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Generally speaking, public-key cryptographic systems consist of raising elements of some group such as 
GF(2n), Z/NZ or elliptic curves, to large powers and reducing the result modulo some given element. 
Such operation is often called modular exponentiation and is performed using modular multiplications 
repeatedly. The practicality of a given cryptographic system depends heavily on how fast modular 
exponentiations are performed. Consequently, it also depends on how efficiently modular 
multiplications are done as these are at the base of the computation. This problem has received much 
attention over the years. Software as well as hardware efficient implementation were proposed. 
However, the results are scattered through the literature. In this paper we survey most known and recent 
methods for efficient modular multiplication, investigating and examining their strengths and 
weaknesses. For each method presented, we provide an adequate hardware implementation. 
Povzetek: Podan je pregled modernih metod kriptografije. 

1 Introduction 
Electronic communication is growing exponentially 

so should be the care for information security issues [10]. 
Data exchanged over public computer networks must be 
authenticated, kept confidential and its integrity protected 
against alteration. In order to run successfully, electronic 
businesses require secure payment channels and digital 
valid signatures. Cryptography provides a solution to all 
these problems and many others [17]. 

One of the main objectives of cryptography consists 
of providing confidentiality, which is a service used to 
keep secret publicly available information from all but 
those authorized to access it. There exist many ways to 
providing secrecy. They range from physical protection 
to mathematical solutions, which render the data 
unintelligible. The latter uses encryption/decryption 
methods [10], [17], [30], [31].  

The modular exponentiation is a common operation 
for scrambling and is used by several public-key 
cryptosystems, such Deffie and Hellman [8], [9] and the 
Rivest, Shamir and Adleman encryption schemes  
[34], as encryption/decryption method. RSA 
cryptosystem consists of a set of three items: a modulus 
M of around 1024 bits and two integers D and E called 
private and public keys that satisfy the property TDE ≡ T 
mod M. Plain text T obeying 0 ≤ T < M. Messages are 
encrypted using the public key as C = TE mod M and 

uniquely decrypted as T = CD mod M. So the same 
operation is used to perform both processes: encryption 
and decryption. The modulus M is chosen to be the 
product of two large prime numbers, say P and Q. The 
public key E is generally small and contains only few 
bits set (i.e. bits = 1), so that the encryption step is 
relatively fast. The private key D has as many bits as the 
modulus M and is chosen so that DE = 1 mod 
(P−1)(Q−1). The system is secure as it is 
computationally hard to discover P and Q. It has been 
proved that it is impossible to break an RSA 
cryptosystem with a modulus of 1024-bit or more. 

The modular exponentiation applies modular 
multiplication repeatedly. So the performance of public-
key cryptosystems is primarily determined by the 
implementation efficiency of the modular multiplication 
and exponentiation. As the operands (the plaintext or the 
cipher text or possibly a partially ciphered text) are 
usually large (i.e. 1024 bits or more), and in order to 
improve time requirements of the encryption/decryption 
operations, it is essential to attempt to minimize the 
number of modular multiplications performed and to 
reduce the time required by a single modular 
multiplication.  

 
Modular multiplication A×B mod M can be 

performed in two different ways: multiplying, i.e. 
computing P = A×B; then reducing, i.e. R = P mod M or 
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interleave the multiplication and the reduction steps. 
There are various algorithms that implement modular 
multiplication. The most prominent are Karatsuba-
Ofman’s [12] and Booth’s [3] methods for multiplying, 
Barrett’s [2], [6], [7] method for reducing, and 
Montgomery’s algorithms [18], and Brickell’s method 
[4], [37] for interleaving multiplication and reduction. 

Throughout this paper, we will consider each one of 
the methods cited in the previous paragraph. The review 
will be organised as follows: First we describe, in 
Section 2, Karatsuba-Ofman’s and Booth’s methods for 
multiplying. Later, in Section 3, we present Barrett’s 
method for reducing an operand modulo a given 
modulus. Then we detail Montgomery’s algorithms for 
interleaving multiplication and reduction, in Section 4.     

2 Efficient Multiplication Methods 
The multiply-then-reduce methods consist of first 

computing the product then reducing it with respect to 
the given modulus. This method is generally preferred as 
there are very fast on-the-shelf multiplication algorithms 
as they were over studied [3], [12], [33].  The nowadays 
most popular multiplication methods that are suitable for 
hardware implementation are Karatsuba-Ofman’s 
method and Booth’s method. 

2.1 Karatsuba-Ofman Method 
Karatsuba-Ofman’s algorithm is considered one of the 
fastest ways to multiply long integers. Generalizations of 
this algorithm were shown to be even faster than 
Schönhage-Strassen’s FFT method [35], [36]. Karatsuba-
Ofman’s algorithm is based on a divide-and-conquer 
strategy. A multiplication of a 2n-digit integer is reduced 
to two n-digits multiplications, one (n+1)-digits 
multiplication, two n-digits subtractions, two left-shift 
operations, two n-digits additions and two 2n-digits 
additions. 

Even though this algorithm was proposed long ago 
and as far as we know, there is no published hardware 
implementation for this algorithm. In contrast with the 
work presented in this paper, and after an extensive paper 
research, we only found publications on hardware 
implementations of Karatsuba-Ofman’s algorithm 
adapted to multiplication in the Galois fields [13], [32]. 
Unlike in our implementation, the addition (mod 2) of 
two bits in these implementations delivers a single bit 
using a XOR gate In contrast with these, our 
implementation cares about the carryout bit, as it is 
necessary to obtaining the product. It is unnecessary to 
emphasize that this makes the designer face a completely 
different problem as explained later on.  

The hardware specification is expressed using the 
most popular hardware description language VHDL [20]. 
Note that VHDL does not provide a recursive feature to 
implement recursive computation [1], [27], [28]. The 
proposed model exploits the generate feature to yield the 
recursive hardware model. 

This subsection is organized as follows:  First, we 
describe the Karatsuba-Ofman’s algorithm and sketch its 

complexity. Then, we adapt the algorithm so that it can 
be implemented efficiently. Subsequently, we propose a 
recursive and efficient architecture of the hardware 
multiplier for Karatsuba-Ofman’s algorithm. After that, 
we implement the proposed hardware using the Xilinx™ 
project manager and present some figures concerning 
time and space requirements of the obtained multiplier. 
We then compare our hardware with a Synopsis™ library 
multiplier and two other multipliers that implement 
Booth’s multiplication algorithm.  

