
 Informatica 30 (2006) 111–129 111

A Review of Modular Multiplication Methods and Respective
Hardware Implementations
Nadia Nedjah
Department of Electronics Engineering and Telecommunications, Engineering Faculty,
State University of Rio de Janeiro, Rio de Janeiro, Brazil
nadia@eng.uerj.br, http://www.eng.uerj.br/~nadia

Luiza de Macedo Mourelle
Department of System Engineering and Computation, Engineering Faculty,
State University of Rio de Janeiro, Rio de Janeiro, Brazil
ldmm@eng.uerj.br, http://www.eng.uerj.br/~ldmm

Keywords: cryptography, encryption, modular multiplication, modular reduction.

Received: April 18, 2005

Generally speaking, public-key cryptographic systems consist of raising elements of some group such as
GF(2n), Z/NZ or elliptic curves, to large powers and reducing the result modulo some given element.
Such operation is often called modular exponentiation and is performed using modular multiplications
repeatedly. The practicality of a given cryptographic system depends heavily on how fast modular
exponentiations are performed. Consequently, it also depends on how efficiently modular
multiplications are done as these are at the base of the computation. This problem has received much
attention over the years. Software as well as hardware efficient implementation were proposed.
However, the results are scattered through the literature. In this paper we survey most known and recent
methods for efficient modular multiplication, investigating and examining their strengths and
weaknesses. For each method presented, we provide an adequate hardware implementation.
Povzetek: Podan je pregled modernih metod kriptografije.

1 Introduction
Electronic communication is growing exponentially

so should be the care for information security issues [10].
Data exchanged over public computer networks must be
authenticated, kept confidential and its integrity protected
against alteration. In order to run successfully, electronic
businesses require secure payment channels and digital
valid signatures. Cryptography provides a solution to all
these problems and many others [17].

One of the main objectives of cryptography consists
of providing confidentiality, which is a service used to
keep secret publicly available information from all but
those authorized to access it. There exist many ways to
providing secrecy. They range from physical protection
to mathematical solutions, which render the data
unintelligible. The latter uses encryption/decryption
methods [10], [17], [30], [31].

The modular exponentiation is a common operation
for scrambling and is used by several public-key
cryptosystems, such Deffie and Hellman [8], [9] and the
Rivest, Shamir and Adleman encryption schemes
[34], as encryption/decryption method. RSA
cryptosystem consists of a set of three items: a modulus
M of around 1024 bits and two integers D and E called
private and public keys that satisfy the property TDE ≡ T
mod M. Plain text T obeying 0 ≤ T < M. Messages are
encrypted using the public key as C = TE mod M and

uniquely decrypted as T = CD mod M. So the same
operation is used to perform both processes: encryption
and decryption. The modulus M is chosen to be the
product of two large prime numbers, say P and Q. The
public key E is generally small and contains only few
bits set (i.e. bits = 1), so that the encryption step is
relatively fast. The private key D has as many bits as the
modulus M and is chosen so that DE = 1 mod
(P−1)(Q−1). The system is secure as it is
computationally hard to discover P and Q. It has been
proved that it is impossible to break an RSA
cryptosystem with a modulus of 1024-bit or more.

The modular exponentiation applies modular
multiplication repeatedly. So the performance of public-
key cryptosystems is primarily determined by the
implementation efficiency of the modular multiplication
and exponentiation. As the operands (the plaintext or the
cipher text or possibly a partially ciphered text) are
usually large (i.e. 1024 bits or more), and in order to
improve time requirements of the encryption/decryption
operations, it is essential to attempt to minimize the
number of modular multiplications performed and to
reduce the time required by a single modular
multiplication.

Modular multiplication A×B mod M can be

performed in two different ways: multiplying, i.e.
computing P = A×B; then reducing, i.e. R = P mod M or

112 Informatica 30 (2006) 111–129 N. Nedjah et al.

interleave the multiplication and the reduction steps.
There are various algorithms that implement modular
multiplication. The most prominent are Karatsuba-
Ofman’s [12] and Booth’s [3] methods for multiplying,
Barrett’s [2], [6], [7] method for reducing, and
Montgomery’s algorithms [18], and Brickell’s method
[4], [37] for interleaving multiplication and reduction.

Throughout this paper, we will consider each one of
the methods cited in the previous paragraph. The review
will be organised as follows: First we describe, in
Section 2, Karatsuba-Ofman’s and Booth’s methods for
multiplying. Later, in Section 3, we present Barrett’s
method for reducing an operand modulo a given
modulus. Then we detail Montgomery’s algorithms for
interleaving multiplication and reduction, in Section 4.

2 Efficient Multiplication Methods
The multiply-then-reduce methods consist of first

computing the product then reducing it with respect to
the given modulus. This method is generally preferred as
there are very fast on-the-shelf multiplication algorithms
as they were over studied [3], [12], [33]. The nowadays
most popular multiplication methods that are suitable for
hardware implementation are Karatsuba-Ofman’s
method and Booth’s method.

2.1 Karatsuba-Ofman Method
Karatsuba-Ofman’s algorithm is considered one of the
fastest ways to multiply long integers. Generalizations of
this algorithm were shown to be even faster than
Schönhage-Strassen’s FFT method [35], [36]. Karatsuba-
Ofman’s algorithm is based on a divide-and-conquer
strategy. A multiplication of a 2n-digit integer is reduced
to two n-digits multiplications, one (n+1)-digits
multiplication, two n-digits subtractions, two left-shift
operations, two n-digits additions and two 2n-digits
additions.

Even though this algorithm was proposed long ago
and as far as we know, there is no published hardware
implementation for this algorithm. In contrast with the
work presented in this paper, and after an extensive paper
research, we only found publications on hardware
implementations of Karatsuba-Ofman’s algorithm
adapted to multiplication in the Galois fields [13], [32].
Unlike in our implementation, the addition (mod 2) of
two bits in these implementations delivers a single bit
using a XOR gate In contrast with these, our
implementation cares about the carryout bit, as it is
necessary to obtaining the product. It is unnecessary to
emphasize that this makes the designer face a completely
different problem as explained later on.

The hardware specification is expressed using the
most popular hardware description language VHDL [20].
Note that VHDL does not provide a recursive feature to
implement recursive computation [1], [27], [28]. The
proposed model exploits the generate feature to yield the
recursive hardware model.

This subsection is organized as follows: First, we
describe the Karatsuba-Ofman’s algorithm and sketch its

complexity. Then, we adapt the algorithm so that it can
be implemented efficiently. Subsequently, we propose a
recursive and efficient architecture of the hardware
multiplier for Karatsuba-Ofman’s algorithm. After that,
we implement the proposed hardware using the Xilinx™
project manager and present some figures concerning
time and space requirements of the obtained multiplier.
We then compare our hardware with a Synopsis™ library
multiplier and two other multipliers that implement
Booth’s multiplication algorithm.

