
images with human samples from SWISS-2DPAGE
(two-dimensional polyacrylamide gel electrophoresis)
database [15] (http://www.expasy.org/ch2d/) in or-
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der to qualitatively, visually evaluate the results.

Synthetic-gel images were generated by placing
spots of a defined volume, size and proximity in
rows. Firstly, the image with the requested back-
ground value was generated (intensity= 235). Sec-
ondly, each spot was modeled with a 2D Gaussian
model. Thirdly, Gaussian noise was added to the
image (standard deviation= 2). For details about
Gaussians please refer to [12, 16].

The first test addresses the precision of the tech-
nique by putting identical circular spots in the image
(peak intensity= 30, standard deviation= 6). The
second test addresses the intensity range by conti-
nuously lowering the peak height (intensity factor=
0.9). In the third test we continuously narrow the
spot width. In terms of the mathematical model em-
ployed, we test the spot standard deviation range
(standard deviation factor= 0.9). The fourth test
combines the last two together. And in the last one
we continuously reduce the distance between spot
pairs to simulate the proximity of spots (distance
factor= 0.8). This test is designed to enable as-
sessment of the algorithm’s ability to accurately split
merged spots.

When we perform an experiment, we are basically
interested in the values of two variables: the ave-
rage error in the calculated spot volume and the time
needed to process the whole image.

The spot volume is calculated in a standard man-

ner [5]: Vol = Z I(x,y),

z,yEspot

where z and y are the coordinates of the pixel inside
the spot and I(z,y) is the intensity value at these

coordinates in the image. .
The normalized error of the estimated spot vol-

ume Vol in comparison to the actual, ground truth
volume Volgr (in % of Volgr) for the spot i is given

as: - |V0lz‘ — VOlGT7i|

E ;= - 100.
T Volar,

Furthermore, the average error Avgy, (arithmetic
mean) over n spots present in the gel image is cal-
culated. The second measure, which is in the re-
sults written right beside the first one (Avgy), is the
standard deviation, which reveals how tightly all the
various estimated volumes are clustered around the
average error in the set of data.

On real gels such quantitative evaluation is not
feasible, but the qualitative evaluation is. Thus,
the influence of parameters on efficiency of the al-

gorithm’s performance is investigated.

And finally, all the gels, synthetic and real, were
also processed with a technique called Pixel value col-
lection (PVC) [4] for comparative performance. The

followin% pseudo-code reveals the basic idea behind
PVC and gives the affinity between LPVC and PVC:

{
for darkest to lightest intensity value
in image in STEPs do
{
ThresholdImage() ;
SegmentSpots () ;
ApplySpotCriteria();
MarkAcceptedSpotsInResultImage();
}
}

Note that PVC always processes the whole image,
while LPVC only the region of interest. PVC se-
gments all spots at once at each level by applying
a region labeling algorithm [4, 12], while LPVC em-
ploys a seeded-region growing algorithm separately
for each spot. Consequently, the merging of spots is
treated differently in both approaches. For more de-
tails about PVC see [4]. Before going to the results,
we should mention also the fact that in [4] a compar-
ison of PVC with edge detection methodologies for
spot detection is done. In discussion in [4] the au-
thors state that PVC has potential advantages over
known methods. The method is included in Phoretix
2D software from NonLinear Dynamics Ltd.

For an objective comparison of algorithms, the
processing in both cases starts with the same pre-
processing step described in the beginning of Section
2.1.

2.3 Time complexity

The time complexity of PVC is O(n?), where n gives
the width and height of the processed image. Simi-
larly, the time complexity of LPVC is O(m?), where
m gives the width and height of the region of inter-
est. Thus, in both cases we deal with squared time
complexity, but since m? is much smaller in compar-
ison with n? (m? < n?), the actual time needed to
process the input image is much shorter for LPVC.

3 Results and discussion
3.1 Synthetic gels

Figure 3 presents the segmentation results of both al-
gorithms applied to synthetic gels. The first column
gives the originals with correct, ground-truth seg-
mentation superimposed. The second column gives
the segmentation results of the proposed LPVC tech-
nique, while the third one gives results of the PVC
technique. In all segmentation results, spot areas are
extracted from the original image array and trans-
fered to a zero-ground array. The edge of segmented
spots on synthetic gels is emphasized for better visu-
alization. Remember that the gels contain the noise
with the standard deviation of 1/3 of the standard
deviation of the biggest spot in the gels. The step
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Figure 3. Computer-generated synthetic gels (first col-
umn) analyzed by proposed LPVC (second column) and
PVC (third column). Gels are designed to demonstrate
precision (first row), intensity range (second row), spot
standard deviation range (third row), range in general
(last two tests together) (fourth row), and effect of prox-
imity of spots. See Table 3.1 for quantitative evaluation
and text for details.

through the intensity range S was set in both algo-
rithms to 1. The second parameter in LPVC, the
initial number of nearest neighbors N used in the
segmentation of each spot was also set to 1. In the
first row we test precision, in the second intensity
range, in the third spot standard deviation range, in
the fourth we combine the last two, and in the fifth
we test the effect of proximity of spots. (See Section
2.2 for details.)