2.1.1 Karatsuba-Ofman’s Algorithm 
We now describe the details of Karatsuba-Ofman’s 

multiplication algorithm [12], [27], [36]. Let X and Y be 
the binary representation of two long integers: 
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We wish to compute the product XY. The operands X 
and Y can be decomposed into to equal-size parts XH 

 and 
XL, YH  and YL respectively, which represent the n higher 
order bits and lower order bits of X and Y. Let k = 2n. If k 
is odd, it can be right-padded with a zero.    
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So the product P = XY can be computed as follows: 

P  = XY  
 = (XH 2n + XL)(YH 2n + YL) 
 = 22n(XHYH) + 2n(XHYL + XLYH) + XLYL 

Using the equation above, it needs 4 n-bits 
multiplications to compute the product P.  The standard 
multiplication algorithm is based on that equation. So 
assuming that a multiplication of k-bits operands is 
performed using T(k) one-bit operations, we can 
formulate that T(k) =T(n) + δ k, wherein δk is a number 
of one-bit operations to compute all the additions and 
shift operations. Considering that T(1) = 1, we find that 
the standard multiplication algorithm requires: 

T(k) = ( )42logk  = ( )2k  

The computation of P can be improved by noticing 
the following: 

XHYL + XLYH  = (XH  + XL)(YH  + YL) − XHYH  − XLYL 

The Karatsuba-Ofman’s algorithm is based on the 
above observation and so the 2n-bits multiplication can 
be reduced to three n-bits multiplications, namely XHYH, 
XLYL and (XH  + XL)(YH  + YL).  The Karatsuba-Ofman’s 
multiplication method can then be expressed as in the 
algorithm in Figure 1. wherein function Size(X) returns 
the number of bits of X, function High(X) returns the 
higher half part of X, function Low(X) returns the lower 
half of X, RightShift(X, n) returns X2n and 
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OneBitMultiplication(X, Y) returns XY when both X and 
Y are formed by a single bit. If Size(X) is odd, then 
High(X) and Low(X) right-pad X with a zero before 
extracting the high and the low half respectively.  
The algorithm above requires 3 n-bits multiplications to 
compute the product P.  So we can stipulate that: 

T(k) = 2T(n) + T(n+1)+ δ′ k ≈ 3T(n) + δ′ k 

wherein δ′n is a number of one-bit operations to compute 
all the additions, subtractions and shift operations. 
Considering that T(1) = 1, we find that the Karatsuba-
Ofman’s algorithm requires: 

T(k) ≈ ( )32logk  = ( )58.1k , 

and so is asymptotically faster than the standard 
multiplication algorithm. 

2.1.1 Adapted Karatsuba’s Algorithm 
We now modify Karatsuba-Ofman’s algorithm of Figure 
1 so that the third multiplication is performed efficiently.  

For this, consider the arguments of the third 
recursive call, which computes Product3. They have 
Size(X)/2+1 bits. Let Z and U be these arguments left-
padded with Size(X)/2-1 0-bits.  So now Z and U have 
Size(X) bits. So we can write the product Product3 as 
follows, wherein Size(X) = 2n, ZH and  UH  are the high 
parts of Z and U respectively and ZL and UL are the low 

parts of Z and U respectively. Note that ZH and UH may 
be equal to 0 or 1. 

Product3 = ZU  
   = (ZH 2n + ZL)(UH 2n + UL) 
   = 22n(ZHUH) + 2n(ZHUL + ZLUH) + ZLYL 

Depending on the value of ZH and UH, the above 
expression can be obtained using one of the alternatives 
of Table 1.   
As it is clear from Table 1, computing the third product 
requires one multiplication of size n and some extra 
adding, shifting and multiplexing operations.  So we 
adapt Karatsuba-Ofman’s algorithm of Figure 1 to this 
modification as shown in the algorithm of Figure 2. 

ZH UH Product3 
0 0 ZLYL 
0 1 2n ZL + ZLYL 
1 0 2nUL + ZLYL 
1 1 22n + 2n(UL + ZL) + 

ZLYL 
Table 1: computing the third product2.1.3 Recursive 
Hardware Architecture 

In this section, we concentrate on explaining the 
proposed architecture of the hardware.  

The component KaratsubaOfman implements the 

Algorithm KaratsubaOfman(X, Y) 

 If (Size(X) = 1) Then KaratsubaOfman= OneBitMultiplier(X, Y) 

 Else  Product1 := KaratsubaOfman(High(X), High(Y)); 

   Product2 := KaratsubaOfman(Low(X), Low(Y)); 

   Product3 := KaratsubaOfman(High(X)+Low(X), High(Y)+Low(Y)); 

   KaratsubaOfman :=  RightShift(Product1, Size(X)) + 

              RightShift(Product3-Product1-Product2, Size(X)/2) + 
Product2; 

End KaratsubaOfman. 

Figure 1: Karatsuba-Ofman recursive multiplication algorithm 

Algorithm AdaptedKaratsubaOfman(X, Y) 

 If (Size(X) = 1) Then KaratsubaOfman := OneBitMultiplier(X, Y) 

 Else  Product1 := KaratsubaOfman(High(X), High(Y)); 

   Product2 := KaratsubaOfman(Low(X), Low(Y)); 

   P := KaratsubaOfman(Low(High(X)+Low(X)), Low(High(Y)+Low(Y))); 

   If Msb(High(X)+Low(X)) = 1 Then A :=  Low(High(Y)+Low(Y)) Else A := 0; 

   If Msb(High(Y)+Low(Y)) = 1 Then B :=  Low(High(X)+Low(X)) Else B := 0; 

   Product3 :=  LeftShift(Msb(High(X)+Low(X))•Msb(High(X)+Low(X)), Size(X)) + 
        LeftShift(A + B, Size(X)/2) + P; 

   KaratsubaOfman = LeftShift(Product1, Size(X)) + 

             LeftShift(Product3-Product1-Product2, Size(X)/2) + 
Product2; 

End AdaptedKaratsubaOfman. 

Figure 2: Adapted Karatsuba-Ofman’s algorithm 
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algorithm of Figure 2. Its interface is given in Figure 3. 
The input ports are the multiplier X and the multiplicand 
Y and the single output port is the product XY. It is clear 
that the multiplication of 2 n-bit operands yields a 
product of 2n-bits product.  

The VHDL recursive specification of the component 
architecture is given in the concise code of Figure 4. The 
architecture details of the component KaratsubaOfman 
are given in Figure 5. 

Entity KaratsubaOfman is 

 Generic( 

   n: positive 

 ); 

 Port( 

   X:  In  bit_vector (Size-1 To 0); 

   Y:  In  bit_vector (Size-1 To 0); 

    XY: Out  bit_vector(2*Size-1 To 0) 

 ); 

End KaratsubaOfman; 

Figure 3: Interface of component KaratsubaOfman 

The signals SXL and SYL are the two n-bits results of 
the additions XH + XY and YH + YL respectively. The two 
one-bit carryout of these additions are represented in 
Figure 5 by CX and CY respectively.  

The component ShiftnAdd (in Figure 5) first 
computes the sum S as SXL + SYL, SXL, SYL, or 0 
depending on the values of CX and CY (see also Table 1). 
Then computes Product3 as depicted in Figure 6, wherein 

T  represents CX ×CY. 
The computation implemented by component 

ShiftSubnAdd (in Figure 5) i.e. the computation specified 
in the last line of the Karatsuba-Ofman algorithm in 
Figure 1 and Figure 2 can be performed efficiently if the 
execution order of the operations constituting it is chosen 
carefully. This is shown in the architecture of Figure 7. 

 

Figure 6: Operation performed by the ShiftnAdder2n 

Component ShiftSubnAdd proceeds as follows: first 
computes R = Product1 + Product2; then obtains 2CR, 
which is the two’s complement of R; subsequently, 
computes U = Product3 + 2CR; finally, as the bits of 
Product1 and U must be shifted to the left 2n times and n 
times respectively, the component reduces the first and 
last additions as well as the shift operations in the last 
line computation of Karatsuba-Ofman’s algorithm (see 
Figure 1 and Figure 2) to a unique addition that is 
depicted in Figure 8. 