2.1.1 Karatsuba-Ofman’s Algorithm
We now describe the details of Karatsuba-Ofman’s

multiplication algorithm [12], [27], [36]. Let X and Y be
the binary representation of two long integers:

X = ∑
−

=

1

0

2
k

i

i
ix and Y = ∑

−

=

1

0

2
k

i

i
iy

We wish to compute the product XY. The operands X
and Y can be decomposed into to equal-size parts XH

 and
XL, YH and YL respectively, which represent the n higher
order bits and lower order bits of X and Y. Let k = 2n. If k
is odd, it can be right-padded with a zero.

X = ∑∑
−

=

−

=
+ +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ 1

0

1

0

222
n

i

i
i

n

i

i
ni

n xx = XH 2n + XL

Y = ∑∑
−

=

−

=
+ +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ 1

0

1

0

222
n

i

i
i

n

i

i
ni

n yy = YH 2n + YL

So the product P = XY can be computed as follows:

P = XY
 = (XH 2n + XL)(YH 2n + YL)
 = 22n(XHYH) + 2n(XHYL + XLYH) + XLYL

Using the equation above, it needs 4 n-bits
multiplications to compute the product P. The standard
multiplication algorithm is based on that equation. So
assuming that a multiplication of k-bits operands is
performed using T(k) one-bit operations, we can
formulate that T(k) =T(n) + δ k, wherein δk is a number
of one-bit operations to compute all the additions and
shift operations. Considering that T(1) = 1, we find that
the standard multiplication algorithm requires:

T(k) = ()42logk = ()2k

The computation of P can be improved by noticing
the following:

XHYL + XLYH = (XH + XL)(YH + YL) − XHYH − XLYL

The Karatsuba-Ofman’s algorithm is based on the
above observation and so the 2n-bits multiplication can
be reduced to three n-bits multiplications, namely XHYH,
XLYL and (XH + XL)(YH + YL). The Karatsuba-Ofman’s
multiplication method can then be expressed as in the
algorithm in Figure 1. wherein function Size(X) returns
the number of bits of X, function High(X) returns the
higher half part of X, function Low(X) returns the lower
half of X, RightShift(X, n) returns X2n and

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 113

OneBitMultiplication(X, Y) returns XY when both X and
Y are formed by a single bit. If Size(X) is odd, then
High(X) and Low(X) right-pad X with a zero before
extracting the high and the low half respectively.
The algorithm above requires 3 n-bits multiplications to
compute the product P. So we can stipulate that:

T(k) = 2T(n) + T(n+1)+ δ′ k ≈ 3T(n) + δ′ k

wherein δ′n is a number of one-bit operations to compute
all the additions, subtractions and shift operations.
Considering that T(1) = 1, we find that the Karatsuba-
Ofman’s algorithm requires:

T(k) ≈ ()32logk = ()58.1k ,

and so is asymptotically faster than the standard
multiplication algorithm.

2.1.1 Adapted Karatsuba’s Algorithm
We now modify Karatsuba-Ofman’s algorithm of Figure
1 so that the third multiplication is performed efficiently.

For this, consider the arguments of the third
recursive call, which computes Product3. They have
Size(X)/2+1 bits. Let Z and U be these arguments left-
padded with Size(X)/2-1 0-bits. So now Z and U have
Size(X) bits. So we can write the product Product3 as
follows, wherein Size(X) = 2n, ZH and UH are the high
parts of Z and U respectively and ZL and UL are the low

parts of Z and U respectively. Note that ZH and UH may
be equal to 0 or 1.

Product3 = ZU
 = (ZH 2n + ZL)(UH 2n + UL)
 = 22n(ZHUH) + 2n(ZHUL + ZLUH) + ZLYL

Depending on the value of ZH and UH, the above
expression can be obtained using one of the alternatives
of Table 1.
As it is clear from Table 1, computing the third product
requires one multiplication of size n and some extra
adding, shifting and multiplexing operations. So we
adapt Karatsuba-Ofman’s algorithm of Figure 1 to this
modification as shown in the algorithm of Figure 2.

ZH UH Product3
0 0 ZLYL
0 1 2n ZL + ZLYL
1 0 2nUL + ZLYL
1 1 22n + 2n(UL + ZL) +

ZLYL
Table 1: computing the third product2.1.3 Recursive
Hardware Architecture

In this section, we concentrate on explaining the
proposed architecture of the hardware.

The component KaratsubaOfman implements the

Algorithm KaratsubaOfman(X, Y)

 If (Size(X) = 1) Then KaratsubaOfman= OneBitMultiplier(X, Y)

 Else Product1 := KaratsubaOfman(High(X), High(Y));

 Product2 := KaratsubaOfman(Low(X), Low(Y));

 Product3 := KaratsubaOfman(High(X)+Low(X), High(Y)+Low(Y));

 KaratsubaOfman := RightShift(Product1, Size(X)) +

 RightShift(Product3-Product1-Product2, Size(X)/2) +
Product2;

End KaratsubaOfman.

Figure 1: Karatsuba-Ofman recursive multiplication algorithm

Algorithm AdaptedKaratsubaOfman(X, Y)

 If (Size(X) = 1) Then KaratsubaOfman := OneBitMultiplier(X, Y)

 Else Product1 := KaratsubaOfman(High(X), High(Y));

 Product2 := KaratsubaOfman(Low(X), Low(Y));

 P := KaratsubaOfman(Low(High(X)+Low(X)), Low(High(Y)+Low(Y)));

 If Msb(High(X)+Low(X)) = 1 Then A := Low(High(Y)+Low(Y)) Else A := 0;

 If Msb(High(Y)+Low(Y)) = 1 Then B := Low(High(X)+Low(X)) Else B := 0;

 Product3 := LeftShift(Msb(High(X)+Low(X))•Msb(High(X)+Low(X)), Size(X)) +
 LeftShift(A + B, Size(X)/2) + P;

 KaratsubaOfman = LeftShift(Product1, Size(X)) +

 LeftShift(Product3-Product1-Product2, Size(X)/2) +
Product2;

End AdaptedKaratsubaOfman.

Figure 2: Adapted Karatsuba-Ofman’s algorithm

114 Informatica 30 (2006) 111–129 N. Nedjah et al.

algorithm of Figure 2. Its interface is given in Figure 3.
The input ports are the multiplier X and the multiplicand
Y and the single output port is the product XY. It is clear
that the multiplication of 2 n-bit operands yields a
product of 2n-bits product.

The VHDL recursive specification of the component
architecture is given in the concise code of Figure 4. The
architecture details of the component KaratsubaOfman
are given in Figure 5.

Entity KaratsubaOfman is

 Generic(

 n: positive

);

 Port(

 X: In bit_vector (Size-1 To 0);

 Y: In bit_vector (Size-1 To 0);

 XY: Out bit_vector(2*Size-1 To 0)

);

End KaratsubaOfman;

Figure 3: Interface of component KaratsubaOfman

The signals SXL and SYL are the two n-bits results of
the additions XH + XY and YH + YL respectively. The two
one-bit carryout of these additions are represented in
Figure 5 by CX and CY respectively.

