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Abstract

The first part of this paper is a survey about strongly regular graphs and digraphs admit-
ting a semiregular cyclic group of automorphisms. In the second part, some new types of
such digraphs, called uniform and almost uniform, are studied. By using partial sum fam-
ilies, the form of the parameters is determined and some directed strongly regular graphs
derived from these partial sum families with previously unknown parameters are obtained.
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1 Introduction
Strongly regular graphs, which we define below, were introduced by Bose [4] in 1963.
They constitute a very important class of graphs; in fact, they are one of the most basic
association schemes, more specifically, they are the ones with two classes.

Definition 1.1. A graph X without loops of valency k and order v is called a strongly
regular graph with parameters v, k, λ, µ (for short, �v, k, λ, µ�-SRG) if any two adjacent
vertices have exactly λ common neighbours and any two distinct non-adjacent vertices
have exactly µ common neighbours.

A SRG graph X is said to be trivial if X or its complement is a disjoint union of
complete graphs.
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It is well known that if a non-trivial SRG is not a conference graph, that is, if the
parameters are not of the form k � �v � 1�~2, µ � �v � 1�~4, λ � �v � 5�~4, then the
eigenvalues of an adjacency matrix are integer numbers, and consequently ∆ �

»
β2 � 4γ,

where β � λ � µ and γ � k � µ, is also an integer.
The problem of studying what SRGs have nice cyclic automorphism groups has re-

ceived a considerable attention over the past decades.
A group of automorphisms of a graph is said to be regular if it acts transitively on the

set of vertices and all the stabilizers are trivial. A graph is called circulant if it admits a
cyclic regular group of automorphisms.

By a classical result of W.G. Bridges and R.A. Mena [5] it is known that the Paley
graphs are the only non-trivial circulant strongly regular graphs.

Given integers m C 1 and n C 2, an automorphism group of a graph is called �m,n�-
semiregular if it has m orbits of length n and no other orbit, and the action is regular on
each orbit. An m-Cayley graph X is a graph admitting an �m,n�-semiregular group H
of automorphisms. When H is abelian, we say that X is m-Abelian. If H is generated
by an automorphism ρ (that is to say, when H is a cyclic group) and m � 1 (respectively,
m � 2) we say thatX is n-circulant (respectively, n-bicirculant). Sometimes, when a graph
is m-Cayley over a cyclic group, we will just say that the graph is ‘m-Cayley circulant’,
although that this terminology does not mean that the graph admits a regular group of
automorphisms and should not be confused with the definition of circulant graph. Every
m-Cayley graphX can be represented, following the terminology established by A. Malnič
et al. in [18], by an m �m array of subsets of H in the following way. Let U0, . . . , Um�1

be the m orbits of H , and for each i let ui > Ui. For each i and j, let Si,j be defined
by Si,j � �ρ > H S ui � ρ�uj��. The family �Si,j� is called the symbol of G relative to
�H;u0, . . . , um�1�.

The notion of strongly regular graph was generalized for directed graphs by Duval in
[6]. A directed graph X without loops, of order v in which every vertex has both in-degree
and out-degree k is called a directed strongly regular graph with parameters �v, k, µ, λ, t�
(for short, �v, k, µ, λ, t�-DSRG or simply DSRG if we do not specify the parameters) when-
ever for any vertex u of X there are t undirected edges having u as an endvertex and for
every two different vertices u and w of X the number of paths p�u,w� of length 2 starting
at u and ending at w depends only on whether uw is an arc of X or not. In particular,

p�u,w� �
¢̈̈̈
¦̈̈
¤̈

t if u � w
λ if u x w and uw > A�X�
µ if u x w and uw ~> A�X�

(where A�X� denotes the arc set of X). A directed strongly regular graph will also be
refereed to as a strongly regular digraph.

DSRGs have received a considerable attention in the literature (see, for instance, [7],
[8], [9], [11], [12], [13], [14]).

The following relation between the parameters of a DSRG is obvious:

k�k � β� � µv � γ, (1.1)

where β � λ � µ and γ � t � µ.
It is well known that β2

� 4γ is a square, unless

k � t � �v � 1�~2, µ � �v � 1�~4, λ � �v � 5�~4, (1.2)
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in which case the graph is undirected and is a conference graph, or

k � �v � 1�~2, µ � �v � 1�~4, λ � �v � 3�~4, t � 0. (1.3)

We define
∆ �

»
β2 � 4γ,

which is an integer if the parameters of the digraph are not as indicated above.
A DSRG X is called trivial if k � t and X is trivial as an undirected SRG.
Next, we will review the main results in this paper. In the first part of this paper we will

make a review of the study of strongly regular graphs and digraphs which are m-Cayley
over a cyclic group (m-Cayley circulant SRGs and DSRGs). In Section 2 we will focus on
the undirected graphs, and in Section 3 on the more general case of directed graphs.

In the second part we will present some new results on two structures that produce
circulant m-Cayley DSRGs. We study in Sections 4,5 and 6 the first structure, uniform
partial sum families, which was proposed in the last section of [2], and we obtain there the
general form of the parameters for the circulant case and give an sporadic uniform partial
sum family which originates a DSRG with parameters previously undecided. In Section 7,
we study almost uniform partial sum families, which are a generalization of uniform partial
sum families, and obtain again the form of the parameters for the circulant case. Finally, we
use almost uniform partial sum families to obtain three DSRG with parameters previously
undecided.

2 Semiregular SRGs over cyclic groups
In this section we will focuss on undirected graphs. In particular, we will review some
results on strongly regular graphs admitting cyclic semiregular groups of automorphisms.

Probably, the systematic study of circulant SRGs was began by D. Marušič in his sem-
inal paper [21]. There, he obtained the form of the parameters of such graphs for the
bicirculant case.