Architecture RecursiveArchitecture of KaratsubaOfman is 

 -- declaration part including components and temporary signals 

Begin 

 Termination: If k = 1 Generate  

  TCell: OneBitMultiplier Generic Map(n) Port Map(X(0), Y(0), XY(0) ); 

 End Generate Termination; 

 Recursion: If k /= 1 Generate 

   ADD1: Adder Generic Map(k/2) Port Map(X(k/2-1 Downto 0), X(k-1 Downto k/2), SumX 
); 

   ADD2: Adder Generic Map(k/2) Port Map(Y(k/2-1 Downto 0), Y(k-1 Downto k/2), SumY 
); 

   KO1: KaratsubaOfman Generic Map(k/2)  

       Port Map(X(k-1 Downto k/2),Y(k-1 Downto k/2),Product1); 

   KO2: KaratsubaOfman Generic  Map(k/2)  

       Port  Map(X(k/2-1 Downto 0),Y(k/2-1 Downto 0),Product2); 

   KO3: KaratsubaOfman Generic  Map(k/2)  

       Port  Map(SumX(k/2-1 Downto 0), SumY(k/2-1 Downto 0), P); 

   SA:  ShiftnAdder Generic Map(k)  

     Port Map(SumX(k/2),SY(n/2), SX(k/2-1 Downto 0), SY(k/2-1 Downto 0), 
P,Product3); 

   SSA: ShifterSubnAdder Generic Map(k) Port Map( Product1, Product2, Product3, XY 
); 

 End Generate Recursion; 

End RecursiveArchitecture; 

Figure 4: Recursive architecture of the component KaratsubaOfman of size n 
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2.2 Booth’s Multiplication Method 
Algorithms that formalize the operation of multiplication 
generally consist of two steps: one generates a partial 
product and the other accumulates it with the previous 
partial products. The most basic algorithm for 
multiplication is based on the add-and-shift method: the 
shift operation generates the partial products while the 
add step sums them up [3]. 

 
Figure 7: Architecture of ShiftSubnAdder2n 

 
Figure 8: Last addition performed by ShiftSubnAdder2 

 
The straightforward way to implement a 

multiplication is based on an iterative adder-accumulator 
for the generated partial products as depicted in Figure 9. 
However, this solution is quite slow as the final result is 
only available after n clock cycles, n is the size of the 
operands. 

 
Figure 9: Iterative multiplier 
A faster version of the iterative multiplier should add 

several partial products at once. This could be achieved 

≈  right shift 

 
Figure 5: Macro view of KaratsubaOfman2n in terms of KaratsubaOfman of size 2n 
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by unfolding the iterative multiplier and yielding a 
combinatorial circuit that consists of several partial 
product generators together with several adders that 
operate in parallel. In this paper, we use such a parallel 
multiplier as described in Figure 10. Now, we detail the 
algorithms used to compute the partial products and to 
sum them up.  

 
Figure 10: Parallel multiplier. 

2.2.1 Booth’s Algorithm 
Now, we concentrate on the algorithm used to compute 
partial products as well as reducing the corresponding 
number without deteriorating the space and time 
requirement of the multiplier. 

Let X and Y be the multiplicand and multiplicator 
respectively and let n and m be their respective sizes. So, 
we denote X and Y as follows: 
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Inspired by the above notation of X, Y and that of 
X×Y, the add-and-shift method [2], [3] generates n partial 
products: xi×Y, 0 ≤ i < n. Each partial product obtained is 
shifted left or right depending on whether the starting bit 
was the less or the most significant and added up. The 
number of partial products generated is bound above by 
the size (i.e. number of bits) of the multiplier operand. In 
cryptosystems, operands are quite large as they represent 
blocks of text (i.e. ≥ 1024 bits). 

Another notation of X and Y allows to halve the 
number of partial products without much increase in 
space requirements. Consider the following notation of X 
and X×Y: 
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The possible values of ix~ with the respective values 
of x2×i+1, x2×i, and x2×i−1 are −2 (100), −1 (101, 110), 0 
(000, 111), 1 (001, 010) and 2(011). Using this recoding 
will generate ⎡(n+1)/2⎤ −1 partial products. 

Inspired by the above notation, the modified Booth 
algorithm [3], [12] generates the partial products ix~ ×Y. 
These partial products can be computed very efficiently 
due to the digits of the new representation ix~ . The 
hardware implementation will be detailed in Section 3. 

In the algorithm of Figure 11, the terms 4×2n+1 and 
3×2n+1 are supplied to avoid working with negative 
numbers. The sum of these additional terms is congruent 
to zero modulo 2n+⎡(n+1)⎤ − 1. So, once the sum of the 
partial products is obtained, the rest of this sum in the 
division by 2n+⎡(n+1)⎤ −1 is finally the result of the 
multiplication X×Y.  

The partial product generator is composed of k Booth 
recoders [3], [6]. They communicate directly with k 
partial product generators as shown in Figure 12. 
Algorithm Booth(x2×i-1,x2×i,x2×i+1,Y)  
 Int product := 0; 
 Int pp[⎡(n+1)/2⎤ −1]; 
 pp[0] := ( 0

~x ×Y + 4×2n+1)×22×i ; 

 For i = 0 To ⎡(n+1)/2⎤ −1 Do 
  pp[i] := ( ix~ ×Y + 3×2n+1)×22×i ; 

  product := product + pp[i]; 
 Return product mod 2n+⎡(n+1)⎤ − 1; 
End Booth 

Figure 11: Multiplication algorithm 
 
The required partial products, i.e. ix~ ×Y are easy 

multiple. They can be obtained by a simple shift. The 
negative multiples in 2’s complement form, can be 
obtained form the positive corresponding number using a 
bit by bit complement with a 1 added at the least 
significant bit of the partial product. The additional terms 
introduced in the previous section can be included into 
the partial product generated as three/two/one most 
significant bits computed as follows, whereby, ++ is the 
bits concatenation operation, 〈A〉 is the binary notation of 
integer A, 0i is a run of i zeros and B[n:0] is the selection of 
the n less significant bits of the binary representation B. 
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Figure 12: The partial product generator architecture. 

The Booth selection logic circuitry used, denoted by 
BRi for 0 ≤ i ≤ k in Figure 12, is very simple. The cell is 
described in Figure 13. The inputs are the three bits 
forming the Booth digit and outputs are three bits: the 
first one SY is set when the partial product to be 
generated is Y or −Y, the second one S2Y is set when the 
partial product to be generated is 2×Y or −2×Y, the last 
bit is the simply the last bit of the Booth digit given as 
input. It allows us to complement the bits of the partial 
products when a negative multiple is needed. 

 
Figure 13: Booth recoder selection logic. 
 
The circuitry of the partial generator denoted by PPi 

Generator, is given in Figure 14. 
In order to implement the adder of the generated 

partial products, we use a hybrid new kind of adder. It 
consists cascade of intercalated stages of carry save 
adders and delayed carry adders.  

2.3 Multipliers Area/Time Requirements  
The entire design was done using the Xilinx™ Project 
Manager (version Build 6.00.09) [40] through the steps 
of the Xilinx design cycle shown in Figure 15. 

 

 
Figure 14: The partial product generator. 

 
Figure 15: Design cycle. 

The design was elaborated using VHDL [20]. The 
synthesis step generates an optimized netlist that is the 
mapping of the gate-level design into the Xilinx format: 
XNF. Then, the simulation step consists of verifying the 
functionality of the elaborated design. The 
implementation step consists of partitioning the design 
into logic blocks, then finding a near optimal placement 
of each block and finally selecting the interconnect 
routing for a specific device family. This step generates a 
logic PE array file from which a bit stream can be 
obtained. The implementation step provides also the 
number of configurable logic blocks (CLBs). The 
verification step allows us to verify once again the 
functionality of the design and determine the response 
time of the design including all the delays of the physical 
net and padding. The programming step consists of 
loading the generated bit stream into the physical device. 