The component ShiftnAdd (in Figure 5) first
computes the sum S as SXL + SYL, SXL, SYL, or 0
depending on the values of CX and CY (see also Table 1).
Then computes Product3 as depicted in Figure 6, wherein

T represents CX ×CY.
The computation implemented by component

ShiftSubnAdd (in Figure 5) i.e. the computation specified
in the last line of the Karatsuba-Ofman algorithm in
Figure 1 and Figure 2 can be performed efficiently if the
execution order of the operations constituting it is chosen
carefully. This is shown in the architecture of Figure 7.

Figure 6: Operation performed by the ShiftnAdder2n

Component ShiftSubnAdd proceeds as follows: first
computes R = Product1 + Product2; then obtains 2CR,
which is the two’s complement of R; subsequently,
computes U = Product3 + 2CR; finally, as the bits of
Product1 and U must be shifted to the left 2n times and n
times respectively, the component reduces the first and
last additions as well as the shift operations in the last
line computation of Karatsuba-Ofman’s algorithm (see
Figure 1 and Figure 2) to a unique addition that is
depicted in Figure 8.

Architecture RecursiveArchitecture of KaratsubaOfman is

 -- declaration part including components and temporary signals

Begin

 Termination: If k = 1 Generate

 TCell: OneBitMultiplier Generic Map(n) Port Map(X(0), Y(0), XY(0));

 End Generate Termination;

 Recursion: If k /= 1 Generate

 ADD1: Adder Generic Map(k/2) Port Map(X(k/2-1 Downto 0), X(k-1 Downto k/2), SumX
);

 ADD2: Adder Generic Map(k/2) Port Map(Y(k/2-1 Downto 0), Y(k-1 Downto k/2), SumY
);

 KO1: KaratsubaOfman Generic Map(k/2)

 Port Map(X(k-1 Downto k/2),Y(k-1 Downto k/2),Product1);

 KO2: KaratsubaOfman Generic Map(k/2)

 Port Map(X(k/2-1 Downto 0),Y(k/2-1 Downto 0),Product2);

 KO3: KaratsubaOfman Generic Map(k/2)

 Port Map(SumX(k/2-1 Downto 0), SumY(k/2-1 Downto 0), P);

 SA: ShiftnAdder Generic Map(k)

 Port Map(SumX(k/2),SY(n/2), SX(k/2-1 Downto 0), SY(k/2-1 Downto 0),
P,Product3);

 SSA: ShifterSubnAdder Generic Map(k) Port Map(Product1, Product2, Product3, XY
);

 End Generate Recursion;

End RecursiveArchitecture;

Figure 4: Recursive architecture of the component KaratsubaOfman of size n

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 115

2.2 Booth’s Multiplication Method
Algorithms that formalize the operation of multiplication
generally consist of two steps: one generates a partial
product and the other accumulates it with the previous
partial products. The most basic algorithm for
multiplication is based on the add-and-shift method: the
shift operation generates the partial products while the
add step sums them up [3].

Figure 7: Architecture of ShiftSubnAdder2n

Figure 8: Last addition performed by ShiftSubnAdder2

The straightforward way to implement a

multiplication is based on an iterative adder-accumulator
for the generated partial products as depicted in Figure 9.
However, this solution is quite slow as the final result is
only available after n clock cycles, n is the size of the
operands.

Figure 9: Iterative multiplier
A faster version of the iterative multiplier should add

several partial products at once. This could be achieved

≈ right shift

Figure 5: Macro view of KaratsubaOfman2n in terms of KaratsubaOfman of size 2n

116 Informatica 30 (2006) 111–129 N. Nedjah et al.

by unfolding the iterative multiplier and yielding a
combinatorial circuit that consists of several partial
product generators together with several adders that
operate in parallel. In this paper, we use such a parallel
multiplier as described in Figure 10. Now, we detail the
algorithms used to compute the partial products and to
sum them up.

Figure 10: Parallel multiplier.

2.2.1 Booth’s Algorithm
Now, we concentrate on the algorithm used to compute
partial products as well as reducing the corresponding
number without deteriorating the space and time
requirement of the multiplier.

Let X and Y be the multiplicand and multiplicator
respectively and let n and m be their respective sizes. So,
we denote X and Y as follows:

∑∑
==

×=×=
m

i

i
i

n

i

i
i yYxX

00
2 and 2

⇒ ∑
=

××=×
n

i

i
i YxYX

0
2

Inspired by the above notation of X, Y and that of
X×Y, the add-and-shift method [2], [3] generates n partial
products: xi×Y, 0 ≤ i < n. Each partial product obtained is
shifted left or right depending on whether the starting bit
was the less or the most significant and added up. The
number of partial products generated is bound above by
the size (i.e. number of bits) of the multiplier operand. In
cryptosystems, operands are quite large as they represent
blocks of text (i.e. ≥ 1024 bits).

Another notation of X and Y allows to halve the
number of partial products without much increase in
space requirements. Consider the following notation of X
and X×Y:

⎡ ⎤

∑
−+

=

××=
12/)1(

0

22~
n

i

i
ixX , where 12212 2~

+××−× ×−+= iiii xxxx

 and 0~~~
11 === +− nn xxx

⎡ ⎤

∑
−+

=

×××=×
12/)1(

0

22~
n

i

i
i YxYX

The possible values of ix~ with the respective values
of x2×i+1, x2×i, and x2×i−1 are −2 (100), −1 (101, 110), 0
(000, 111), 1 (001, 010) and 2(011). Using this recoding
will generate ⎡(n+1)/2⎤ −1 partial products.

Inspired by the above notation, the modified Booth
algorithm [3], [12] generates the partial products ix~ ×Y.
These partial products can be computed very efficiently
due to the digits of the new representation ix~ . The
hardware implementation will be detailed in Section 3.

In the algorithm of Figure 11, the terms 4×2n+1 and
3×2n+1 are supplied to avoid working with negative
numbers. The sum of these additional terms is congruent
to zero modulo 2n+⎡(n+1)⎤ − 1. So, once the sum of the
partial products is obtained, the rest of this sum in the
division by 2n+⎡(n+1)⎤ −1 is finally the result of the
multiplication X×Y.

The partial product generator is composed of k Booth
recoders [3], [6]. They communicate directly with k
partial product generators as shown in Figure 12.
Algorithm Booth(x2×i-1,x2×i,x2×i+1,Y)
 Int product := 0;
 Int pp[⎡(n+1)/2⎤ −1];
 pp[0] := (0

~x ×Y + 4×2n+1)×22×i ;

 For i = 0 To ⎡(n+1)/2⎤ −1 Do
 pp[i] := (ix~ ×Y + 3×2n+1)×22×i ;

 product := product + pp[i];
 Return product mod 2n+⎡(n+1)⎤ − 1;
End Booth

Figure 11: Multiplication algorithm

The required partial products, i.e. ix~ ×Y are easy

multiple. They can be obtained by a simple shift. The
negative multiples in 2’s complement form, can be
obtained form the positive corresponding number using a
bit by bit complement with a 1 added at the least
significant bit of the partial product. The additional terms
introduced in the previous section can be included into
the partial product generated as three/two/one most
significant bits computed as follows, whereby, ++ is the
bits concatenation operation, 〈A〉 is the binary notation of
integer A, 0i is a run of i zeros and B[n:0] is the selection of
the n less significant bits of the binary representation B.