Proposition 2.1. If a non-trivial �2n, k, λ, µ� bicirculant strongly regular graph exists with
prime n then, up to complementation, the parameters of the graph are

v � 2n � 4s2 � 4s � 2, k � 2s2 � s, λ � s2 � 1, µ � s2.

He determined also some properties of the elements of the symbol. He denoted S0,0,
S1,1 and S0,1 by R,S and T , respectively, and he proved that the non-zero elements of the
cyclic group Cn are the disjoint union of R and S, and that SRS � SSS � s2 � s and ST S � s2.
He found also examples of such graphs for s � 1 and s � 2.

He considered also non-trivial tricirculant SRGs over a cyclic group Cn of prime order
and proved that, for such a graph or its complement, the elements of the symbol S0,0, S1,1

and S2,2 form a partition of the set of non-zero elements of Cn.
His results were generalized by De Resmini and Jungnickel in [22]. They proved that

the form of the parameters of a non-trivial bicirculant SRG over a cyclic group of order
n was the one indicated in Proposition 2.1 if n is odd or not divisible by ∆. They found
also one such graph for s � 4. Unfortunately, the technique that they used to construct the
graph, which is based on the existence of certain difference families over cyclic groups,
was not fruitful to get examples with s C 5.
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This was further generalized by K.H. Leung and S.L. Ma in [17]. They found the
general form of the parameters of non-trivial bicirculant SRGs, as stated in the following
proposition, where c � SS0,1S, d � SS0,0S:
Proposition 2.2. Up to complementation, the parameters for any non-trivial bicirculant
SRG over a cyclic group of order n are the following:

1. �n; c, d;λ,µ� � �2m2
� 2m � 1;m2,m2

�m;m2
� 1,m2� where m C 1.

2. �n; c, d;λ,µ� � �2m2;m2,m2
�m;m2

�m;m2
�m� where m C 2.

3. �n; c, d;λ,µ� � �2m2;m2,m2
�m;m2

�m;m2
�m� where m C 3.

4. �n; c, d;λ,µ� � �2m2;m2
�m,m2;m2

�m;m2
�m� where m C 2.

Besides the graphs found by Marušič and by De Resmini and Jungnickel, Leung and
Ma found one example for m � 2 in family 2 and one example for m � 2 in family 4 of the
previous proposition. They also proved the non-existence of bicirculants SRG over cyclic
groups of order 2m2 where m � pru, p is a prime congruent to 3 modulo 4, p and u are
relatively prime and u2 @ pr.

More bicirculant SRGs were found by A. Malnič et al. in [19]. Concretely, they ob-
tained bicirculant SRGs with parameters of the same form as in Proposition 2.1 for s � 3,4
and 5. The graphs that they found were the first known pairs of complementary bicirculant
SRGs which are vertex-transitive but not edge-transitive.

K. Kutnar et al. studied tricirculant SRGs in [16]. They proved that, under certain
appropriate conditions, the elements on the symbol of a tricirculant SRG over a cyclic group
Cn satisfy that S0,0, S1,1, S2,2 form a partition of Cn��0� and the parameters of the graph
can be determined. They denoted S0,0, S1,1, S2,2, S0,1, S1,2 and S2,0 by A,B,C,R,S and
T , respectively (the other elements in the symbol can be easily determined from these
ones), and they denoted by TCay�Cn;A,B,C;R,S,T � the associated tricirculant. In the
next proposition, for a subset D b Cn, we set D � Cn � �S 8 �0��.

Proposition 2.3. Let X � TCay�Cn; �A,B,C;R,S,T � be a non-trivial �3n, k, λ, µ�-
strongly regular tricirculant, where SAS� SBS� SC S B SAS� SBS� SC S. Assume A8B 8C ~� g.
If n is a prime or n is coprime to 6∆ then there exists an integer s such that the following
two statements hold.

1. If the cardinalities of A,B and C are not all equal, then

�3n, k, λ, µ� � �3�12s2 � 9s � 2�, �4s � 1��3s � 1�, s�4s � 3�, s�4s � 1��.
If in addition SAS � SC S ~� SBS (which is equivalent to SRS � SSS ~� ST S), then

SAS � 2s�1 � 2s�, SBS � �4s � 1��s � 1�, SRS � s�4s � 1� and ST S � �1 � 2s�2.
2. If SAS � SBS � SC S then

�3n, k, λ, µ� � �3�3s2 � 3s � 1�, s�3s � 1�, s2 � s � 1, s2�.
In this case SAS � s�s � 1� and SRS � SSS � ST S � s2.

When SAS � SC S ~� SBS they proved that, for s � �1, exactly one tricirculant SRG exists
up to isomorphisms, and for s � 1 no such graph exists.

When SAS � SBS � SC S they proved that for s � 2 exactly one tricirculant SRG exists up
to isomorphisms, and for s � 3 exactly four exist, and that for s � �2 no such graph exists.
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3 Semiregular DSRGs over cyclic groups
DSRGs admitting a semiregular group of automorphisms were studied by Martı́nez and
Araluze in [20] by using the concept of partial sum family. In the next definition, the third
identity holds in the group ring Z�H�. As usual, we will identify a subset of H with the
sum in Z�H� of its elements.

Definition 3.1. Let H be a group of order n and let m be an integer with m C 1. A family
S � �Si,j�, with 0 B i, j @ m, of subsets of H is a �m,n, k, µ, λ, t�-partial sum family
(for short, �m,n, k, µ, λ, t�-PSF, or simply PSF if we do not specify the parameters) if it
satisfies:

1. for every i it holds that 0 ~> Si,i, where 0 is the identity of H .

2. for every i it holds that Pm�1
j�0 SSi,j S � Pm�1

j�0 SSj,iS � k
3. for every i and j it holds that Pm�1

l�0 Sl,jSi,l � δi,jγ�0� � βSi,j � µH , where δi,j is
the Kronecker delta, and where γ � t � µ and β � λ � µ.