The design was implemented into logic blocks using 
a specific device family, namely SPARTAN S05PC84-4. 

As explained before, the Karatsuba’s multiplier 
reduces to an ensemble of adders. These adders are 
implemented using ripple-carry adders, which can be 
very efficiently implemented into FPGAs as the carryout 
signal uses dedicated interconnects in the CLB and so 
there is no routing delays in the data path. An n-bit 
ripple-carry adder is implemented using n/2+2 CLBs and 
has a total fixed delay of 4.5+0.35n nanoseconds. 
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Table 2 shows the delay introduced and area 
required by the Karatsuba-Ofman multiplier (KO) 
together with those for a hardware implementation of the 
Booth multiplier which uses a Wallace tree for adding up 
the partial products (BW), another hardware 
implementation of Booth’s algorithm that uses a 
redundant binary Booth encoding (PRB) and the 
Synopsys™ library multiplier (DW02) [11]. This is given 
for three different operand sizes. The delays are 
expressed in ns. These delays are represented graphically 
in Figure 16. 

 
KO BW PRB DW02 size 

delay area delay area delay area delay area 

8 12.6 1297 44.6 1092 31.8 862 56.2 633 

16 22.8 6300 93.9 5093 46.6 3955 114.9 2760 

32 29.1 31740 121.5 20097 64.9 17151 164.5 11647

Table 2: Delays and areas for different multipliers 

Table 2 also shows the area required by our 
multiplier compared with those needed for the 
implementation of BW, PBR and DW02. The areas are 
given in terms of total number of gates necessary for the 
implementation. These results are represented 
graphically in Figure 17. 

It is clear from Figure 16 and Figure 17 that the 
engineered Karatsuba-Ofman multiplier works much 
faster than the other three multipliers. However, it 

consumes more hardware area. Nevertheless, the 
histogram of Figure 18, which represents the area×time 
factor for the four compared multipliers implementations, 
shows that proposed multiplier improves this product. 

 

Figure 18: Representing area×time factor 

So, our multiplier improves the area×time factor as 
well as time requirement while the other three improve 
area at the expense of both time requirement and the 
area×time factor. Moreover, we strongly think that for 
larger operands, the Karatsuba-Ofman multiplier will 
yield very much better characteristics, i.e. time and area 
requirements as it is clear from Figure 16, Figure 17 and 
Figure 18. 

3 Barrett’s Reduction Method 
A modular reduction is simply the computation of the 
remainder of an integer division. It can be denoted by: 

M
M
XXMX ×⎥⎦
⎥

⎢⎣
⎢−=mod  

However, a division is very expensive even 
compared with a multiplication.  

The naive sequential division algorithm successively 
shifts and subtracts the modulus until the remainder that 
is non-negative and smaller than the modulus is found. 
Note that after a subtraction, a negative remainder may 
be obtained. So in that case, the last non-negative 
remainder needs to be restored and so will be the 
expected remainder. This computation is described in the 
algorithm of Figure 19. 

Algorithm NaiveReduction(P, M)  

 Int R := P; 

 Do R := R – M; 

 While R > 0; 

 If R ≠ 0 Then R := R + M; 
 Return R; 

End NaiveReduction 

Figure 19: Naive reduction algorithm 

In the context of this paper, P is the result of a 
product so it has at most 2n bits assuming that the 
operands have both n bits.  

The computation performed in the naïve algorithm 
above is very inefficient as it may require 2n−1 
subtractions, 2n comparisons and an extra addition. 
Instead of subtracting a single M one can subtract a 

 
Figure 16: Representing time requirement 

Figure 17: Representing space requirement 
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multiple of it at once. However, in order to yield 
multiples of M further computations, namely 
multiplications, need be performed, except for power of 
two multiples, i.e. 2kM. These are simply M left-shifted k 
times, which can very cheaply implemented on hardware. 
This idea is described in the restoring division algorithm 
given in Figure 20.  It attempts to subtract the biggest 
possible power of two multiple of M from the actual 
remainder. Whenever the result of that operation is 
negative it restores the previous remainder and repeats 
the computation for all possible power of two multiples 
of M, i.e. 2nM, 2n−1M, …, 2M, M. 

Algorithm RestoringReduction(P, M)  

 Int R0 := P; 

 Int N := LeftShift(M, n); 

 For i = 1 To n Do  

  Ri := Ri-1 – N; 

  If R < 0 Then Ri := Ri-1; 

  N := RightShift(N); 

 Return Ri; 

End RestoringReduction 

Figure 20: Restoring reduction algorithm 
The computation performed in the restoring 

reduction algorithm requires n subtractions, n 
comparisons and some 2n shifting as well as some 
restoring operations. This is very much more efficient 
than the computation of the algorithm in Figure 19. 

An alternative to the restoring reduction algorithm is 
the non-restoring one. The non-restoring reduction 
algorithm is given in Figure 21.  

Algorithm NonRestoringReduction(P, M)  

 Int R0 := P; 

 Int N := LeftShift(M, n); 

 For i = 1 To n Do  

  If R > 0 Then Ri := Ri-1 – N; 

  Else Ri := Ri-1 + N; 

  N := RightShift(N); 

 If Ri < 0 Then Ri := Ri-1 + N; 

 Return Ri; 

End RestoringReduction 

Figure 21: Non-restoring reduction algorithm 

It allows negative remainder. When the remainder is 
non-negative it sums it up with the actual power of two 
multiple of M. Otherwise, it subtracts that multiple of M 
from it. It keeps doing so repeatedly for all possible 
power of two multiples of M, i.e. 2nM, 2n−1M, …, 2M, M. 
The non-restoring reduction computation requires a final 
restoration that adds M to the obtained remainder when 
the latter is negative. 

Using Barrett’s method [2], [6], we can estimate the 
remainder using two simple multiplications. The 
approximation of the quotient is calculated as follows: 

⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
×⎥

⎦

⎥
⎢
⎣

⎢

=

⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ ×
×⎥

⎦

⎥
⎢
⎣

⎢

=⎥
⎦

⎥
⎢
⎣

⎢
+

×

−

+

+−

−

1

2

1

1

11

1

2

2
2

2

22
2

n

n

n

n

nn

n M
X

M
X

M
X  

The equation above can be calculated very efficiently as 
division by a power of two 2x are simply a truncation of 
the operand’ x-least significant digits. The term 
⎣ ⎦Mn×22  depends only on M and so is constant for a 
given modulus. So, it can be pre-computed and saved in 
an extra register. Hence the approximation of the 
remainder using Barrett’s method [2], [6] is a positive 
integer smaller than 2×(M−1). So, one or two 
subtractions of M might be required to yield the exact 
remainder (see Figure 22). 

4 Booth-Barrett’s Method 
In this section, we outline the architecture of the 
multiplier, which is depicted in Figure 4. Later on in this 
section and for each of the main parts of this architecture, 
we give the detailed circuitry, i.e. that of the partial 
product generator, adder and reducer. 
The multiplier of Figure 4 performs the modular 
multiplication X×Y mod M in three main steps:  

Figure 22: The modular multiplier architecture
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1. Computing the product P = X×Y;  
2. Computing the estimate quotient Q = P/M  

⇒ Q  ≅ ⎣ ⎦MP nn ×− × 21 22 ; 
3. Computing the final result P − Q×M. 

