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Abstract

In this paper, a relation between graph distance matrices and Euclidean distance matri-
ces (EDM) is considered. Graphs, for which the distance matrix is not an EDM (NEDM-
graphs), are studied. All simple connected non-isomorphic graphs on n ≤ 8 nodes are
analysed and a characterization of the smallest NEDM-graphs, i.e., the minimal forbidden
subgraphs, is given. It is proven that bipartite graphs and some subdivisions of the smallest
NEDM-graphs are NEDM-graphs, too.
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1 Introduction
A matrix D ∈ Rn×n is Euclidean distance matrix (EDM), if there exist x1,x2, . . . ,xn ∈
Rr, such that dij = ‖xi − xj‖22, i, j = 1, 2, . . . , n. The minimal possible r is called the
embedding dimension (see [2], e.g.).
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Euclidean distance matrices were introduced by Menger in 1928 and have received a
considerable attention. They were studied by Schoenberg [13], Young and Householder
[14], Gower [4], and many other authors. In recent years many new results were obtained
(see [5, 7, 8, 11] and the references therein).

They are used in various applications in linear algebra, graph theory, geodesy, bioinfor-
matics, chemistry, e.g., where frequently a question arises, what can be said about a set of
points, if only interpoint distance information is known. Some examples can be found in
[2].

EDMs have many interesting properties. They are symmetric, hollow (i.e., with only
zeros on the diagonal) and nonnegative. The sum of their eigenvalues is zero and they have
exactly one positive eigenvalue (for a nonzero matrix). Schoenberg ([13]), Hayden, Reams
and Wells ([5]) gave the following characterization of EDMs.

Theorem 1.1. Let D ∈ Rn×n be a nonzero symmetric hollow matrix and let e ∈ Rn be
the vector of ones. The following propositions are equivalent:

(a) The matrix D is EDM.

(b) For all x ∈ Rn such that xTe = 0, xTDx ≤ 0.

(c) The matrix D has exactly one positive eigenvalue and there exists w ∈ Rn such that

Dw = e (1.1)

and wTe ≥ 0.

Throughout the paper we will use the notation e for the vector of ones of appropriate
size. Vectors ei will denote the standard basis.

Let G be a graph with a vertex set V(G) and an edge set E(G). Let the distance d(u, v)
between vertices u, v ∈ V(G) be defined as their graph distance, i.e., the length of the
shortest path between them. Let G := [d(u, v)]u,v∈V(G) be the distance matrix of G.

If the graph distance matrix of a graph is EDM, the graph is called an EDM-graph.
Otherwise the graph is a NEDM-graph.

Graph distance matrices of EDM-graphs were studied in several papers. Path and cycles
were analysed in [9]. Star graphs and their generalizations were considered in [6, 10].
Some results on Cartesian products of EDM-graphs are also known (see [11]). However,
the characterization of EDM-graphs in general is still an open problem.

In this paper, all simple connected non-isomorphic graphs on n ≤ 8 nodes are analysed
and a characterization of the smallest NEDM-graphs, i.e., the minimal forbidden subgraphs,
is given.

In algebraic graph theory, a lot is known on the adjacency matrix and the Laplacian
matrix of a graph. Many results on their eigenvalues exist, but not much is known on the
graph distance matrix. Hopefully, this paper will provide a deeper insight into the relation
between general graphs or networks and EDM theory.

There are some interesting possibilities of application. Molecular conformation in
bioinformatics, dimensionality reduction in statistics, 3D reconstruction in computer vi-
sion, just to name a few.

The structure of the paper is as follows. In Section 2, all NEDM-graphs on n ≤ 8 nodes
are considered. Analysis of their properties enables us to find some larger NEDM-graphs,
which are presented in sections 3 and 4. A proof that bipartite graphs are NEDM-graphs
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is given. We present two families of subdivision graphs of the smallest NEDM-graphs that
are NEDM-graphs, too.

There exist graphs, for which the system (1.1) has no solution. Such graphs are studied
in Section 5.

The paper is concluded with an example, where we show that not all subdivisions of
graphs result in NEDM-graphs.

2 The smallest NEDM-graphs
In this section we consider simple connected non-isomorphic graphs on n ≤ 5 nodes and
find the smallest NEDM-graphs.