The symbol notation, presented in the introduction for undirected graphs, is valid also
for directed graphs. Martı́nez and Araluze proved that the existence of a �m,n, k, µ, λ, t�-
partial sum family over a groupH is equivalent to the existence of a �mn,k,µ, λ, t�-DSRG
which admits a group of automorphisms isomorphic to H acting semiregularly and with m
orbits (in fact, the elements of the PSF form the symbol of the digraph).

They found 17 new DSRGs by using partial sum families. 14 of them had cyclic groups
as groups of automorphisms, which are the kind of digraphs that we are considering in this
paper. More specifically, they found:

Four PSFs with parameters �2,15,13,6,5,8�, �2,17,14,6,5,12�, �2,17,15,7,6,9�,
�2,20,17,8,6,11� which produce bicirculant digraphs.

Five PSFs with parameters �3,9,10,4,3,6�, �3,11,11,4,3,4�, �3,13,10,3,1,6�,
�3,14,14,5,4,5�, �3,15,14,4,5,6� which produce tricirculant digraphs.

Four PSFs with parameters �4,7,7,2,1,2�, �4,8,9,3,1,6�, �4,8,10,3,3,7�,
�4,11,10,2,3,4� which produce tetracirculant digraphs.

One PSF with parameters �5,7,8,2,1,4� which produce a pentacirculant digraph.
Finally, Araluze et al. found in [2] the form of the possible parameters of bicirculant

DSRGs. They called the partial sum families partial sum quadruples in this case when
m � 2.

Proposition 3.2. Let S be a non-trivial PSQ in a cyclic group H . Then, up to complemen-
tation, the parameters of S are of the following form, where U � k� t and s, f are positive
integers, and where q � SS1,0S and r � SS0,0S:

1. n � s�2f � 1�,q � sf, r � sf, k � 2sf, µ � sf, λ � s�f � 1�, t � sf .

2. n � s�2f �1�,q � s�f �1�, r � sf, k � s�2f �1�, µ � s�f �1�, λ � sf, t � s�f �1�.

3. n � 4s,q � 2s, r � 2s � 1, k � 4s � 1, µ � s, λ � 3s � 2, t � 3s � 1.

4. n � 2s2�2s�1�2U,q � s2�U, r � s2�s�U,k � 2s2�s�2U,µ � s2�U,λ � s2�1�U
and t � 2s2 � s �U .

5. n � 2s2�2U,q � s2�U, r � s2�s�U,k � 2s2�s�2U,µ � s2�s�U,λ � s2�s�U
and t � 2s2 � s �U , where 2s divides s2 �U .
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6. n � 2s2�2U,q � s2�U, r � s2�s�U,k � 2s2�s�2U,µ � s2�s�U,λ � s2�s�U
and t � 2s2 � s �U , where 2s divides s2 �U .

7. n � 2s2�2U,q � s2�s�U, r � s2�U,k � 2s2�s�2U,µ � s2�s�U,λ � s2�s�U
and t � 2s2 � s �U , where s divides U .

8. n � 4s2,q � 2s2�2s, r � 2s2�s, k � 4s2�3s, µ � �s�1��2s�1�, λ � �s�1��2s�1�
and t � s2 � �s � 1��2s � 1�

Families 4,5,6 and 7 correspond with the ones found by Leung and Ma in 2.2 (in fact,
they correspond to the particular case U � 0). Araluze et al. proved that PSQs with
parameters as in families 1,2 and 3 exists for every s and f . They found several sporadic
examples for the other families, two of which produced DSRGs not isomorphic to any
known ones with that parameters.

Finally, we will mention a result about bicirculant association schemes. Let us recall
first the definition of association scheme.

An association scheme of class s is a pair X � �X,R�, where R � �R0, . . . ,Rs� is a
partition of X2 that satisfies:

1. R0 � ��x,x� S x >X�.

2. For every i � 0, . . . , n, we have ��y, x� S �x, y� > Ri� >R.

3. For every i, j, k � 0, . . . , n, there exists a non-negative integer pki,j such that S�z >X S
�x, z� > Ri, �z, y� > Rj�S � pki,j whenever �x, y� > Rk.

The cardinality of X is called the order of the association scheme. The Ri are called
the basic relations of the association scheme, and the �X,Ri� are called the basic digraphs.
It is an easy consequence of part 3 of the definition that all the basic digraphs �X,Ri� are
regular. The degree of Ri is defined as the degree of �X,Ri�. The association schemes of
class one are called trivial.

The linear span C�R� of the adjacency matrices of the Ri is called the Bose-Mesner
algebra of the association scheme. The vector space CX is a left C�R�-module in a natural
way. Since C�R� is a semisimple algebra, the mentioned vector space CX decomposes as
a direct sum of irreducible C�R�-submodules, which are called the irreducible representa-
tions of X.

An association scheme X � �X,�R0, . . . ,Rs�� is said to be primitive if all the Ri are
strongly connected.

An automorphism of an association scheme X � �X,�R0, . . . ,Rs�� is a bijection of X
that is an automorphism of all the digraphs corresponding to the relations Ri. An associa-
tion scheme X � �X,�R0, . . . ,Rs�� is said to be bicirculant if there exists a cyclic group
of automorphisms of X which acts semiregularly on X and has 2 orbits.

I. Kovács et al. obtained in [15] the following result:

Proposition 3.3. Let X be a primitive bicirculant scheme on 2pe points, p A 2 a prime.
Then

1. X is of class at most two; and

2. if the class is exactly 2, then 2pe � �2s � 1�2 � 1 for some natural number s, and the
degrees of basic digraphs of X are 1, s�2s�1�, �s�1��2s�1�, and the multiplicities
of the irreducible representations of X in its standard module are 1, pe, pe � 1.
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Although this result of I. Kovács et al. is mainly applied to the study of primitive
permutation groups, it has an interpretation in terms of the kind of objects in which we are
interested in this paper, because association schemes of class two are DSRGs, so that they
proved that non-trivial primitive bicirculant schemes of certain orders are in fact DSRGs,
and they obtained additional restrictions on that orders.