 
During the first step, the modular multiplier first 

loads register1 and register2 with X and Y respectively; 
then waits for PPG to yield the partial products and 
finally waits for the ADDER to sum all of them. During 
the second step, the modular multiplier loads register1, 
register2 and register3 with the obtained product P, the 
pre-computed constant ⎣ ⎦Mn×22 and P respectively; 
then waits for PPG to yield the partial products and 
finally waits for the ADDER to sum all of them. During 
the third step, the modular multiplier first loads register1 
and register2 with the obtained product Q and the 
modulus M respectively; then awaits for PPG to generate 
the partial products, then waits for the ADDER to provide 
the sum of these partial products and finally waits for the 
REDUCER to calculate the final result P−Q×M, which is 
subsequently loaded in the accumulator acc. 

4.1 The Montgomery Algorithm 
Algorithms that formalize the operation of modular 

multiplication generally consist of two steps: one 
generates the product P = A×B and the other reduces this 
product P modulo M. 

The straightforward way to implement a 
multiplication is based on an iterative adder-accumulator 
for the generated partial products. However, this solution 
is quite slow as the final result is only available after n 
clock cycles, n is the size of the operands [19].  

A faster version of the iterative multiplier should add 
several partial products at once. This could be achieved 
by unfolding the iterative multiplier and yielding a 
combinatorial circuit that consists of several partial 
product generators together with several adders that 
operate in parallel [15], [16]. 

One of the widely used algorithms for efficient 
modular multiplication is the Montgomery’s algorithm 
[18]. This algorithm computes the product of two 
integers modulo a third one without performing division 
by M. It yields the reduced product using a series of 
additions 

Let A, B and M be the multiplicand and multiplier 
and the modulus respectively and let n be the number of 
digit in their binary representation, i.e. the radix is 2. So, 
we denote A, B and M as follows: 
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The pre-conditions of the Montgomery algorithm are as 
follows: 

The modulus M needs to be relatively prime to the 
radix, i.e. there exists no common divisor for M and the 
radix; 

The multiplicand and the multiplicator need to be 
smaller than M. 

As we use the binary representation of the operands, 
then the modulus M needs to be odd to satisfy the first 
pre-condition. 

The Montgomery algorithm uses the least significant 
digit of the accumulating modular partial product to 
determine the multiple of M to subtract. The usual 
multiplication order is reversed by choosing multiplier 
digits from least to most significant and shifting down. If 
R is the current modular partial product, then q is chosen 
so that R+q×M is a multiple of the radix r, and this is 
right-shifted by r positions, i.e. divided by r for use in the 
next iteration. So, after n iterations, the result obtained is 
R =A×B×r−n mod M [14]. A modified version of 
Montgomery algorithm is given in Figure 23.  
 
algorithm Montgomery(A, B, M) 

  int R = 0; 

  1: for i= 0 to n-1 

  2:  R = R + ai×B; 
  3:  if r0 = 0 then 

  4:   R = R div 2 

  5:  else 

  6:   R = (R + M) div 2; 

  return R; 

end Montgomery. 

Figure 23: Montgomery modular algorithm. 

In order to yield the right result, we need an extra 
Montgomery modular multiplication by the constant 2n 

mod M. However as the main objective of the use of 
Montgomery modular multiplication algorithm is to 
compute exponentiations, it is preferable to Montgomery 
pre-multiply the operands by 22n and Montgomery post-
multiply the result by 1 to get rid of the 2−n factor. Here 
we concentrate on the implementation of the 
Montgomery multiplication algorithm of Figure 23.  

In order to yield the right result, we need an extra 
Montgomery modular multiplication by the constant r2n 

mod M. As we use binary representation of numbers, we 
compute the final result using the algorithm of Figure 24. 

algorithm ModularMult(A, B, M, n) 

 const C := 2n mod M; 

 int R := 0; 

 R := Montgomery(A, B, M); 

 return Montgomery(R, C, M); 

end ModularMult. 

Figure 24: Modular multiplication algorithm 

4.2 Iterative Montgomery Architecture 
In this section, we outline the architecture of the 
Montgomery modular multiplier. The interface of the 
Montgomery modular multiplier is given in Figure 25. It 
expects the operands A, B and M and it computes  
R = (A×B×2−n) mod M.  
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Figure 25: Montgomery multiplier interface 

The detailed architecture of the Montgomery 
modular multiplier is given in Figure 26. It uses two 
multiplexers, two adders, two shift registers, three 
registers and a controller. The latter will be described in 
the next section. 

The first multiplexer of the proposed architecture, 
i.e. MUX21 passes 0 or the content of register B depending 
on whether bit a0 indicates 0 or 1 respectively. The 
second multiplexer, i.e. MUX22 passes 0 or the content of 
register M depending on whether bit r0 indicates 0 or 1 
respectively. The first adder, i.e. ADDER1, delivers the 
sum R + ai × B (line 2 of algorithm of Fig. 1), and the 
second adder, i.e. ADDER2, yields the sum R + M (line 6 
of the same algorithm). The shift register SHIFT 
REGISTER1 provides the bit ai. In each iteration i of the 
multiplier, this shift register is right-shifted once so that 
a0 contains ai. 

The role of the controller consists of synchronizing 
the shifting and loading operations of the SHIFT 
REGISTER1 and SHIFT REGISTER2. It also controls the 
number of iterations that have to be performed by the 
multiplier. For this end, the controller uses a simple 
down counter. The counter is inherent to the controller. 
The interface of the controller is given in Figure 27. 

 

Figure 26: Montgomery multiplier architecture  

 
Figure 27: Interface of the Montgomery controller  

In order to synchronize the work of the components of 
the architecture, the controller consists of a state 
machine, which has 6 states defined as follows: 

• S0: Initialize of the state machine;  
  Go to S1; 

• S1: Load multiplicand and modulus into  
  the corresponding registers; 
  Load multiplier into shift register1; 

  Go to S2; 
• S2:  Wait for ADDER1; 

  Wait for ADDER2; 
  Load multiplier into shift register2;  
  Increment counter; 
  Go to S3;   

• S3:  Enable shift register2; 
  Enable shift register1; 

• S4:  Check the counter;  
  If 0 then go to S5 else go to S2;  

• S5:   Halt;  

4.3 Modular Multiplier Architecture  
The modular multiplier yields the actual value of  
A×B mod M. It first computes R = A×B×2−n mod M using 
the Montgomery modular multiplier. Then, it computes  
R × C mod M, where C = 2n mod M. The modular 
multiplier interface is shown in Figure 28. 

 
Figure 28: The modular multiplier interface 

The modular multiplier uses a 4-to-1 multiplexer MUX4 
and a register REGISTER.  

• Step 0:  Multiplexer MUX4 passes 0 or B. MUX2 
passes A. It yields R1 = A×B×2−n mod M. The register 
denoted by REGISTER contains 0. 

• Step 1:  Multiplexer MUX4 passes 0 or R. MUX2 
passes C. It yields R = R1×C mod M. The register 
denoted by REGISTER contains the result of the first 
step computation, i.e. R = A×B×2−n mod M. 
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The modular multiplier architecture is given in Figure 29. 
In order to synchronize the actions of the components of 
the modular multiplier, the architecture uses a controller, 
which consists of a state machine of 10 states. The 
interface of CONTROLLER is that of Figure 30.  