There is one simple connected graph on 2 nodes, the path graph P2, and there exist
only two simple connected graphs on 3 nodes, the path graph P3 and the cycle graph C3.
In [9] it was proven that path graphs and cycle graphs are EDM-graphs.

For n = 4, there are 6 simple connected graphs (see Fig. 1). First four of them are the
star graph S4, the path graph P4, the cycle graph C4 and the complete graph K4, respec-
tively, which are EDM-graphs (see [9, 10]). Therefore we only need to consider the last
two graphs, G(5)4 and G(6)4 .
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Figure 1: Simple connected graphs on 4 nodes.

Let us denote vertices of graphs G(5)4 and G(6)4 counterclockwise by 1, 2, 3 and 4 starting
with the upper right vertex. The characteristic polynomials of the corresponding graph
distance matrices

G
(5)
4 =


0 1 2 2
1 0 1 1
2 1 0 1
2 1 1 0

 and G
(6)
4 =


0 1 2 1
1 0 1 1
2 1 0 1
1 1 1 0


are

p
G

(5)
4
(λ) = (λ+ 1)(λ3 − λ2 − 11λ− 7),

p
G

(6)
4
(λ) = (λ+ 1)(λ+ 2)(λ2 − 3λ− 2).

Thus matrices G(5)
4 and G(6)

4 have eigenvalues

σ
G

(5)
4

.
= {4.1,−0.7,−1,−2.4} and σ

G
(6)
4

=

{
3 +
√
17

2
,
3−
√
17

2
,−1,−2

}
.

Eigenvalues for G(5)
4 were calculated numerically. Exact values can be calculated by using

Cardano’s formula.
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One can easily verify that vectors

w
G

(5)
4

= [3/7, −1/7, 2/7, 2/7]T and w
G

(6)
4

= [1/2, 0, 1/2, 0]T

satisfy the equation G(i)
4 w

G
(i)
4

= e, i = 5, 6. Since wT

G
(i)
4

e > 0, i = 5, 6, by Theorem 1.1

graphs G(5)4 and G(6)4 are EDM-graphs. Thus there are no NEDM-graphs on 4 nodes.
In the case n = 5, there are 21 simple connected graphs (see Fig. 2).
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Figure 2: Simple connected graphs on 5 nodes.

Graphs G(i)5 , i ≤ 5, are the path graph P5, the cycle graph C5, the complete graph K5,
the star graph S5 and the tree T5, respectively. Since they are EDM-graphs (see [1]), we
only need to analyse graphs G(i)5 , i = 6, 7, . . . , 21.

A straightforward calculation shows that the graph distance matrix G(i)
5 of the graph

G(i)5 , i = 6, 7, . . . , 19, has exactly one positive eigenvalue and that there exists w
G

(i)
5
∈ R5,

such that G(i)
5 w

G
(i)
5

= e and wT

G
(i)
5

e ≥ 0. By Theorem 1.1, graphs G(6)5 ,G(7)5 , . . . ,G(19)5

are EDM-graphs.
We are left with graphs G(20)5 and G(21)5 (see Fig. 3). The characteristic polynomials of

the corresponding graph distance matrices

G
(20)
5 =


0 2 2 1 1
2 0 2 1 1
2 2 0 1 1
1 1 1 0 2
1 1 1 2 0

 and G
(21)
5 =


0 2 2 1 1
2 0 1 1 1
2 1 0 1 1
1 1 1 0 2
1 1 1 2 0


are

p
G

(20)
5

(λ) = −(λ+ 2)3(λ2 − 6λ+ 2),

p
G

(21)
5

(λ) = −(λ+ 1)(λ+ 2)(λ3 − 3λ2 − 12λ+ 2).
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Figure 3: The graphs G(20)5 and G(21)5 .

Thus matrices G(20)
5 and G(21)

5 have spectra

σ
G

(20)
5

= {3 +
√
7, 3−

√
7,−2,−2,−2} and σ

G
(21)
5

.
= {5.2, 0.2,−1,−2,−2.4} .

Exact eigenvalues for G(21)
5 can be calculated by using Cardano’s formula. Here they were

calculated numerically. Since matrices G(20)
5 and G

(21)
5 have two positive eigenvalues,

graphs G(20)5 and G(21)5 are NEDM-graphs. These are the smallest NEDM-graphs.
An induced subgraph H of a graph G is a subset of the vertices V(G) together with all

edges whose endpoints are both in this subset.