4 Uniform partial sum families
Uniform partial sum families were introduced in [2] as a kind of digraphs which generalizes
what happens in family 4 of Proposition 3.2 and in part 2 of Proposition 2.3.

Definition 4.1. Let H be a group of order n C 2 and let m C 1 be an integer. Then an
�m,n, k, µ, λ, t�-partial sum family S � �Si,j�, with 0 B i, j @ m, of subsets of H is
uniform if it satisfies the following conditions:

1. The cardinalities of the ‘diagonal’ blocks Si,i are all equal.

2. The cardinalities of the ‘non-diagonal’ blocks Si,j , i x j, are all equal.

3. The ‘diagonal’ blocks �Si,i � i > Zm� form a partition of H � �0�, where 0 is the
identity element of the group.

The following two propositions give infinite families, found in [2], of uniform PSFs:

Proposition 4.2. IfH is a group of order ef �1 andA0, . . . ,Ae�1 is a partition ofH ��0�
and SAiS � f for every i, then S � �Si,j�, where Si,j � Aj , is a uniform �e, ef �1, ef, f, f �
1, f�-PSF in H .

Proposition 4.3. IfH is a group of order ef �1 andA0, . . . ,Ae�1 is a partition ofH ��0�
with SAiS � f for every i, then S � �Si,j�, where

Si,j �

¢̈̈
¦̈̈
¤
Ai if i � j,
�0� 8Aj otherwise,

is a uniform �e, ef � 1, e�f � 1� � 1, f � 1, e � f � 2, e � f � 1�-PSF in H .

We let A � SS0,0S, and B � SS0,1S. Thus, SSi,iS � A for every i, and SSi,j S � B for every
distinct i and j.

Lemma 4.4. B � �2k � β �∆�~�2m� and A � k � �1 �m�B.

Proof. Using the second part of Definition 3.1 we obtain

A � �m � 1�B � k,

and applying the trivial character in the third part of the same definition with i � 0, j � 1
we obtain

2AB � �m � 2�B2
� βB � µn.

Using (1.1) with the DSRG associated to the PSF we get

k�k � β� � µmn � γ.
Now, the result follows from the three previous identities and the definition of ∆.
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5 Form of the parameters
Now we will derive the parameters of uniform PSFs when the group H is cyclic. We will
need first a lemma.

Lemma 5.1. Let S be a PSF in an abelian group H , and let χ be a non-trivial character
of H . Then,

m�1

Q
l�0

χ�Sl,l� �m�β �∆�~2 � i∆ for some i > �0, ...,m�.

Proof. By using Definition 3.1, we have that the matrix Aχ � �χ�Si,j�� satisfies A2
χ �

βAχ � γIm, and therefore its trace Pm�1
l�0 χ�Sl,l� is the sum of m roots of the polynomial

x2 � βx � γ. Since those roots are 1
2
�β �∆�, the result follows.

Proposition 5.2. If anm-circulant �m,n, k, µ, λ, t�-uniform partial sum family exists with
m C 3, then the parameters have one of the following forms:

1.
n � sm � rm � r2m � 1, k � sm � r2m � r, t � r2m � r � s,

λ � rm � s � r2 � 2 r � 1, µ � s � r2

A � s � r � r2,B � s � r2

with r an integer and s a non-negative integer.

2.

n �
2i �i � 1�mr2

s
, k �

�2 r2m2i � 2m2r2i2 � sr i � s � smr i

sm

t �
�2 sr2i2 � 4 sr i � 2 sr2mi � 2 s � 4m2r2i2 � 4m2r2i � 4 smr i � s2

2m2s
,

λ �
4m2r2i2 � 4m2r2i � 2 smr � s2 � 2 rm2s � 4 sm

2m2s

µ �
�s � 2 rm � 2 rmi� �s � 2 rmi�

2m2s

A �
�2 r2mi � 2mr2i2 � s

sm
,B �

r i �s � 2 rm � 2 rmi�
sm

with r an integer, s a non-negative integer and i > �2, ...,m�, and where 2m divides
s.
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Proof. By the previous lemma, for every non-trivial caracter χ of H it holds that

m�1

Q
l�0

χ�Sl,l� �m�β �∆�~2 � i∆ for some i > �0, ...,m�.

By part 3 of Definition 4.1 we have that the previous sum equals �1, and hence we deduce
that

β � ��m � 2i�∆ � 2�~m, (5.1)

where ∆ is a non-negative integer. Now, from the definition of ∆ we obtain

γ � �
�∆ i � 1� �∆ i � 1 �∆m�

m2
. (5.2)

Putting U � k � t, we deduce from (5.2) that

k � U � µ �
�∆ i � 1� �∆ i � 1 �∆m�

m2
. (5.3)

From (1.1),(5.1),(5.2) and (5.3) we get

n � �Um2
�m � 1 � µm2

� 2 ∆ i �m∆ i �∆m �∆m2
�∆2im �∆2i2�

�Um2
� 1 �m � µm2

� 2 ∆ i �∆m �m∆ i �∆2im �∆2i2� ~�m5µ� (5.4)

Let us suppose that the plus sign holds in Lemma 4.4. Since A � �n� 1�~m, we obtain
from that lemma that

n �
m∆ i �m �m2∆ i �Um2

� 1 � µm2
� 2 ∆ i �∆m �∆2im �∆2i2

m2
. (5.5)

From (5.4) and (5.5) we find µ as

µ �
1

2m2��1 �m���m
2∆ i � 2 ∆2mi � 2 ∆2i2 � 4m∆ i � 4 ∆ i � 2 �m2

� 3m

� 2m2∆ �Um3
� 2m∆ � 2Um2

�m3∆ i �∆2i2m �∆2m2i

�m��Um2
� 3m∆ i �∆2im � 2 ∆ i �∆2i2 �m � 1 �m2∆ i�2

� 4 im2∆2 �m � 1� ��1 � i��1~2� (5.6)

Since β is an integer, i � 0 is not possible (see (5.1) and use thatm C 3). Let us suppose
that i � 1.