Test LPVC PVC

t Avgy t Avgy

[s] | [%] [s] [%]
Precision 9.5 | 0.6+£0.4 | 31.7 1+1.5
Intensity range | 3.6 | 1.5+1 | 13.7 | 4.846.2
St. dev. range 7 | 2.6£2.8 | 13.7 3£2.9
Both ranges 2.7 9£119 | 9.2 | 9.54+11.5
Proximity 3.1 / 324 /

Table 1. Evaluation of the proposed LPVC method on
computer-generated synthetic gels and comparison of re-
sults with the PVC method (see Figure 3): ¢ gives the
time in seconds needed to segment the gel, and Avgy
gives the normalized average error of segmented spot vol-
umes in percentage of correct, ground-truth spot volumes
and its standard deviation. Smaller the values, better the
results. See text for details.

By visually comparing the results, we can see that
the segmentation of real spots is very similar, but
PVC also finds non-real spots at the lighter inten-
sity range. On the other hand, Table 3.1 shows a
moderate improvement of the LPVC average error
of spot volume results (Avgy) to PVC results and
much faster segmentation of LPVC algorithm (t).
(See Section 2.2 for details about the calculation of
the average error.) In the last test (proximity), the
average error is not calculated as it does not make
sense: namely, both methods stop growing spot if
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more spots get merged. Thus, these spots do not
reach their true boundaries. (A possible solution is
pointed out in Section 4, where we discuss future
work.)

As we will see in the continuation, the speed up
achieved by LPVC is even more obvious when pro-
cessing real gels. Note also that the tests were per-
formed on a single processor personal computer (Intel
Pentium IV 3.0GHz), in MS Visual Studio C++ De-
bug mode.

The tests were also performed on gels without
noise to see if the implementations of both algorithms
are correct. In this case, both algorithms achieved
optimal results (Avgy, = 0 + 0%), while the ratio
between times ¢ remained similar.

3.2 Real gels

Now, let us illustrate the performance of both al-
gorithms on real gels. (Remember that the ground
truth information for real gels is not available.) We
performed the experiments on real gels with human
samples from SWISS-2DPAGE database [15].

When we processed the images (S = 1, N = 8),
we noticed that the results of the segmentations were
very similar (figures not shown). But when we com-
pare the times needed for the segmentation, we see
that LPVC is much faster: While PVC for the seg-
mentation of LIVER gel needs 1073.3 seconds (~17.9
minutes), LPVC needs only 6.6 seconds. For the seg-
mentation of U937 gel PVC needs 325 seconds (/5.4
minutes) and LPVC needs only 6.6 seconds.

It is most probable that PVC in general is more
prone to over-segmentation than LPVC. Then, there
are spots that are detected by PVC and not by
LPVC. The reason for this can be found in the dif-
ferent approaches to segmentation. Namely, LPVC
stops growing the spot when a decision of non-spot
is reached, while PVC tries again on the next inten-
sity level. Or, the segmented spot by PVC actually
merges two very nearby spots together in one, while
LPVC rejects both because they are too small to be
treated as real spots. (Possible solutions are pointed
out in Section 4.)

3.3 Influence of parameters

In this section we demonstrate the influence of pa-
rameters on the segmentation process. For the step
S through the intensity range it is obvious that with
bigger S we make a compromise between the accu-
racy and speed. With bigger S we achieve faster exe-
cution, but lower accuracy. To illustrate the achieved
speed up for S = 10 on LIVER gel, we give the
times needed to process the gel with both algorithms:



LPVC - 3 seconds, PVC - 107.4 seconds (/1.8 min-
utes). Thus, LPVC with S = 1 is still much faster
than PVC with S = 10 and, of course, achieves better
accuracy.

A comparison of results obtained with LPVC for
different values of the initial number of nearest neigh-
bors N used in the segmentation of each spot (S = 1)
reveals the following (remember that PVC does not
have this parameter): N =1 — 3.1 seconds, N =5
— 4.7 seconds and N = 8 — 6.6 seconds (figures not
shown).

The main conclusion that can be drawn from
these results is that with bigger IV we achieve better
segmentation, while the time needed for the segmen-
tation does not increase substantially. We can also
observe that by using V = 5 we achieve a good com-
promise between time and accuracy. But since the
execution is fast even with N = 8, we are not forced
to make this compromise.

4 Concluding remarks

This paper presents a novel algorithm called Local
Pixel Value Collection, a sequence of steps which
leads to the spot segmentation of 2DGE images.
LPVC similarly to PVC, to which we contrasted
LPVC results, builds on morphology idea, but in con-
trast to PVC extensively uses local spot information.
Thus, LPVC achieves similar segmentation results as
PVC much faster. In its current format, once seg-
mented, the resultant image is suitable for registra-
tion and comparison processes typical of 2DGE im-
age analysis workflows. Whilst this approach will not
resolve all of the issues surrounding the major bottle-
neck in 2DGE gel-based proteomic analysis, it gives
us a good starting point for future work and the sub-
sequent processing. The fact is that its results help
the user to focus on important parts of the gel.

In the previous section we pointed out three prob-
lems, which will be solved first in our future work:
Because of possible proximity of spots to each other,
we have to grow such spots to their real borders (see
the last row in Figure 3). This could for instance be
addressed by parametric spot modeling with Gaus-
sian, diffusion or mixture spot model [16, 17]. Then
we pointed out a few properties of both compared
segmentation techniques (see the last paragraph in
Section 3.2). LPVC could segment the spots also
by stopping the growing after two (and not just one)
successive decisions of non-spot are reached. Further-
more, LPVC could accept the two mentioned very
nearby spots simply if we lower the minimal required
spot size. This approach will be included as one of
the options in our 2D gel analysis software that we
are developing.
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