Proposition 2.1. Let G be a simple connected graph and letH be its induced subgraph. If
H is a NEDM-graph, the graph G is a NEDM-graph as well.

Proof. Let n and m < n, denote the number of nodes in graphs G andH, respectively. Let
us order vertices of the graph G in such a way that the first m vertices are the vertices of
the graphH. Thus the distance matrix G of the graph G is of the form

G =

[
H ∗
∗ ∗

]
,

where H is the distance matrix of the graph H. Every principal submatrix of an EDM
has to be an EDM as well. Thus since H is not an EDM, neither is G. Therefore G is a
NEDM-graph.

All NEDM-graphs form a set of forbidden subgraphs of the class of EDM-graphs.
Graphs G(20)5 and G(21)5 are the minimal forbidden subgraphs. All minimal forbidden sub-
graphs on 6 and 7 nodes can be seen in Fig. 4 and Fig. 5.
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Figure 4: NEDM-graphs for n = 6.

Let m(n) be the number of NEDM-graphs on n nodes and let mnew(n) be the number
of NEDM-graphs on n nodes for which none of the induced subgraphs is NEDM-graph.
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Figure 5: NEDM-graphs for n = 7.

We denote the number of non-isomorphic simple connected graphs on n nodes by g(n).
Table 1 shows how numbers m(n) and mnew(n) grow with n.

The calculations were done in the following way. By using program geng in Nauty
([12]) we generated all simple connected non-isomorphic graphs on n ≤ 8 nodes. Then we
applied Theorem 1.1 to determine whether a graph is an EDM-graph. Computations were
done in Mathematica.

n g(n) m(n) mnew(n)
5 21 2 2
6 112 27 3
7 853 341 13
8 11117 7946 48

Table 1: Number of NEDM-graphs compared to the number of all graphs on n nodes.

3 Bipartite graphs

A quick observation shows that the graph G(20)5 is bipartite (see Fig. 3).
Let GUk,Zn−k

be a simple connected bipartite graph on n ≥ 5 nodes, whose vertices
are divided into two disjoint sets Uk = {u1, u2, . . . , uk}, Zn−k = {uk+1, uk+2, . . . , un},
k = 2, 3, . . . , n− 2, such that every edge connects a vertex in Uk to a vertex in Zn−k (see
Fig. 6). The sets Uk and Zn−k are called the partition sets.

A graph join G1 + G2 of graphs G1 and G2 with disjoint vertex sets V(G1), V(G2) and
edge sets E(G1), E(G2) is the graph with the vertex set V(G1) ∪ V(G2) and the edge set
E(G1) ∪ E(G2) ∪ {(u, v); u ∈ V(G1), v ∈ V(G2)}. It is the graph union G1 ∪ G2 with all
the edges that connect the vertices of the first graph with the vertices of the second graph.

The graph GUk,Zn−k
can also be written as the graph join of two empty graphs on k and

n− k vertices, i.e., GUk,Zn−k
= Ok +On−k. The corresponding graph distance matrix is

Gk,n−k =

[
2(Ek,k − Ik) Ek,n−k
En−k,k 2(En−k,n−k − In−k)

]
∈ Rn×n,
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where Ep,q ∈ Rp×q and Ip ∈ Rp×p are the matrix of ones and the identity matrix, respec-
tively.

G

u 3

u k

u k+ 1

u k+ 2

u n

u 1

u 2

Figure 6: The graph GUk,Zn−k
.

Theorem 3.1. A simple connected bipartite graph GUk,Zn−k
on n ≥ 5 nodes and with

partition sets Uk and Zn−k is a NEDM-graph.

Proof. Since graphs GUk,Zn−k
and GUn−k,Zk

are isomorphic, it is enough to see that the
theorem holds true for k = 2, 3, . . . , bn/2c.

Let us analyse the eigenvalues of the graph distance matrix of GUk,Zn−k
. A simple com-

putation shows that u1,i =
[
eT1 − eTi ,0

T
]T

solves the equation Gk,n−ku1,i = −2u1,i for

all i = 2, 3, . . . , k, and that u2,j =
[
0T , eT1 − eTj

]T
, solves the equation Gk,n−ku2,j =

−2u2,j for all j = 2, 3, . . . , n − k. Therefore Gk,n−k has an eigenvalue −2 with multi-
plicity n− 2.