Then,

µ � �
Um2

� 1 �m � 2 ∆ � 2 ∆m �∆m2
�∆2

�∆2m

m2
(5.7)

or

µ �
Um2

� 1 �m � 2 ∆ � 2 ∆m �∆2
�∆2m

m2 ��1 �m� . (5.8)

Let us suppose that (5.7) holds. Then we get from (5.4) that n � 0, which gives a
contradiction.
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Therefore, (5.8) must hold, and using this and (5.1),(5.2),(5.3) and (5.4) we obtain that
the parameters are

n �
mU

m � 1
�∆ �

�∆ � 1�2
m

, (5.9)

k �
Um2

�∆ �∆2
�∆2m �∆m

m �m � 1� ,

t �
�∆2

�∆2m �∆ �∆m �Um

m �m � 1� ,

λ �
Um2

� 1 � 3m � 2 ∆ � 4 ∆m �∆2
�∆2m � 3 ∆m2

�∆m3
� 2m2

m2 �m � 1� ,

µ �
U

m � 1
�
�∆ � 1�2
m2

, (5.10)

A �
Um2

�∆m2
� 3 ∆m � 2m �∆2m � 2 ∆ � 1 �∆2

�m2

m2 �m � 1� ,

B �
Um2

� 1 �m � 2 ∆ � 2 ∆m �∆2
�∆2m

m2 �m � 1� .

From (5.2), we have that mS�∆ � 1�2, and then we deduce from (5.9) that m � 1SmU .
Since m � 1 and m are coprime, then m � 1SU . Now, from (5.10) we deduce that mS∆ � 1.
Putting U � s�m� 1� and ∆ � rm� 1 we obtain parameters as in part 1 of the proposition.

Now, let us suppose that i A 1.
Since µ is an integer, the square root in (5.6) is also an integer, and

µ �
1

2m2��1 �m���m
2∆ i � 2 ∆2mi � 2 ∆2i2 � 4m∆ i � 4 ∆ i � 2 �m2

� 3m

� 2m2∆ �Um3
� 2m∆ � 2Um2

�m3∆ i �∆2i2m �∆2m2i

�m�Um2
� 3m∆ i �∆2im � 2 ∆ i �∆2i2 �m � 1 �m2∆ i � s�� (5.11)

where s is a non-negative integer and

U � ��4m3∆2i � 4 ∆2im2
� 4m2∆2i2 � 4m3∆2i2 � s2 � 6 sm∆ i

� 2 s∆2im � 4 s∆ i � 2 s∆2i2 � 2 sm � 2 s � 2 sm2∆ i��2sm2�
Hence,

µ � �1~2 ��s � 2m∆ i � 2m2∆ i� ��s � 2m∆ � 2m∆ i � 2m2∆ � 2m2∆ i�
sm2 ��1 �m� (5.12)

or

µ � 1~2 �s � 2m∆ � 2m∆ i� �s � 2m∆ i�
m2s

(5.13)
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Let us suppose that (5.12) holds. Then we get from (5.4) that n � �s~�2m��1 �m��, and
this contradicts that n must be positive.

Therefore, (5.13) must hold, and using this and (5.1),(5.2),(5.3) and (5.4) we obtain, by
putting ∆ � r, that the parameters are as in part 2 of the statement. From the form of A we
deduce that m divides s, and from the form of µ we conclude that 2 divides s. From this
two facts and the expression for A we obtain that 2m divides s.

Finally, if the minus sign holds in Lemma 4.4, the parameters have the same form as
when the plus sign holds by putting ∆ � �r, so that r can have both positive and negative
values.

By Proposition 4.2, m-circulant uniform PSFs as stated in part 1 of Proposition 5.2
always exist for r � 0 and, by Proposition 4.3, m-circulant uniform PSFs as stated in part
1 of Proposition 5.2 always exist for r � 1.

6 The tricirculant case
Now we will consider the case when m � 3. In this case, we will call the PSF tricirculant.

Proposition 6.1. If a tri-circulant �3, n, k, µ, λ, t�-uniform partial sum family exists, then
either

1.

n � 3r2 � 3r � 1 � 3s, k � 3r2 � r � 3s, µ � r2 � s, λ � r2 � r � 1 � s,

t � 3r2 � r � s,A � r2 � r � s and B � r2 � s. (6.1)

2.

n � 9r2 � 6r � 1, k � 9r2 � 10r � 2, µ � 3r2 � 5r � 2, λ � 3r2 � 4r � 1,

t � 5r2 � 6r � 2,A � 3r2 � 2r and B � 3r2 � 4r � 1. (6.2)

3.

n � 90r2 � 60r � 10, k � 90r2 � 40r � 3, µ � 30r2 � 5r, λ � 30r2 � 10r � 1,

t � 80r2 � 40r � 6,A � 30r2 � 20r � 3 and B � 30r2 � 10r, (6.3)

with r an integer and s a non-negative integer.