() j
jjjjj ssYxspp

ssYxssspp
×

××××× +++⊕×++=

+⊕×++=
2

22222

0000000

0~1

~

for 1 ≤ j < k−1 and for j = k −1 = k′, we have:

()
k

nkk

k
kkkkk

Yxpp

ssYxspp
×

××

′×
′×′×′×′×′×

++×=

+++⊕×++=
2

]0:[22

2
22222

0~
0~

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 117

Figure 12: The partial product generator architecture.

The Booth selection logic circuitry used, denoted by
BRi for 0 ≤ i ≤ k in Figure 12, is very simple. The cell is
described in Figure 13. The inputs are the three bits
forming the Booth digit and outputs are three bits: the
first one SY is set when the partial product to be
generated is Y or −Y, the second one S2Y is set when the
partial product to be generated is 2×Y or −2×Y, the last
bit is the simply the last bit of the Booth digit given as
input. It allows us to complement the bits of the partial
products when a negative multiple is needed.

Figure 13: Booth recoder selection logic.

The circuitry of the partial generator denoted by PPi

Generator, is given in Figure 14.
In order to implement the adder of the generated

partial products, we use a hybrid new kind of adder. It
consists cascade of intercalated stages of carry save
adders and delayed carry adders.

2.3 Multipliers Area/Time Requirements
The entire design was done using the Xilinx™ Project
Manager (version Build 6.00.09) [40] through the steps
of the Xilinx design cycle shown in Figure 15.

Figure 14: The partial product generator.

Figure 15: Design cycle.

The design was elaborated using VHDL [20]. The
synthesis step generates an optimized netlist that is the
mapping of the gate-level design into the Xilinx format:
XNF. Then, the simulation step consists of verifying the
functionality of the elaborated design. The
implementation step consists of partitioning the design
into logic blocks, then finding a near optimal placement
of each block and finally selecting the interconnect
routing for a specific device family. This step generates a
logic PE array file from which a bit stream can be
obtained. The implementation step provides also the
number of configurable logic blocks (CLBs). The
verification step allows us to verify once again the
functionality of the design and determine the response
time of the design including all the delays of the physical
net and padding. The programming step consists of
loading the generated bit stream into the physical device.

The design was implemented into logic blocks using
a specific device family, namely SPARTAN S05PC84-4.

As explained before, the Karatsuba’s multiplier
reduces to an ensemble of adders. These adders are
implemented using ripple-carry adders, which can be
very efficiently implemented into FPGAs as the carryout
signal uses dedicated interconnects in the CLB and so
there is no routing delays in the data path. An n-bit
ripple-carry adder is implemented using n/2+2 CLBs and
has a total fixed delay of 4.5+0.35n nanoseconds.

118 Informatica 30 (2006) 111–129 N. Nedjah et al.

Table 2 shows the delay introduced and area
required by the Karatsuba-Ofman multiplier (KO)
together with those for a hardware implementation of the
Booth multiplier which uses a Wallace tree for adding up
the partial products (BW), another hardware
implementation of Booth’s algorithm that uses a
redundant binary Booth encoding (PRB) and the
Synopsys™ library multiplier (DW02) [11]. This is given
for three different operand sizes. The delays are
expressed in ns. These delays are represented graphically
in Figure 16.

KO BW PRB DW02 size

delay area delay area delay area delay area

8 12.6 1297 44.6 1092 31.8 862 56.2 633

16 22.8 6300 93.9 5093 46.6 3955 114.9 2760

32 29.1 31740 121.5 20097 64.9 17151 164.5 11647

Table 2: Delays and areas for different multipliers

Table 2 also shows the area required by our
multiplier compared with those needed for the
implementation of BW, PBR and DW02. The areas are
given in terms of total number of gates necessary for the
implementation. These results are represented
graphically in Figure 17.

It is clear from Figure 16 and Figure 17 that the
engineered Karatsuba-Ofman multiplier works much
faster than the other three multipliers. However, it

consumes more hardware area. Nevertheless, the
histogram of Figure 18, which represents the area×time
factor for the four compared multipliers implementations,
shows that proposed multiplier improves this product.

Figure 18: Representing area×time factor

So, our multiplier improves the area×time factor as
well as time requirement while the other three improve
area at the expense of both time requirement and the
area×time factor. Moreover, we strongly think that for
larger operands, the Karatsuba-Ofman multiplier will
yield very much better characteristics, i.e. time and area
requirements as it is clear from Figure 16, Figure 17 and
Figure 18.

3 Barrett’s Reduction Method
A modular reduction is simply the computation of the
remainder of an integer division. It can be denoted by:

M
M
XXMX ×⎥⎦
⎥

⎢⎣
⎢−=mod

However, a division is very expensive even
compared with a multiplication.

The naive sequential division algorithm successively
shifts and subtracts the modulus until the remainder that
is non-negative and smaller than the modulus is found.
Note that after a subtraction, a negative remainder may
be obtained. So in that case, the last non-negative
remainder needs to be restored and so will be the
expected remainder. This computation is described in the
algorithm of Figure 19.

Algorithm NaiveReduction(P, M)

 Int R := P;

 Do R := R – M;

 While R > 0;

 If R ≠ 0 Then R := R + M;
 Return R;

End NaiveReduction

Figure 19: Naive reduction algorithm

In the context of this paper, P is the result of a
product so it has at most 2n bits assuming that the
operands have both n bits.

The computation performed in the naïve algorithm
above is very inefficient as it may require 2n−1
subtractions, 2n comparisons and an extra addition.
Instead of subtracting a single M one can subtract a

Figure 16: Representing time requirement

Figure 17: Representing space requirement

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 119

multiple of it at once. However, in order to yield
multiples of M further computations, namely
multiplications, need be performed, except for power of
two multiples, i.e. 2kM. These are simply M left-shifted k
times, which can very cheaply implemented on hardware.
This idea is described in the restoring division algorithm
given in Figure 20. It attempts to subtract the biggest
possible power of two multiple of M from the actual
remainder. Whenever the result of that operation is
negative it restores the previous remainder and repeats
the computation for all possible power of two multiples
of M, i.e. 2nM, 2n−1M, …, 2M, M.

Algorithm RestoringReduction(P, M)

 Int R0 := P;

 Int N := LeftShift(M, n);

 For i = 1 To n Do

 Ri := Ri-1 – N;

 If R < 0 Then Ri := Ri-1;

 N := RightShift(N);

 Return Ri;

End RestoringReduction

Figure 20: Restoring reduction algorithm
The computation performed in the restoring

reduction algorithm requires n subtractions, n
comparisons and some 2n shifting as well as some
restoring operations. This is very much more efficient
than the computation of the algorithm in Figure 19.