Now let us take u =
[
α eT , eT

]T
. The relation Gk,n−ku = λu yields the system of

equations

2(k − 1)α+ n− k = λα,

kα+ 2(n− k − 1) = λ,

which has solutions

α1,2 =
2k − n±

√
(n− 2k)2 + k(n− k)

k
,

λ1,2 = n− 2±
√
(n− 2k)2 + k(n− k).

Relations n ≥ 5 and 2 ≤ k ≤ bn/2c imply that α1,2 and λ1,2 are well-defined. Since
λ1 > 0 and

λ1 · λ2 = 3(k − 2)(n− 2− k) + 2(n− 4) > 0,

we conclude that λ2 > 0. Thus, by Theorem 1.1, the graph GUk,Zn−k
is a NEDM-graph.

Remark 3.2. For k = 1, the graph GUk,Zn−k
is the star graph Sn, which is an EDM-graph.
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4 Graph subdivision
Let G be a graph. A subdivision of an edge in G is a substitution of the edge by a path. For
example, an edge of the cycle Cn can be subdivided into three edges, resulting in the cycle
graph Cn+2.

Recall the NEDM-graph G(20)5 . It contains a 4-cycle c connecting nodes 2, 3, 4 and
5 (see Fig. 7). We can construct larger NEDM-graphs by performing a subdivision of the
cycle c. Let G(20)5,n be a graph on n nodes, obtained by subdividing the cycle c in the graph

G(20)5 as seen in Fig. 7. Such graphs are G(20)5,6 = G(1)6 and G(20)5,7 = G(4)7 (see Fig. 4 and
Fig. 5).
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Figure 7: Construction of graphs G(20)5,n .

Let ei denote the standard basis and let Cn be the graph distance matrix of the cycle
graph Cn (see [9]). The matrix Cn is a circulant matrix (see [3]), generated by its first row:

0, 1, . . . ,
n− 1

2
,
n− 1

2
,
n− 3

2
, . . . , 1, n odd,

0, 1, . . . ,
n− 2

2
,
n

2
,
n− 2

2
, . . . , 1, n even.

We will use the notation C(i,j)
n for the (i, j)-th element of the matrix Cn. The structure of

the matrix Cn implies

C(1,2)
n = C(2,3)

n = 1, C(1,3)
n = 2, n ≥ 4, (4.1)

and

C(`,b(n+4)/2c)
n =


b(n− 1)/2c, ` = 1,

bn/2c, ` = 2,

b(n− 2)/2c, ` = 3,

n ≥ 3. (4.2)

Theorem 4.1. Graphs G(20)5,n , n ≥ 5, are NEDM-graphs.

Proof. The graph distance matrix of the graph G(20)5,n , n ≥ 5, is

G
(20)
5,n =

[
0 eT2 (Cn−1 + 2I)

(Cn−1 + 2I)e2 Cn−1

]
.

By Theorem 1.1 it is enough to show that there exists x ∈ Rn, such that xTe = 0 and
xTG

(20)
5,n x > 0.
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Let us take x =
[
−yTe,yT

]T
, with

y =


n−1
2

(
−e1 + e2 − e3

)
+ e(n+3)/2, n odd,

n−2
2

(
−e1 + n−1

n (e2 − e3)
)
+ n−1

n e(n+2)/2, n even.

We will show that

xTG
(20)
5,n x = yTCn−1y − 2(yTe)

(
eT2 Cn−1y + 2(yTe2)

)
> 0. (4.3)

From

yTe =

{ 3−n
2 , n odd,

−n2+4n−2
2n , n even,

and yTe2 =

{ n−1
2 , n odd,

(n−2)(n−1)
2n , n even,

it follows that

xTG
(20)
5,n x = yTCn−1y +

 (n− 3)
(
eT2 Cn−1y + n− 1

)
, n odd,

n2−4n+2
n

(
eT2 Cn−1y + (n−2)(n−1)

n

)
, n even.

(4.4)

Firstly, let n be odd. Terms in the relation (4.4) simplify to

yTCn−1y = − (n− 1)2

2

(
C

(1,2)
n−1 − C

(1,3)
n−1 + C

(2,3)
n−1

)
−

− (n− 1)
(
C

(1,(n+3)/2)
n−1 − C(2,(n+3)/2)

n−1 + C
(3,(n+3)/2)
n−1

)
,

eT2 Cn−1y = C
(2,(n+3)/2)
n−1 − n− 1

2

(
C

(1,2)
n−1 + C

(2,3)
n−1

)
.