Proof. Using the same notations as in the proof of Proposition 5.2, we have 2 � 2i∆ � 0
�mod 3�, and hence i � 1 or i � 2. If i � 1, by following the proof of that proposition,
we can see that the parameters are as in (6.1). Let us suppose that i � 2. We will assume
that the plus sign holds in Lemma 4.4, because when the minus sign holds, it is easy to
prove that the parameters have the same form, changing the sign of r. We have from (5.11)
that �9U � 2�∆ � 1�2�2 � 144∆2

� ��9U � 2�∆ � 1�2� � s�2 for some positive integer s,
and hence 2�9U � 2�∆ � 1�2�s � s2 � 144∆2. Since U C 0, we deduce that s B 39 and,
since 6 must divide s, then the possible values that s can take are 6,12,18,24,30,36. Now,
having into account that ∆ � 1 �mod 3� and the expression for n in Proposition 5.2 we
have that for s � 18,36 we obtain a contradiction with the fact that n is an integer, and for
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s � 6,24 we obtain a contradiction with the fact that 3 divides n� 1. For s � 12, by putting
∆ � 1 � 3r we obtain parameters as in part (6.2), and for s � 30, by putting ∆ � 1 � 3u

we have U �
2u2

�8u�7
5

and hence u � �2 �mod 5�. Putting now u � �2 � 5r we obtain
parameters as in (6.3).

We can eliminate some values of r in family (6.3). In the next proposition, Gröbner
bases are used (for definitions and results on Gröbner bases, we refer the reader to [3]).

Proposition 6.2. If a tricirculant uniform PSF exists with parameters as in family (6.3) of
the previous proposition, then r � 1 �mod 2�.

Proof. If χ is any non-trivial character of H then we obtain from Definition 3.1, by apply-
ing the character χ, that

2

Q
l�0

χ�Si,l�χ�Sl,j� � δi,jγ � βχ�Si,j� � 0 for every i, j. (6.4)

By putting the indeterminate Ti,j instead of χ�Si,j� and calculating a Gröbner basis for
the polynomials obtained from the lefthandsides in (6.4) with respect to the lexicographic
order with

T0,0 A T1,1 A T2,2 A T0,1 A T1,0 A T0,2 A T2,0 A T1,2 A T2,1 A r,

we conclude that

χ�S1,1�2 � χ�S1,1� � 6 � 35r � χ�S1,2�χ�S2,1�
� 50r2 � χ�S0,1�χ�S1,0� � 5χ�S1,1�r � 0. (6.5)

Now we take the character χ that takes the generator of the cyclic group H to θn~2,
where θ is a primitive n-th root of unity. Since A is an odd number and B is an even
number, we have that the χ�Si,j� are integer numbers such that χ�Si,j� is odd if i � j and
even in other case. Now, we obtain from (6.5) that

�χ�S1,1� � 1��χ�S1,1� � r� � 2�r2 � 1� �mod 4�.
Suppose that r is even. Then the above implies that χ�S1,1� � 3 �mod 4�. We show

below that this leads to a contradiction, hence r must be indeed odd.
By the choice of the character χ we get for every i > �0,1,2�,

χ�Si,i� � �SSi,iS � 2SSi,i 9 ker�χ�S � �30r2 � 20r � 3 � 2SSi,i 9 ker�χ�S.
The group ker�χ� is of order n~2 � 45r2 � 30r � 5, which is odd. Using this and that

8
2
i�0�Si,i 9 ker�χ�� � ker�χ�� �0�, we see that at least one of the numbers SSi,i 9 ker�χ�S

must be even. We may set the indices at the beginning so that SS1,1 9 ker�χ�S is even, and
hence above we find χ�S1,1� � 1 �mod 4�, a contradiction.

Apart from the infinite families of uniform PSFs showed in Section 4, we will analyze
some sporadic examples for the tricirculant case.

When s � 0 in the first family in Proposition 6.1, that is, when the graph is undirected,
Kutnar et al. found in [16] PSFs for r � 1,2 and 3.
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For r � �1, s � 2, a PSF with the parameters and structure indicated in Proposition 6.1
was found by the author and A. Araluze in [20].

We have found now for r � 2, s � 2, by using techniques of combinatorial optimization,
a uniform tricirculant PSF which generates a DSRG with new parameters, which appear as
an undecided case in Hobart and Brouwer’s table [10]. This PSF is

S0,0 � �3,4,7,9�, S0,1 � �0,4,7,8,11,12�, S0,2 � �0,1,2,4,6,10�,

S1,0 � �1,2,5,6,8,9�, S1,1 � �1,5,6,12�, S1,2 � �2,3,5,6,7,8�,

S2,0 � �0,1,3,7,9,11�, S2,1 � �0,5,6,7,8,11�, S2,2 � �2,8,10,11�.
7 Almost-uniform partial sum families
In this section we will present a kind of partial sum families that generalizes the uniform
ones.

Definition 7.1. Let H be a group of order n C 2,H � a subgroup of H of order n� and
let m C 1 be an integer. Then an �m,n, k, µ, λ, t�-partial sum family S � �Si,j�, with
0 B i, j @m, with the Si,j subsets of H , is almost-uniform with respect to H � if it satisfies
the following conditions:

1. The cardinalities of the ‘diagonal’ blocks Si,i are all equal.

2. The cardinalities of the ‘non-diagonal’ blocks Si,j , i x j, are all equal.

3. The ‘diagonal’ blocks �Si,i � i > Zm� form a partition of H �H �.

Remark 7.2. Observe that in the particular case when H �
� �e� almost uniform PSFs are

just uniform PSFs. In what follows, we will study the case when H � is a proper subgroup
of H .

Let us analyze the form of the parameters of m-circulant �m,n, k, µ, λ, t�-almost-
uniform partial sum families over a cyclic group H with respect to a proper and non-trivial
subgroup H �:

Proposition 7.3. If an �m,n, k, µ, λ, t�-almost-uniform partial sum family exists with m C

3 with respect to a proper and non-trivial subgroup H � of the cyclic group H , then the
parameters have one of the following forms:

1.
n � �im �m � i� imr2 � �1 � i�mr �ms,

k � �im �m � i� imr2 � ��i �m � im� r �ms,

µ � �im �m � i� ir2 � ri � s,

λ � �im �m � i� ir2 � �m � 3 i� r � s,
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t � �ri � i2r2m � s,A � �im �m � i� ir2 � �1 � 2 i� r � s,

and B � �im �m � i� ir2 � �1 � i� r � s.
2.

n � �j2 � j� r2 � ��j � 1� r � sm �
r2j2

m
,

k � �j2 � j� r2 � rj � sm �
rj ��1 � rj�

m
,

µ � s �
rj �rjm � rm � rj �m�

m2
,

λ � s � r �
rj ��3m � rm � rjm � rj�

m2
,

t � s �
rj ��1 � rj�

m
,

A � s �
rj �rmj � 2m �mr � rj�

m2
,

B � s �
rj ��m �mr � rmj � rj�

m2
,

where m divides rj.