The modular multiplier controller does all the control 
that the Montgomery modular multiplier needs as 
described in the previous section. Furthermore, it 
controls the changing from step 0 to step 1, the loading 
of the register denoted by REGISTER. The state machine is 
depicted in Figure 31. 
• S0: Initialize of the state machine;  

 Set step to 0; Go to S1;  
• S1: Load multiplicand and modulus; Load 

multiplier  
   into SHIFT REGISTER1; Go to S2; 

 
Figure 29: The modular multiplier architecture  

 
Figure 30. The interface of the multiplier controller  

• S2:  Wait for adder1; Wait for ADDER2; 
 Load partial result into SHIFT REGISTER2; 
 Increment counter; Go to S3;   

• S3:  Enable SHIFT REGISTER2; 
 Enable SHIFT REGISTER1; Go to S4; 

• S4:  Load the partial result of step 0 into REGISTER; 
 Check the counter;  
 If 0 then go to S5 else go to S2;  

• S5:   Load constant into SHIFT REGISTER1; 
 Reset REGISTER; 
 Set step to 1; Go to S6; 

• S6:  Wait for ADDER1; Wait for ADDER2; 
 Load partial result into SHIFT REGISTER2;  
 Increment counter; Go to S7; 

• S7:  Enable SHIFT REGISTER2; 
 Enable SHIFT REGISTER1; Go to S8; 

• S8:  Check the counter;  
 If 0 then go to S9 else go to S6;  

• S9:  Halt. 

4.4 Simulation Results 
The project of the modular multiplier described 
throughout this section was specified in Very High Speed 
Integrated Circuit Description Language - VHDL [20], 
and simulated using the XilinxTM Project Manager [40]. 
It allows the user to design and simulate the functionality 

 
Figure 31: The state machine of the multiplier controller 
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of his/her design. Moreover, it allows the synthesis of a 
correct design as well as its download on a specific 
FPGA.  

First, we functionally simulated the Montgomery 
modular multiplier prototype for operands A = 15,  
B = 26, M = 47 and so the constant C = 22x6 mod 47, 
which is C = 7. The signal values are shown in  
Figure 32 and Figure 33. The result is shown by signal R. 

Figure 32 shows the behavior of the multiplier 
during the first modular multiplication (note that signal 
step is not set). Figure 33 shows the results of the second 
modular multiplication (note that signal step is set).  

Also, we simulated the Montgomery modular 
multiplier prototype for bigger operand size, i.e. 16 bits. 
The operands are A = 120, B = 103, M = 143 and so the 
constant C = 22x8 mod 143, which is C = 42. The result of 
the simulation is shown in Figure 34 and Figure 35.  

 
Figure 32: The modular multiplier behavior during the first multiplication: Montgomery(15, 26, 47) = 34 

 
 

Figure 33: The modular multiplier behavior during the second multiplication: Montgomery(7,34,47) = 14 



124 Informatica 30 (2006) 111–129 N. Nedjah et al.  
 

As before, Figure 34 shows the behavior of the 
multiplier during the first modular multiplication and 
Figure 35 shows the results of the second modular 
multiplication (note that signal step is set). 

4.5 Systolic Montgomery Algorithm 
A modified version of Montgomery algorithm [29] is that 
of Figure 36. The least significant bit of R + ai×B is the 
least significant bit of the sum of the least significant bits 
of R and B if ai is 1 and the least significant bit of R 
otherwise. Furthermore, new values of R are either the 

old ones summed up with ai×B or with ai×B + qi×M 
depending on whether qi is 0 or 1. 
algorithm ModifiedMontgomery(A, B, M) 

  int R := 0; 

  1: for i := 0 to n-1 

  2:  qi := (r0 + ai×b0) mod 2; 
  3:  R  := (R + ai×B + qi×M) div 2; 
  return R; 

end ModifiedMontgomery. 

Figure 36: Modified Montgomery algorithm 

Figure 34: The multiplier behavior during the first multiplication: Montgomery(120, 103, 143) = 160 

Figure 35: The modular multiplier behavior during the second multiplication: Montgomery(42, 160, 142) = 62 
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Consider the expression R + ai×B + qi×M of line 2 in the 
algorithm of Figure 36. It can be computed as indicated 
in the last column of Table 3 depending on the value of 
the bits ai and qi. 

ai qi R + ai×B + 
qi×M 

1 1 R + MB 
1 0 R + B 
0 1 R + M 
0 0 R 

Table 3: Computation of R + ai×B + qi×M 
A bit-wise version of the algorithm of Fig. 4, which is at 
the basis of our systolic implementation, is described in 
Figure 37. All algorithms, i.e. those of Figure 23, Figure 
24 and Figure 37 are equivalent. They yield the same 
result. In the algorithm of Figure 37, MB represents the 
result of M + B, which has at most has n + 1 bits. 

4.6 Systolic Hardware Multiplier 
Assuming the algorithm of Figure 37 as basis, the main 
processing element (PE) of the systolic architecture of 
the Montgomery modular multiplier computes a bit rj of 
residue R. This represents the computation of line 8. The 

left-border PEs of the systolic arrays perform the same 
computation but beside that, they have to compute bit qi 
as well. This is related to the computation of line 1. The 
duplication of the PEs in a systolic form implements the 
iteration of line 0. The systolic architecture of the 
systolic Montgomery multiplier is shown in Figure 38. 

 
algorithm SystolicMontgomery(A,B,M,MB) 
 int  R := 0;  
 bit carry := 0, x; 
 0: for i := 0 to n 

 1:  qi := 
(i)
0r  ⊕ ai.b0; 

 2:  for j := 0 to n 
 3:   switch ai, qi  
 4:    1,1: x := mbi; 
 5:    1,0: x := bi; 
 6:    0,1: x := mi; 
 7:    0,0: x := 0; 

 8:    1)(i
jr

+  := (i)
1jr +  ⊕ xi ⊕ carry; 

 9:  carry:= (i)
1jr + .xi+

(i)
1jr + .carry+xi.carry; 

 return R; 
end SystolicMontgomery. 

Figure 37: Systolic Montgomery algorithm 

 
Figure 38: Systolic architecture of Montgomery multiplier 
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The architecture of the basic PE, i.e. celli,j  
1 ≤ i ≤ n−1 and 1 ≤ i ≤ n−1, is shown in Figure 39. It 
implements the instructions of lines 2-9 in systolic 
Montgomery algorithm of Figure 37. The architecture of 
the right-most top-most PE, i.e. cell0,0, is given in Figure 
40. Besides the computation of lines 2-9, it implements 
the computation indicated in line 1. However as )0(

0r is 
zero, the computation of q0 is reduced to a0.b0. Besides, 
the full-adder is not necessary as carry in signal is also 0 
so )0(

1r ⊕ xi ⊕ carry and )0(
1r .xi+ )0(

1r .carry+xi.carry 
are reduced to xi  and 0. 

 
 

 
Figure 39: Basic PE architecture 

 
Figure 40: Right-most top-most PE – cell0,0 

The architecture of the rest of the PEs of the first 
column is shown in Figure 41. It computes q0 in the more 
general case, i.e. when )(

0
ir  is not null. Moreover, the 

full-adder is substituted by a half-adder as the carry in 
signals are zero for these PEs. 

The architecture of the architecture of the left border 
PEs, i.e. cell0,j, is given in Figure 42. As )(i

nr  = 0, the 
full-adder is unnecessary and so it is substituted by a 
half-adder. 