By (4.1) and (4.2),

yTCn−1y = − (n− 1)(n− 5)

2
, eT2 Cn−1y = −n− 1

2
,

and
xTG

(20)
5,n x = n− 1,

which satisfies the requirement (4.3) for all n ≥ 5.
When n is even, the terms in the relation (4.4) simplify to

yTCn−1y = − (n− 2)(n− 1)

2n2

(
(n− 2)

(
nC

(1,2)
n−1 − nC

(1,3)
n−1 + (n− 1)C

(2,3)
n−1

)
+

+ 2nC
(1,(n+2)/2)
n−1 − 2(n− 1)

(
C

(2,(n+2)/2)
n−1 − C(3,(n+2)/2)

n−1
))
,

eT2 Cn−1y =
n− 1

n
C

(2,(n+2)/2)
n−1 − n− 2

2

(
C

(1,2)
n−1 +

n− 1

n
C

(2,3)
n−1

)
.

By (4.1) and (4.2),

yTCn−1y = − (n− 1)2(n− 2)(n− 4)

2n2
, eT2 Cn−1y = −n− 2

2
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and
xTG

(20)
5,n x =

n− 2

2n
,

which satisfies the requirement (4.3) for all n ≥ 5.

Similarly, we can subdivide cycles of the graph G(21)5 and produce NEDM-graphs (see
Fig. 8). The graph G(21)5 contains a 3-cycle c connecting nodes 3, 4 and 5. Let G(21)5,n be a

graph on n nodes, obtained by subdividing the cycle c in the graph G(21)5 as seen in Fig. 8.
Such graphs are G(21)5,5 = G(21)5 , G(21)5,6 = G(3)6 and G(21)5,7 = G(6)7 (see Fig. 4 and Fig. 5).
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Figure 8: Graphs G(21)5,n .

Theorem 4.2. Graphs G(21)5,n , n ≥ 5, are NEDM-graphs.

Proof. The graph distance matrix of the graph G(21)5,n , n ≥ 5, is

G
(21)
5,n =

0 1 uT

1 0 vT

u v Cn−2

 ,
where

u = (Cn−2 + I)e2 + e− y − 1 + (−1)n

2
e(n+2)/2, v = (Cn−2 + I)e2 + y,

and y =
∑b(n+1)/2c

k=2 ek. Analogous to the proof of Theorem 4.1, we can show that for
x =

[
α,−α,zT

]T
, where

α =

{
n
2 , n odd,
n−3
2 , n even,

and z =

{
n−1
2 e1 − n−3

2 e2 − e(n+1)/2, n odd,
n−2
2 e1 − n−4

2 e2 − e(n+2)/2, n even,

the expression xTG
(21)
5,n x = zTCn−2z + 2α

(
uTz − vTz − α

)
is positive.

Relations

C
(1,2)
n−2 = 1, C

(1,(n+1)/2)
n−2 = C

(2,(n+1)/2)
n−2 =

n− 3

2
,

C
(1,(n+2)/2)
n−2 =

n− 4

2
, C

(2,(n+2)/2)
n−2 =

n− 2

2
,
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imply

uTz =

{
2, n odd,
1, n even,

vTz =

{
3− n, n odd,
4− n, n even,

and

zTCn−2z =

{
− (n−3)(n+1)

2 , n odd,

− (n−2)(n−4)
2 , n even,

which yields

xTG
(21)
5,n x =

{
3
2 , n odd,
1
2 , n even.

Thus by Theorem 1.1, the matrix G(21)
5,n is a NEDM.

5 Systems with no solution
When verifying whether a graph G with the corresponding graph distance matrix G is
an EDM-graph, by Theorem 1.1 one can check if there exists a solution of the equation
Gw = e, such that wTe ≥ 0. For n ≥ 7 there exist graphs, for which the equation
Gw = e has no solution.

Let Gk,n−k be the graph join of a complete graphKk and an empty graphOn−k, n ≥ 7,
k = 2, 3, . . . , n− 3, i.e.,

Gk,n−k = Kk +On−k.