An alternative to the restoring reduction algorithm is
the non-restoring one. The non-restoring reduction
algorithm is given in Figure 21.

Algorithm NonRestoringReduction(P, M)

 Int R0 := P;

 Int N := LeftShift(M, n);

 For i = 1 To n Do

 If R > 0 Then Ri := Ri-1 – N;

 Else Ri := Ri-1 + N;

 N := RightShift(N);

 If Ri < 0 Then Ri := Ri-1 + N;

 Return Ri;

End RestoringReduction

Figure 21: Non-restoring reduction algorithm

It allows negative remainder. When the remainder is
non-negative it sums it up with the actual power of two
multiple of M. Otherwise, it subtracts that multiple of M
from it. It keeps doing so repeatedly for all possible
power of two multiples of M, i.e. 2nM, 2n−1M, …, 2M, M.
The non-restoring reduction computation requires a final
restoration that adds M to the obtained remainder when
the latter is negative.

Using Barrett’s method [2], [6], we can estimate the
remainder using two simple multiplications. The
approximation of the quotient is calculated as follows:

⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
×⎥

⎦

⎥
⎢
⎣

⎢

=

⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ ×
×⎥

⎦

⎥
⎢
⎣

⎢

=⎥
⎦

⎥
⎢
⎣

⎢
+

×

−

+

+−

−

1

2

1

1

11

1

2

2
2

2

22
2

n

n

n

n

nn

n M
X

M
X

M
X

The equation above can be calculated very efficiently as
division by a power of two 2x are simply a truncation of
the operand’ x-least significant digits. The term
⎣ ⎦Mn×22 depends only on M and so is constant for a
given modulus. So, it can be pre-computed and saved in
an extra register. Hence the approximation of the
remainder using Barrett’s method [2], [6] is a positive
integer smaller than 2×(M−1). So, one or two
subtractions of M might be required to yield the exact
remainder (see Figure 22).

4 Booth-Barrett’s Method
In this section, we outline the architecture of the
multiplier, which is depicted in Figure 4. Later on in this
section and for each of the main parts of this architecture,
we give the detailed circuitry, i.e. that of the partial
product generator, adder and reducer.
The multiplier of Figure 4 performs the modular
multiplication X×Y mod M in three main steps:

Figure 22: The modular multiplier architecture

120 Informatica 30 (2006) 111–129 N. Nedjah et al.

1. Computing the product P = X×Y;
2. Computing the estimate quotient Q = P/M

⇒ Q ≅ ⎣ ⎦MP nn ×− × 21 22 ;
3. Computing the final result P − Q×M.

During the first step, the modular multiplier first

loads register1 and register2 with X and Y respectively;
then waits for PPG to yield the partial products and
finally waits for the ADDER to sum all of them. During
the second step, the modular multiplier loads register1,
register2 and register3 with the obtained product P, the
pre-computed constant ⎣ ⎦Mn×22 and P respectively;
then waits for PPG to yield the partial products and
finally waits for the ADDER to sum all of them. During
the third step, the modular multiplier first loads register1
and register2 with the obtained product Q and the
modulus M respectively; then awaits for PPG to generate
the partial products, then waits for the ADDER to provide
the sum of these partial products and finally waits for the
REDUCER to calculate the final result P−Q×M, which is
subsequently loaded in the accumulator acc.

4.1 The Montgomery Algorithm
Algorithms that formalize the operation of modular

multiplication generally consist of two steps: one
generates the product P = A×B and the other reduces this
product P modulo M.

The straightforward way to implement a
multiplication is based on an iterative adder-accumulator
for the generated partial products. However, this solution
is quite slow as the final result is only available after n
clock cycles, n is the size of the operands [19].

A faster version of the iterative multiplier should add
several partial products at once. This could be achieved
by unfolding the iterative multiplier and yielding a
combinatorial circuit that consists of several partial
product generators together with several adders that
operate in parallel [15], [16].

One of the widely used algorithms for efficient
modular multiplication is the Montgomery’s algorithm
[18]. This algorithm computes the product of two
integers modulo a third one without performing division
by M. It yields the reduced product using a series of
additions

Let A, B and M be the multiplicand and multiplier
and the modulus respectively and let n be the number of
digit in their binary representation, i.e. the radix is 2. So,
we denote A, B and M as follows:

 2 and 2 ,2
1

0

1

0

1

0
∑∑∑

−

=

−

=

−

=

×=×=×=
n

i

i
i

n

i

i
i

n

i

i
i mMbBaA

The pre-conditions of the Montgomery algorithm are as
follows:

The modulus M needs to be relatively prime to the
radix, i.e. there exists no common divisor for M and the
radix;

The multiplicand and the multiplicator need to be
smaller than M.

As we use the binary representation of the operands,
then the modulus M needs to be odd to satisfy the first
pre-condition.

The Montgomery algorithm uses the least significant
digit of the accumulating modular partial product to
determine the multiple of M to subtract. The usual
multiplication order is reversed by choosing multiplier
digits from least to most significant and shifting down. If
R is the current modular partial product, then q is chosen
so that R+q×M is a multiple of the radix r, and this is
right-shifted by r positions, i.e. divided by r for use in the
next iteration. So, after n iterations, the result obtained is
R =A×B×r−n mod M [14]. A modified version of
Montgomery algorithm is given in Figure 23.

algorithm Montgomery(A, B, M)

 int R = 0;

 1: for i= 0 to n-1

 2: R = R + ai×B;
 3: if r0 = 0 then

 4: R = R div 2

 5: else

 6: R = (R + M) div 2;

 return R;

end Montgomery.

Figure 23: Montgomery modular algorithm.

In order to yield the right result, we need an extra
Montgomery modular multiplication by the constant 2n

mod M. However as the main objective of the use of
Montgomery modular multiplication algorithm is to
compute exponentiations, it is preferable to Montgomery
pre-multiply the operands by 22n and Montgomery post-
multiply the result by 1 to get rid of the 2−n factor. Here
we concentrate on the implementation of the
Montgomery multiplication algorithm of Figure 23.

In order to yield the right result, we need an extra
Montgomery modular multiplication by the constant r2n

mod M. As we use binary representation of numbers, we
compute the final result using the algorithm of Figure 24.

algorithm ModularMult(A, B, M, n)

 const C := 2n mod M;

 int R := 0;

 R := Montgomery(A, B, M);

 return Montgomery(R, C, M);

end ModularMult.

Figure 24: Modular multiplication algorithm

4.2 Iterative Montgomery Architecture
In this section, we outline the architecture of the
Montgomery modular multiplier. The interface of the
Montgomery modular multiplier is given in Figure 25. It
expects the operands A, B and M and it computes
R = (A×B×2−n) mod M.

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 121

Figure 25: Montgomery multiplier interface

The detailed architecture of the Montgomery
modular multiplier is given in Figure 26. It uses two
multiplexers, two adders, two shift registers, three
registers and a controller. The latter will be described in
the next section.