3.

n �
2p �p � 1�mr2

s
, k � �

r �2 rm2p � 2 rm2p2 � si � sp � smp�
sm

,

t � ���2 sr2mi � 2 sr2i2 � 4 sr2ip � 2 sr2mp � 2 sr2p2 � 4m2r2p � 4m2r2p2

� 2 srm � 4 srmp � s2�~�2m2s�,

λ � �1~2 4m2r2p � 4 r2m2p2 � 2 srm � s2 � 2 rm2s � 4 srmi

m2s
,

µ � 1~2 �s � 2 rmp� �s � 2 rm � 2 rmp�
m2s

,

A � �

r ��2mrp2 � 2mrp � si�
ms

,B �
rp �s � 2mr � 2mrp�

ms
.
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Proof. We have "i Si,i �H �H �. If χ is a character of H which is non-trivial on H �, then
Pi χ�Si,i� � 0. If χ� is trivial on H � but not on H , then Pi χ

��Si,i� � �SH �S. Since, by
Lemma 5.1, the difference of both sums of characters must be divisible by ∆, we have that
SH �S � i∆ with i > �1, ...,m�. Since, again by Lemma 5.1, Pl χ�Sl,l� �m�β �∆�~2 � j∆
with j > �0, ...m�, we have

β � �m � 2j�∆~m, (7.1)

where ∆ is a non-negative integer. We have

γ � �jm � j2�∆2~m2. (7.2)

Now,

γ � t � µ � �jm � j2�∆2~m2, k � U � µ � �jm � j2�∆2~m2(where U � k � t),
β � �m � 2j�∆~m. (7.3)

From these equalities and (1.1) we get

n ��Um2
� µm2

�∆mj �∆2mj �∆2j2��Um2
� µm2

�∆mj

�∆m2
� j∆2m � j2∆2�~�m5µ� (7.4)

Let us suppose that the plus sign holds in Lemma 4.4 Since the PSF is almost-uniform
we have n � i∆ �mA, and therefore

n �
Um2

� µm2
�∆mj � j2∆2

� j∆2m �∆m2j � i∆m2

m2
(7.5)

From (7.4) and (7.5) we deduce

µ � ��∆m2
�m3U �mj2∆2

�m3i∆ � 2Um2
�m2j∆2

�m3∆ j �∆m2j

� 2 ∆mj � 2 j2∆2
� 2 j∆2m �m��Um2

�∆m � 2 ∆mi � i∆m2
� 3 ∆mj

� j2∆2
� j∆2m �∆m2j�2 � 4m2∆2�i � j � 1��i � j��m � 1��1~2�

~�2m2�m � 1��.
Let us suppose that j � i. Then,

µ � �
Um2

�∆mi � i∆2m � i2∆2

m2
(7.6)

or

µ �
Um2

�∆mi �∆m2
� i∆2m � i2∆2

m2 �m � 1� (7.7)

If (7.6) holds, then we get from (7.4) that n � 0, which is a contradiction.
Thus, (7.7) must hold, and we obtain

n �
Um2

�∆mi �∆m � i∆2m � i2∆2

m �m � 1� (7.8)
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k �
Um2

�∆ i �∆m � i∆2m � i2∆2

m �m � 1� (7.9)

t �
i∆2m � i2∆2

�Um �∆ i �∆m

m �m � 1� (7.10)

λ �
Um2

� 3 ∆mi � 2 ∆m2
� i∆2m � i2∆2

�∆m3
� 2 ∆m2i

m2 �m � 1� (7.11)

µ �
Um2

�∆mi �∆m2
� i∆2m � i2∆2

m2 �m � 1� (7.12)

A �
Um2

� 2 ∆mi �∆m � i∆2m � i2∆2
�∆m2i

m2 �m � 1� (7.13)

B �
Um2

�∆mi �∆m � i∆2m � i2∆2

m2 �m � 1� (7.14)

From (7.12) we have i2∆2
� 0 �mod m� and, from (7.9), �i2∆2

� i∆ � 0 �mod m�.
Therefore, i∆ � 0 �mod m�.

From (7.13), �im � i2�∆2
� �2i � 1�m∆ � 0 �mod m2�. Using this and the previous

congruence, we obtain m∆ � 0 �mod m2�, and hence

∆ � 0 �mod m�. (7.15)

From (7.12),
U � �i2 � i�∆2

� �1 � i�∆ �mod m � 1�. (7.16)

Now, using the two previous congruences and putting

∆ � rm and U � i�i � 1�r2m2
� �1 � i�rm � s�m � 1�,

we obtain parameters as in part 1 of the proposition.
Now, let us suppose that j � i � 1.
In this case, by reasoning in a similar way as before, we obtain

n �
Um2

�∆m2
� j∆2m �∆m �∆mj � j2∆2

m �m � 1� (7.17)

k �
Um2

� j∆ � j∆2m � j2∆2

m �m � 1� (7.18)

µ �
Um2

�∆mj � j∆2m � j2∆2

m2 �m � 1� (7.19)

λ �
Um2

� 3 ∆mj � j∆2m � j2∆2
�∆m2

�∆m3
� 2 ∆m2j

m2 �m � 1� (7.20)

t �
j∆2m � j2∆2

�Um � j∆

m �m � 1� (7.21)
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A �
Um2

� j∆2m � 2 ∆mj � j2∆2
�∆m2j

m2 �m � 1� (7.22)

B �
Um2

�∆mj � j∆2m � j2∆2

m2 �m � 1� (7.23)

From (7.19) we have ∆2j2 � 0 �mod m�, and from (7.18), ∆j �∆2j2 � 0 �mod m�,
and hence ∆j � 0 �mod m�.