The graphKk contains vertices 1, 2, . . . , k and the graphOn−k contains vertices k+1, k+
2, . . . , n. Thus the corresponding graph distance matrix is

Gk,n−k =

[
Ek,k − Ik Ek,n−k
En−k,k 2(En−k,n−k − In−k)

]
.

For n = 7 and k = 3 the equation G3,4w = e has no solution since the ranks of
the matrix G3,4 and its augmented matrix [G3,4|e] are different, rank(G3,4) = 6 and
rank([G3,4|e]) = 7. The same holds true if n = 7 and k = 4. Thus by Theorem 1.1 matri-
ces G3,4 and G4,3 are not EDMs. On the other hand, for n = 8 the equation Gk,8−kw = e
has a solution for all k ∈ {3, 4, 5}. In general, the matrix Gk,n−k is a NEDM.

Theorem 5.1. The graph Kk +On−k, n ≥ 7, k = 2, 3, . . . , n− 3, is a NEDM-graph.

Proof. Let Gk,n−k be the graph distance matrix of the graph Kk + On−k, n ≥ 7, k =
2, 3, . . . , n− 3. For k = 2 we take

w =
1

2

[
4− n, 4− n, 1, 1, . . . , 1

]T
.

We can verify that G2,n−2w = e and wTe = (6 − n)/2 < 0. Thus by Theorem 1.1 the
matrix G2,n−2 is a NEDM.

Now let k = 3, 4, . . . , n − 3. For n = 7 the proof has already been done above. For
n ≥ 8 let u =

[
α eT , eT

]T
, where vectors e are of sizes k and n − k, respectively. The

relation Gk,n−ku = λu yields the system of equations

α(k − 1) + n− k = λα,

αk + 2(n− k − 1) = λ,
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with solutions

α1,2 =
1

2k

(
3k − 2n+ 1±

√
4(n− k)(n− k − 1) + (k + 1)2

)
,

λ1,2 =
1

2

(
2n− k − 3±

√
4(n− k)(n− k − 1) + (k + 1)2

)
.

Relations n ≥ 8 and 3 ≤ k ≤ n − 3 imply that α1,2 and λ1,2 are well-defined. Since
λ1 > 0 and

λ1 · λ2 = (n− 3− k)(k − 3) + n− 7 > 0,

we conclude that λ2 > 0. Thus, by Theorem 1.1, graphKk+On−k is a NEDM-graph.

Remark 5.2. For k = 1 and k = n− 1, the graphs Kk +On−k are the star graph Sn and
the complete graph Kn, respectively, which are EDM-graphs.

Remark 5.3. For k = n− 2, the graph Kn−2 +O2 is an EDM-graph. The graph distance
matrix Gn−2,2 has eigenpairs(

−2,
[
0T , eT1 − eT2

]T)
,
(
−1,

[
eT1 − eTi ,0

T
]T)

, i = 2, 3, . . . , n− 2,

and (
λ1,2,

[
α1,2 e

T , eT
]T)

with

α1,2 =
n− 5±

√
n2 − 2n+ 9

2(n− 2)
and λ1,2 =

n− 1±
√
n2 − 2n+ 9

2
.

The eigenvalue λ1 is obviously positive. From λ1 · λ2 = −2 it follows that λ2 < 0. One
can easily verify that w = (1/2)

[
0T , eT

]T
solves the equation Gn−2,2w = e. Since

wTe = 1, Theorem 1.1 implies that Gn−2,2 is EDM.

6 Conclusion
In Section 4 we studied subdivisions of graphs. Not all graph subdivisions result in NEDM-
graphs. Consider subdividing graph G(20)5 as in Fig. 9 and denoting it by H. The corre-
sponding graph distance matrix

H =



0 1 2 2 3 2 1
1 0 1 2 2 1 2
2 1 0 1 2 2 2
2 2 1 0 1 2 1
3 2 2 1 0 1 2
2 1 2 2 1 0 3
1 2 2 1 2 3 0


has eigenvalues σH

.
= {10.4, 0,−0.2,−0.6,−2.2,−3.4,−4}, which were calculated nu-

merically. Exact eigenvalues could be obtained using Cardano’s formula. One can eas-
ily verify that vector wH = [1/2, −1/2, 1/2, −1/2, 1/2, 0, 0]T solves the equation
HwH = e. Since wT

He = 1/2, by Theorem 1.1 the graphH is an EDM-graph.
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Figure 9: A subdivision of the graph G(20)5 .
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