The first multiplexer of the proposed architecture,
i.e. MUX21 passes 0 or the content of register B depending
on whether bit a0 indicates 0 or 1 respectively. The
second multiplexer, i.e. MUX22 passes 0 or the content of
register M depending on whether bit r0 indicates 0 or 1
respectively. The first adder, i.e. ADDER1, delivers the
sum R + ai × B (line 2 of algorithm of Fig. 1), and the
second adder, i.e. ADDER2, yields the sum R + M (line 6
of the same algorithm). The shift register SHIFT
REGISTER1 provides the bit ai. In each iteration i of the
multiplier, this shift register is right-shifted once so that
a0 contains ai.

The role of the controller consists of synchronizing
the shifting and loading operations of the SHIFT
REGISTER1 and SHIFT REGISTER2. It also controls the
number of iterations that have to be performed by the
multiplier. For this end, the controller uses a simple
down counter. The counter is inherent to the controller.
The interface of the controller is given in Figure 27.

Figure 26: Montgomery multiplier architecture

Figure 27: Interface of the Montgomery controller

In order to synchronize the work of the components of
the architecture, the controller consists of a state
machine, which has 6 states defined as follows:

• S0: Initialize of the state machine;
 Go to S1;

• S1: Load multiplicand and modulus into
 the corresponding registers;
 Load multiplier into shift register1;

 Go to S2;
• S2: Wait for ADDER1;

 Wait for ADDER2;
 Load multiplier into shift register2;
 Increment counter;
 Go to S3;

• S3: Enable shift register2;
 Enable shift register1;

• S4: Check the counter;
 If 0 then go to S5 else go to S2;

• S5: Halt;

4.3 Modular Multiplier Architecture
The modular multiplier yields the actual value of
A×B mod M. It first computes R = A×B×2−n mod M using
the Montgomery modular multiplier. Then, it computes
R × C mod M, where C = 2n mod M. The modular
multiplier interface is shown in Figure 28.

Figure 28: The modular multiplier interface

The modular multiplier uses a 4-to-1 multiplexer MUX4
and a register REGISTER.

• Step 0: Multiplexer MUX4 passes 0 or B. MUX2
passes A. It yields R1 = A×B×2−n mod M. The register
denoted by REGISTER contains 0.

• Step 1: Multiplexer MUX4 passes 0 or R. MUX2
passes C. It yields R = R1×C mod M. The register
denoted by REGISTER contains the result of the first
step computation, i.e. R = A×B×2−n mod M.

122 Informatica 30 (2006) 111–129 N. Nedjah et al.

The modular multiplier architecture is given in Figure 29.
In order to synchronize the actions of the components of
the modular multiplier, the architecture uses a controller,
which consists of a state machine of 10 states. The
interface of CONTROLLER is that of Figure 30.

The modular multiplier controller does all the control
that the Montgomery modular multiplier needs as
described in the previous section. Furthermore, it
controls the changing from step 0 to step 1, the loading
of the register denoted by REGISTER. The state machine is
depicted in Figure 31.
• S0: Initialize of the state machine;

 Set step to 0; Go to S1;
• S1: Load multiplicand and modulus; Load

multiplier
 into SHIFT REGISTER1; Go to S2;

Figure 29: The modular multiplier architecture

Figure 30. The interface of the multiplier controller

• S2: Wait for adder1; Wait for ADDER2;
 Load partial result into SHIFT REGISTER2;
 Increment counter; Go to S3;

• S3: Enable SHIFT REGISTER2;
 Enable SHIFT REGISTER1; Go to S4;

• S4: Load the partial result of step 0 into REGISTER;
 Check the counter;
 If 0 then go to S5 else go to S2;

• S5: Load constant into SHIFT REGISTER1;
 Reset REGISTER;
 Set step to 1; Go to S6;

• S6: Wait for ADDER1; Wait for ADDER2;
 Load partial result into SHIFT REGISTER2;
 Increment counter; Go to S7;

• S7: Enable SHIFT REGISTER2;
 Enable SHIFT REGISTER1; Go to S8;

• S8: Check the counter;
 If 0 then go to S9 else go to S6;

• S9: Halt.

4.4 Simulation Results
The project of the modular multiplier described
throughout this section was specified in Very High Speed
Integrated Circuit Description Language - VHDL [20],
and simulated using the XilinxTM Project Manager [40].
It allows the user to design and simulate the functionality

Figure 31: The state machine of the multiplier controller

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 123

of his/her design. Moreover, it allows the synthesis of a
correct design as well as its download on a specific
FPGA.

First, we functionally simulated the Montgomery
modular multiplier prototype for operands A = 15,
B = 26, M = 47 and so the constant C = 22x6 mod 47,
which is C = 7. The signal values are shown in
Figure 32 and Figure 33. The result is shown by signal R.

Figure 32 shows the behavior of the multiplier
during the first modular multiplication (note that signal
step is not set). Figure 33 shows the results of the second
modular multiplication (note that signal step is set).

Also, we simulated the Montgomery modular
multiplier prototype for bigger operand size, i.e. 16 bits.
The operands are A = 120, B = 103, M = 143 and so the
constant C = 22x8 mod 143, which is C = 42. The result of
the simulation is shown in Figure 34 and Figure 35.

Figure 32: The modular multiplier behavior during the first multiplication: Montgomery(15, 26, 47) = 34

Figure 33: The modular multiplier behavior during the second multiplication: Montgomery(7,34,47) = 14

124 Informatica 30 (2006) 111–129 N. Nedjah et al.

As before, Figure 34 shows the behavior of the
multiplier during the first modular multiplication and
Figure 35 shows the results of the second modular
multiplication (note that signal step is set).

4.5 Systolic Montgomery Algorithm
A modified version of Montgomery algorithm [29] is that
of Figure 36. The least significant bit of R + ai×B is the
least significant bit of the sum of the least significant bits
of R and B if ai is 1 and the least significant bit of R
otherwise. Furthermore, new values of R are either the

old ones summed up with ai×B or with ai×B + qi×M
depending on whether qi is 0 or 1.
algorithm ModifiedMontgomery(A, B, M)

 int R := 0;

 1: for i := 0 to n-1

 2: qi := (r0 + ai×b0) mod 2;
 3: R := (R + ai×B + qi×M) div 2;
 return R;

end ModifiedMontgomery.

Figure 36: Modified Montgomery algorithm

Figure 34: The multiplier behavior during the first multiplication: Montgomery(120, 103, 143) = 160

Figure 35: The modular multiplier behavior during the second multiplication: Montgomery(42, 160, 142) = 62

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 125

Consider the expression R + ai×B + qi×M of line 2 in the
algorithm of Figure 36. It can be computed as indicated
in the last column of Table 3 depending on the value of
the bits ai and qi.

ai qi R + ai×B +
qi×M

1 1 R + MB
1 0 R + B
0 1 R + M
0 0 R

Table 3: Computation of R + ai×B + qi×M
A bit-wise version of the algorithm of Fig. 4, which is at
the basis of our systolic implementation, is described in
Figure 37. All algorithms, i.e. those of Figure 23, Figure
24 and Figure 37 are equivalent. They yield the same
result. In the algorithm of Figure 37, MB represents the
result of M + B, which has at most has n + 1 bits.