 
Figure 41: Right-border PEs – celli,0 

 

 
Figure 42: Left-border PEs – cell0,j 

The sum M+B is computed only once at the 
beginning of the multiplication process. This is done by a 
row of full adder. 

4.7 Time and Area Requirements 
Consider the architecture of the systolic modular 
Montgomery multiplier of Figure 38. The output bit 

)1( +n
jr  of the modular multiplication is yield after 2n + 2 

+ j after bits bj, mj and mbj are fed into the systolic array 
plus an extra clock cycle, which is needed to obtain the 
bit mbj. So the first output bit appears after 2n + 3 clock 
cycles.  

Table 4 shows the performance figures obtained by 
the Xilinx project synthesizer for the iterative multiplier 
the systolic modular multiplier, wherein IM and SM stand 
for iterative multiplier and systolic multiplier 
respectively. The synthesis was done for VIRTEX-E [40] 
family.  

In Table 4, we present the clock cycle time required, 
the area, i.e. the number of CLBs necessary as well as the 
time×area product delivered by the synthesis and the 
verification tools of the Xilinx project manager [40] for 
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the iterative and systolic version of Montgomery 
multiplier. 
 

Area 
(CLBs) 

clock cycle 
time (ns) area×time operand 

size IM SM IM SM IM SM 
128 89 259 46 23 4094 5957 

256 124 304 102 42 12648 12767 

512 209 492 199 76 41591 37392 

768 335 578 207 82 69345 47396 

1024 441 639 324 134 142884 85626 

Table 4: Performance figures: iterative vs. systolic  

The chart of Figure 43 compares the area×time 
product of iterative multiplier implementation vs. the 
systolic implementation. It shows that the latter improves 
the product as well as time requirement while the former 
improves area at the expense of both time requirement 
and the product.    
 The results show clearly that despite of requiring 
much more hardware area, our implementation improves 
substantially the time requirement and the  performance 
factor when the operand size is bigger than 256 bits. This 
is almost always the case in RSA encryption/decryption 
systems. Nowadays, the hardware area has a very 
reasonable price so can be bought. However, the 
encryption/decryption throughput of cryptographic 
systems is the most fundamental characteristic and so 
cannot be sacrificed.    

5 Further Improvements 
The modular multiplication algorithm and respective 
hardware can be further improved if the representation of 
the operands is considered. The bits of the binary 
representation can be grouped to increase the 
representation base. For instance, if the bits are grouped 
into pairs or triples, the base will be 4 or 8 respectively. 
Although other bases are possible, usually a power of 2 is 
preferred to make conversion to and from binary easy. 
Increasing the base reduces the number of digits in the 
operand and so reduces the number of clock cycles 
required to complete a modular multiplication. Another 
improvement consists of using the so-called redundant 
representation of the operand together with the 
Montgomery algorithm. This avoids the unbounded 
propagation of carries.   

 

 
Figure 43: The area×time factor for iterative vs. systolic  

6 Discussion 
As stated in the introduction, the methods used to 
compute modular products fall in two categories: (i) 
those that first compute the product then reduced 
product, and (ii) those that compute the modular product 
directly.  

The advantage of the first category method is that 
one can use any on-the-shelf method for multiplication 
and reduction. However, the only such methods that are 
efficient consist of those presented here, i.e. Karatsuba-
Ofman’s and Booth’s methods for multiplication and 
Barrett’s method for reduction. As far as the authors are 
concerned, these methods are the only ones appropriate 
for hardware implementation. Another disadvantage of 
using the multiply-then-reduce method is that the product 
is generally large and thus requires a great deal of space 
to store it for further use by the reduction step.  

In contrast, the methods that interleave 
multiplication and reduction steps to produce the 
modular product do not have to store the product. 
However, also as far as the authors are concerned, only 
Montgomery’s method that yields the modular product in 
such a way. Hardware implementation of Montgomery’s 
algorithm always require very much less area than the 
implementations of the first category methods. 
Furthermore, these implementations are always very 
much slower than the implementations of Montgomery 
method.  

7 Conclusions 
In this paper we surveyed most known and recent 
methods for efficient modular multiplication. For each 
method presented, we provide an adequate hardware 
implementation.  

We explained that the modular multiplication A×B 
mod M can be performed in two different ways: 
obtaining the product then reducing it; or obtaining the 
reduced product directly. There are various algorithms 
that implement modular multiplication. The most 
prominent algorithms are Karatsuba-Ofman’s [27], [28] 
and Booth’s [21], [22] methods for multiplying, Barrett’s 
[21] method for reducing, and Montgomery’s algorithms 
[5], [23], [24], [25], [26], [38], [39] for interleaving 
multiplication and reduction. 
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Throughout this paper, we considered each one of 
the methods cited previously. The review was organized 
as follows: First we described the Karatsuba-Ofman’s 
and Booth’s methods for multiplying. Subsequently, we 
presented Barrett’s method for reducing an operand 
modulo a given modulus. For each method, we detailed 
the hardware architecture and then compared the 
respective hardware with respect to area and response 
time requirements. The implementation of the modular 
multiplication using Karatsuba-Ofman’s method for 
multiplying and Barrett’s method for reducing the 
obtained result presents a shorter signal propagation 
delay than using Booth’s method together with Barrett’s 
method, without much increase in hardware area 
requirements.  

After that, we detailed the Montgomery’s algorithm 
for interleaving multiplication and reduction. For the 
method, we presented two hardware implementations: 
one iterative and the other systolic. The systolic 
implementation is much better that the sequential one but 
requires more hardware area. 

Subsequently, we reviewed some techniques that 
should allow further improvement to the implementation 
of the modular multiplication with long operand.    

8 Acknowledgments 
We are grateful to the reviewers and the editor that 
contributed to the great improvement of the original 
version of this paper with their valuable comments and 
suggestions. We also are thankful to FAPERJ (Fundação 
de Amparo à Pesquisa do Estado do Rio de Janeiro,  
http://www.faperj.br) and CNPq (Conselho Nacional de 
Desenvolvimento Científico e Tecnológico, 
http://www.cnpq.br) for their continuous financial 
support. 

9 References 
[1]  Ashenden, P.J., Recursive and Repetitive Hardware 

Models in VHDL, Joint Technical Report, TR 
160/12/93/ECE, University of Cincinnati, and TR 
93-19, University of Adelaide, 1993.  

[2]  Barrett, P., Implementating the Rivest, Shamir and 
Aldham public-key encryption algorithm on 
standard digital signal processor, Proceedings of 
CRYPTO'86, Lecture Notes in Computer Science 
263:311-323, Springer-Verlag, 1986. 

[3]  Booth, A., A signed binary multiplication 
technique, Quarterly Journal of Mechanics and 
Applied Mathematics, pp. 236-240, 1951. 

[4]  Brickell, E. F., A survey of hardware 
implementation of RSA, In G. Brassard, ed., 
Advances in Cryptology, Proceedings of 
CRYPTO'98, Lecture Notes in Computer Science 
435:368-370, Springer-Verlag, 1989.  

[5]  S. E. Eldridge and C. D. Walter, Hardware 
implementation of Montgomery’s modular 
multiplication algorithm, IEEE Transactions on 
Computers, 42(6):619-624, 1993. 

[6]  Bewick, G.W., Fast multiplication algorithms and 
implementation, Ph. D. Thesis, Department of 
Electrical Engineering, Stanford University, United 
States of America, 1994. 