From (7.19), we have U �∆j �∆2j �∆2j2 � 0 �mod m � 1�.
Putting U � �∆j �∆2j �∆2j2 � s�m � 1� and ∆ � r, we obtain parameters as in part

2 of the proposition.
When j ~� i and j ~� i � 1 we find the parameters following the line of the proof of

Proposition 5.2 and putting p � j � i and r � ∆.
If the minus sign holds in Lemma 4.4, we find analogous families of parameters by

putting r � �∆, so that r can be positive or negative.

We have found, by using methods of combinatorial optimization, 14 examples of PSFs
corresponding to family 1, which are listed in the appendix. For three of the examples,
corresponding to m � 3, i � 1, r � �1, s � 3,m � 3, i � 1, r � �1, s � 4 and to m � 5, i �
1, r � 1, s � 2, the parameters appear as undecided cases in Hobart and Brouwer’s table
[10]. We wonder if such PSFs exist for m � 3, i � 1, r � 1 or r � �1 and every positive
integer s.

8 Appendix
Family 1:

For m � 3:

1. i � 1, r � �1, s � 1:

���1�, �0,1,5�, �2,3,5��, ��0,3,5�, �3�, �0,1,4��,
��1,3,4�, �0,1,2�, �5���

2. i � 1, r � �1, s � 2:

���5,8�, �0,4,6,7�, �0,1,3,7��, ��1,2,3,5�, �2,4�, �0,5,6,7��,
��2,3,6,8�, �0,3,4,7�, �1,7���

3. i � 1, r � �1, s � 3:

���5,9,11�, �1,2,4,9,10�, �0,1,3,8,9��,
��3,5,8,9,11�, �1,2,10�, �0,1,3,7,9��,
��0,2,3,4,11�, �4,5,7,8,9�, �3,6,7���

4. i � 1, r � �1, s � 4:

���6,9,12,13�, �0,1,3,4,11,12�, �6,7,10,11,13,14��,
��1,4,5,8,10,14�, �1,7,11,14�, �0,2,5,6,9,11��,
��1,2,3,4,7,9�, �0,7,8,9,10,13�, �2,3,4,8���

5. i � 1, r � 1, s � 1:

���5�, �3,4�, �2,3��, ��2,3�, �1�, �0,5��, ��0,3�, �1,4�, �3���
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6. i � 1, r � 1, s � 2:

���7,8�, �0,1,2�, �2,3,4��, ��3,7,8�, �1,5�, �2,3,7��,
��0,5,7�, �0,2,7�, �2,4���

7. i � 1, r � 1, s � 3:

���3,9,10�, �0,5,6,7�, �6,7,8,9��, ��0,3,9,10�, �5,6,7�, �6,7,8,9��,
��2,3,5,8�, �0,5,10,11�, �1,2,11���

8. i � 1, r � 1, s � 4:

���6,8,12,14�, �3,5,9,11,12�, �5,7,11,13,14��,
��1,3,4,5,7�, �1,2,4,13�, �0,2,3,4,6��,
��1,4,8,10,12�, �1,5,7,9,13�, �3,7,9,11���

For m � 4:

1. i � 1, r � �1, s � 1:

���4,6,7�, �4,5�, �4,7�, �0,1��, ��3,4�, �1,2,4�, �4,5�, �1,6��,
��1,4�, �2,3�, �4,5,6�, �2,3��, ��0,1�, �2,7�, �5,6�, �2,3,4���

2. i � 1, r � 1, s � 1:

���5�, �4,7�, �3,6�, �4,7��, ��1,2�, �1�, �0,7�, �0,1��,
��1,2�, �0,1�, �7�, �0,1��, ��1,4�, �0,3�, �2,7�, �3���

3. i � 1, r � 1, s � 2:

���1,2�, �3,4,5�, �4,5,6�, �2,6,10��,
��2,4,9�, �5,7�, �1,6,8�, �2,6,10��,
��6,7,8�, �9,10,11�, �10,11�, �0,4,8��,
��0,2,7�, �3,5,10�, �4,6,11�, �4,8���

4. i � 1, r � 1, s � 3:

���3,13,14�, �8,9,10,11�, �1,2,3,12�, �0,9,10,11��,
��4,5,7,10�, �1,2,15�, �3,8,9,10�, �0,1,2,7��,
��1,2,4,7�, �12,13,14,15�, �5,6,7�, �4,13,14,15��,
��0,3,13,14�, �8,9,10,11�, �1,2,3,12�, �9,10,11���

For m � 5:

1. i � 1, r � 1, s � 1:

���5�, �0,7�, �1,2�, �6,7�, �3,6��, ��3,8�, �3�, �4,5�, �0,9�, �6,9��,
��4,9�, �6,9�, �1�, �5,6�, �2,5��, ��3,8�, �0,3�, �4,5�, �9�, �6,9��,
��4,9�, �1,4�, �5,6�, �0,1�, �7���

2. i � 1, r � 1, s � 2:

���2,13�, �0,2,4�, �7,9,11�, �0,2,4�, �10,12,14��,
��3,13,14�, �1,5�, �7,8,12�, �0,1,5�, �0,10,11��,
��1,5,6�, �3,7,8�, �10,14�, �3,7,8�, �2,3,13��,
��2,6,13�, �0,4,8�, �0,7,11�, �4,8�, �3,10,14��,
��3,10,14�, �1,5,12�, �4,8,12�, �1,5,12�, �7,11���
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