4.6 Systolic Hardware Multiplier
Assuming the algorithm of Figure 37 as basis, the main
processing element (PE) of the systolic architecture of
the Montgomery modular multiplier computes a bit rj of
residue R. This represents the computation of line 8. The

left-border PEs of the systolic arrays perform the same
computation but beside that, they have to compute bit qi
as well. This is related to the computation of line 1. The
duplication of the PEs in a systolic form implements the
iteration of line 0. The systolic architecture of the
systolic Montgomery multiplier is shown in Figure 38.

algorithm SystolicMontgomery(A,B,M,MB)
 int R := 0;
 bit carry := 0, x;
 0: for i := 0 to n

 1: qi :=
(i)
0r ⊕ ai.b0;

 2: for j := 0 to n
 3: switch ai, qi
 4: 1,1: x := mbi;
 5: 1,0: x := bi;
 6: 0,1: x := mi;
 7: 0,0: x := 0;

 8: 1)(i
jr

+ := (i)
1jr + ⊕ xi ⊕ carry;

 9: carry:= (i)
1jr + .xi+

(i)
1jr + .carry+xi.carry;

 return R;
end SystolicMontgomery.

Figure 37: Systolic Montgomery algorithm

Figure 38: Systolic architecture of Montgomery multiplier

126 Informatica 30 (2006) 111–129 N. Nedjah et al.

The architecture of the basic PE, i.e. celli,j
1 ≤ i ≤ n−1 and 1 ≤ i ≤ n−1, is shown in Figure 39. It
implements the instructions of lines 2-9 in systolic
Montgomery algorithm of Figure 37. The architecture of
the right-most top-most PE, i.e. cell0,0, is given in Figure
40. Besides the computation of lines 2-9, it implements
the computation indicated in line 1. However as)0(

0r is
zero, the computation of q0 is reduced to a0.b0. Besides,
the full-adder is not necessary as carry in signal is also 0
so)0(

1r ⊕ xi ⊕ carry and)0(
1r .xi+)0(

1r .carry+xi.carry
are reduced to xi and 0.

Figure 39: Basic PE architecture

Figure 40: Right-most top-most PE – cell0,0

The architecture of the rest of the PEs of the first
column is shown in Figure 41. It computes q0 in the more
general case, i.e. when)(

0
ir is not null. Moreover, the

full-adder is substituted by a half-adder as the carry in
signals are zero for these PEs.

The architecture of the architecture of the left border
PEs, i.e. cell0,j, is given in Figure 42. As)(i

nr = 0, the
full-adder is unnecessary and so it is substituted by a
half-adder.

Figure 41: Right-border PEs – celli,0

Figure 42: Left-border PEs – cell0,j

The sum M+B is computed only once at the
beginning of the multiplication process. This is done by a
row of full adder.

4.7 Time and Area Requirements
Consider the architecture of the systolic modular
Montgomery multiplier of Figure 38. The output bit

)1(+n
jr of the modular multiplication is yield after 2n + 2

+ j after bits bj, mj and mbj are fed into the systolic array
plus an extra clock cycle, which is needed to obtain the
bit mbj. So the first output bit appears after 2n + 3 clock
cycles.

Table 4 shows the performance figures obtained by
the Xilinx project synthesizer for the iterative multiplier
the systolic modular multiplier, wherein IM and SM stand
for iterative multiplier and systolic multiplier
respectively. The synthesis was done for VIRTEX-E [40]
family.

In Table 4, we present the clock cycle time required,
the area, i.e. the number of CLBs necessary as well as the
time×area product delivered by the synthesis and the
verification tools of the Xilinx project manager [40] for

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 127

the iterative and systolic version of Montgomery
multiplier.

Area
(CLBs)

clock cycle
time (ns) area×time operand

size IM SM IM SM IM SM
128 89 259 46 23 4094 5957

256 124 304 102 42 12648 12767

512 209 492 199 76 41591 37392

768 335 578 207 82 69345 47396

1024 441 639 324 134 142884 85626

Table 4: Performance figures: iterative vs. systolic

The chart of Figure 43 compares the area×time
product of iterative multiplier implementation vs. the
systolic implementation. It shows that the latter improves
the product as well as time requirement while the former
improves area at the expense of both time requirement
and the product.
 The results show clearly that despite of requiring
much more hardware area, our implementation improves
substantially the time requirement and the performance
factor when the operand size is bigger than 256 bits. This
is almost always the case in RSA encryption/decryption
systems. Nowadays, the hardware area has a very
reasonable price so can be bought. However, the
encryption/decryption throughput of cryptographic
systems is the most fundamental characteristic and so
cannot be sacrificed.

5 Further Improvements
The modular multiplication algorithm and respective
hardware can be further improved if the representation of
the operands is considered. The bits of the binary
representation can be grouped to increase the
representation base. For instance, if the bits are grouped
into pairs or triples, the base will be 4 or 8 respectively.
Although other bases are possible, usually a power of 2 is
preferred to make conversion to and from binary easy.
Increasing the base reduces the number of digits in the
operand and so reduces the number of clock cycles
required to complete a modular multiplication. Another
improvement consists of using the so-called redundant
representation of the operand together with the
Montgomery algorithm. This avoids the unbounded
propagation of carries.

Figure 43: The area×time factor for iterative vs. systolic

6 Discussion
As stated in the introduction, the methods used to
compute modular products fall in two categories: (i)
those that first compute the product then reduced
product, and (ii) those that compute the modular product
directly.

The advantage of the first category method is that
one can use any on-the-shelf method for multiplication
and reduction. However, the only such methods that are
efficient consist of those presented here, i.e. Karatsuba-
Ofman’s and Booth’s methods for multiplication and
Barrett’s method for reduction. As far as the authors are
concerned, these methods are the only ones appropriate
for hardware implementation. Another disadvantage of
using the multiply-then-reduce method is that the product
is generally large and thus requires a great deal of space
to store it for further use by the reduction step.

In contrast, the methods that interleave
multiplication and reduction steps to produce the
modular product do not have to store the product.
However, also as far as the authors are concerned, only
Montgomery’s method that yields the modular product in
such a way. Hardware implementation of Montgomery’s
algorithm always require very much less area than the
implementations of the first category methods.
Furthermore, these implementations are always very
much slower than the implementations of Montgomery
method.

7 Conclusions
In this paper we surveyed most known and recent
methods for efficient modular multiplication. For each
method presented, we provide an adequate hardware
implementation.

We explained that the modular multiplication A×B
mod M can be performed in two different ways:
obtaining the product then reducing it; or obtaining the
reduced product directly. There are various algorithms
that implement modular multiplication. The most
prominent algorithms are Karatsuba-Ofman’s [27], [28]
and Booth’s [21], [22] methods for multiplying, Barrett’s
[21] method for reducing, and Montgomery’s algorithms
[5], [23], [24], [25], [26], [38], [39] for interleaving
multiplication and reduction.