[7]  Dhem, J.F., Design of an efficient public-key 
cryptographic library for RISC-based smart cards, 
Ph.D. Thesis, Faculty of Applied Science, Catholic 
University of Louvain, May 1998.  

[8]  W. Diffie and M.E. Hellman, New directions in 
cryptography, IEEE Transactions on Information 
Theory, vol. 22, pp. 644-654, 1976.  

[9]  ElGamal, T., A public-key cryptosystems and 
signature scheme based on discrete logarithms, 
IEEE Transactions on Information Theory, 
31(4):469-472, 1985. 

[10]  Gutmann P., Cryptographic Security Architecture: 
Design and Verifcation, Springer-Verlag, 2004. 

[11]  Kim, J.H., Ryu, J. H., A high speed and low power 
VLSI multiplier using a redundant binary Booth 
encoding, Proc. of 6th Korean Semiconductor 
Conference, PA-30, 1999. 

[12]  Knuth, D.E., The art of computer programming: 
seminumerical algorithms, vol 2, 2nd Edition, 
Addison-Wesley, Reading, Mass., 1981. 

[13]  Jung, M., Madlener, F., Ernst, M. and Huss, S.A., A 
reconfigurable coprocessor for finite field 
multiplication in GF(2n), Proc. of IEEE Workshop 
on Heterogeneous Reconfigurable systems on Chip, 
Hamburg, Germany, 2002.  

[14]  Koç, Ç.K., High speed RSA implementation, 
Technical report, RSA Laboratories, RSA Data 
Security Inc. CA, version 2, 1994. 

[15]  Lim, C.H., Hwang, H.S. and Lee, P.J., Fast 
modular reduction with precomputation, In 
Proceedings of Korea-Japan Joint Workshop on 
Information Security and Cryptology, Lecture 
Notes in Computer Science, 488:323-334, 1991. 

[16]  MacSorley, O., High-speed arithmetic in binary 
computers, Proceedings of the IRE, pp. 67-91, 
1961. 

[17]  Menezes, A. van Oorschot, P. and Vanstone, S., 
Handbook of Applied Cryptography, CRC Press, 
1996. 

[18]  Montgomery, P.L., Modular Multiplication without 
trial division, Mathematics of Computation,  
44: 519-521, 1985. 

[19]  Mourelle, L.M. and Nedjah, N., Compact iterative 
hardware simulation model for Montgomery’s 
algorithm of modular multiplication, Proceedings 
of ACS/IEEE International Conference on 
Computer Systems and Applications, Tunis, 
Tunisia, July 2003. 

[20]  Navabi, Z., VHDL - Analysis and modeling of 
digital systems, McGraw Hill, Second Edition, 
1998. 

[21]  Nedjah, N. and Mourelle, L.M., Yet another 
implementation of modular multiplication, 
Proceedings of 13th. Symposium of Computer 
Architecture and High Performance Computing, 
Brasilia, Brazil, IFIP, pp. 70-75, 2001.  



A REVIEW OF MODULAR MULTIPLICATION...  Informatica 30 (2006) 111–129 129 

[22]  Nedjah, N. and Mourelle, L.M., Simulation model 
for hardware implementation of modular 
multiplication, In: Mathematics nad Simulation 
with Biological, Economical and Musicoacoustical 
Applications, C.E. D’Attellis, V.V. Kluev, N.E. 
Mastorakis Eds. WSEAS Press, 2001, pp. 113-118. 

[23]  Nedjah, N. and Mourelle, L.M., Reduced hardware 
architecture for the Montgomery modular 
multiplication, WSEAS Transactions on Systems, 
1(1):63-67. 

[24]  Nedjah, N. and Mourelle, L.M., Two Hardware 
implementations for the Montgomery modular 
multiplication: sequential versus parallel, 
Proceedings of the 15th. Symposium Integrated 
Circuits and Systems Design, Porto Alegre, Brazil, 
IEEE Computer Society Press, pp. 3-8, 2002 

[25]  Nedjah, N. and Mourelle, L.M., Reconfigurable  
hardware implementation of Montgomery modular 
multiplication and parallel binary exponentiation, 
Proceedings of the EuroMicro Symposium on 
Digital System Design − Architectures, Methods 
and Tools, Dortmund, Germany, IEEE Computer 
Society Press, pp. 226-235, 2002 

[26]  Nedjah, N. and Mourelle, L.M., Efficient hardware 
implementation of modular multiplication and 
exponentiation for public-key cryptography, 
Proceedings of the 5th. International Conference on 
High Performance Computing for Computational 
Science, Porto, Portugal, Lecture Notes in 
Computer Science, 2565:451-463, Springer-Verlag, 
2002 

[27]  Nedjah, N. and Mourelle, L.M., Hardware 
simulation model suitable for recursive 
computations: Karatsuba-Ofman’s multiplication 
algorithm, Proceedings of ACS/IEEE International 
Conference on Computer Systems and 
Applications, Tunis, Tunisia, July 2003. 

[28]  Nedjah, N. and Mourelle, L.M., A Reconfigurable 
recursive and efficient hardware for Karatsuba-
Ofman’s multiplication algorithm, Proceedings of 
IEEE International Conference on Control and 
Applications, Istambul, Turkey, June 2003, IEEE 
System Control Society Press. 

[29]  Nedjah, N. and Mourelle, L.M. (Eds.), Embedded 
Cryptographic Hardware: Methodologies and 
Applications, Nova Science Publishers, Hauppauge, 
NY, USA, 2004. 

[30]  Nedjah, N. and Mourelle, L.M. (Eds.), Embedded 
Cryptographic Hardware: Design and Security, 
Nova Science Publishers, Hauppauge, NY, USA, 
2005. 

[31]  Nedjah, N. and Mourelle, L.M. (Eds.), New Trends 
on Embedded Cryptographic Hardware, Nova 
Science Publishers, Hauppauge, NY, USA (to 
appear). 

[32]  Paar, C., A new architecture for a parallel finite 
field multiplier with low complexity based on 
composite fields, IEEE Transactions on Computers, 
45(7):856-861, 1996. 

[33]  Rabaey, J., Digital integrated circuits: A design 
perspective, Prentice-Hall, 1995. 

[34]  Rivest, R., Shamir, A. and Adleman, L., A method 
for obtaining digital signature and public-key 
cryptosystems, Communications of the ACM, 
21:120-126, 1978. 

[35]  Shindler, V., High-speed RSA hardware based on 
low-power piplined logic, Ph. D. Thesis, Institut für 
Angewandte Informations-verarbeitung und 
Kommunikationstechnologie, Technishe Universität 
Graz, January 1997. 

[36]  Zuras, D., On squaring and multiplying large 
integers, In Proceedings of International 
Symposium on Computer Arithmetic, IEEE 
Computer Society Press, pp. 260-271, 1993. 

[37]  Walter, C.D., A verification of Brickell’s fast 
modular multiplication algorithm, International 
Journal of Computer Mathematics, 33:153:169, 
1990. 

[38]  Walter, C.D., Systolic modular multiplication, IEEE 
Transactions on Computers, 42(3):376-378, 1993. 

[39]  Walter, C. D., Systolic modular multiplication, 
IEEE Transactions on Computers, 42(3):376-378, 
1993. 

[40]  Xilinx, Inc. Foundation Series Software, 
http://www.xilinx.com. 