128 Informatica 30 (2006) 111–129 N. Nedjah et al.

Throughout this paper, we considered each one of
the methods cited previously. The review was organized
as follows: First we described the Karatsuba-Ofman’s
and Booth’s methods for multiplying. Subsequently, we
presented Barrett’s method for reducing an operand
modulo a given modulus. For each method, we detailed
the hardware architecture and then compared the
respective hardware with respect to area and response
time requirements. The implementation of the modular
multiplication using Karatsuba-Ofman’s method for
multiplying and Barrett’s method for reducing the
obtained result presents a shorter signal propagation
delay than using Booth’s method together with Barrett’s
method, without much increase in hardware area
requirements.

After that, we detailed the Montgomery’s algorithm
for interleaving multiplication and reduction. For the
method, we presented two hardware implementations:
one iterative and the other systolic. The systolic
implementation is much better that the sequential one but
requires more hardware area.

Subsequently, we reviewed some techniques that
should allow further improvement to the implementation
of the modular multiplication with long operand.

8 Acknowledgments
We are grateful to the reviewers and the editor that
contributed to the great improvement of the original
version of this paper with their valuable comments and
suggestions. We also are thankful to FAPERJ (Fundação
de Amparo à Pesquisa do Estado do Rio de Janeiro,
http://www.faperj.br) and CNPq (Conselho Nacional de
Desenvolvimento Científico e Tecnológico,
http://www.cnpq.br) for their continuous financial
support.

9 References
[1] Ashenden, P.J., Recursive and Repetitive Hardware

Models in VHDL, Joint Technical Report, TR
160/12/93/ECE, University of Cincinnati, and TR
93-19, University of Adelaide, 1993.

[2] Barrett, P., Implementating the Rivest, Shamir and
Aldham public-key encryption algorithm on
standard digital signal processor, Proceedings of
CRYPTO'86, Lecture Notes in Computer Science
263:311-323, Springer-Verlag, 1986.

[3] Booth, A., A signed binary multiplication
technique, Quarterly Journal of Mechanics and
Applied Mathematics, pp. 236-240, 1951.

[4] Brickell, E. F., A survey of hardware
implementation of RSA, In G. Brassard, ed.,
Advances in Cryptology, Proceedings of
CRYPTO'98, Lecture Notes in Computer Science
435:368-370, Springer-Verlag, 1989.

[5] S. E. Eldridge and C. D. Walter, Hardware
implementation of Montgomery’s modular
multiplication algorithm, IEEE Transactions on
Computers, 42(6):619-624, 1993.

[6] Bewick, G.W., Fast multiplication algorithms and
implementation, Ph. D. Thesis, Department of
Electrical Engineering, Stanford University, United
States of America, 1994.

[7] Dhem, J.F., Design of an efficient public-key
cryptographic library for RISC-based smart cards,
Ph.D. Thesis, Faculty of Applied Science, Catholic
University of Louvain, May 1998.

[8] W. Diffie and M.E. Hellman, New directions in
cryptography, IEEE Transactions on Information
Theory, vol. 22, pp. 644-654, 1976.

[9] ElGamal, T., A public-key cryptosystems and
signature scheme based on discrete logarithms,
IEEE Transactions on Information Theory,
31(4):469-472, 1985.

[10] Gutmann P., Cryptographic Security Architecture:
Design and Verifcation, Springer-Verlag, 2004.

[11] Kim, J.H., Ryu, J. H., A high speed and low power
VLSI multiplier using a redundant binary Booth
encoding, Proc. of 6th Korean Semiconductor
Conference, PA-30, 1999.

[12] Knuth, D.E., The art of computer programming:
seminumerical algorithms, vol 2, 2nd Edition,
Addison-Wesley, Reading, Mass., 1981.

[13] Jung, M., Madlener, F., Ernst, M. and Huss, S.A., A
reconfigurable coprocessor for finite field
multiplication in GF(2n), Proc. of IEEE Workshop
on Heterogeneous Reconfigurable systems on Chip,
Hamburg, Germany, 2002.

[14] Koç, Ç.K., High speed RSA implementation,
Technical report, RSA Laboratories, RSA Data
Security Inc. CA, version 2, 1994.

[15] Lim, C.H., Hwang, H.S. and Lee, P.J., Fast
modular reduction with precomputation, In
Proceedings of Korea-Japan Joint Workshop on
Information Security and Cryptology, Lecture
Notes in Computer Science, 488:323-334, 1991.

[16] MacSorley, O., High-speed arithmetic in binary
computers, Proceedings of the IRE, pp. 67-91,
1961.

[17] Menezes, A. van Oorschot, P. and Vanstone, S.,
Handbook of Applied Cryptography, CRC Press,
1996.

[18] Montgomery, P.L., Modular Multiplication without
trial division, Mathematics of Computation,
44: 519-521, 1985.

[19] Mourelle, L.M. and Nedjah, N., Compact iterative
hardware simulation model for Montgomery’s
algorithm of modular multiplication, Proceedings
of ACS/IEEE International Conference on
Computer Systems and Applications, Tunis,
Tunisia, July 2003.

[20] Navabi, Z., VHDL - Analysis and modeling of
digital systems, McGraw Hill, Second Edition,
1998.

[21] Nedjah, N. and Mourelle, L.M., Yet another
implementation of modular multiplication,
Proceedings of 13th. Symposium of Computer
Architecture and High Performance Computing,
Brasilia, Brazil, IFIP, pp. 70-75, 2001.

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 129

[22] Nedjah, N. and Mourelle, L.M., Simulation model
for hardware implementation of modular
multiplication, In: Mathematics nad Simulation
with Biological, Economical and Musicoacoustical
Applications, C.E. D’Attellis, V.V. Kluev, N.E.
Mastorakis Eds. WSEAS Press, 2001, pp. 113-118.

[23] Nedjah, N. and Mourelle, L.M., Reduced hardware
architecture for the Montgomery modular
multiplication, WSEAS Transactions on Systems,
1(1):63-67.

[24] Nedjah, N. and Mourelle, L.M., Two Hardware
implementations for the Montgomery modular
multiplication: sequential versus parallel,
Proceedings of the 15th. Symposium Integrated
Circuits and Systems Design, Porto Alegre, Brazil,
IEEE Computer Society Press, pp. 3-8, 2002

[25] Nedjah, N. and Mourelle, L.M., Reconfigurable
hardware implementation of Montgomery modular
multiplication and parallel binary exponentiation,
Proceedings of the EuroMicro Symposium on
Digital System Design − Architectures, Methods
and Tools, Dortmund, Germany, IEEE Computer
Society Press, pp. 226-235, 2002

[26] Nedjah, N. and Mourelle, L.M., Efficient hardware
implementation of modular multiplication and
exponentiation for public-key cryptography,
Proceedings of the 5th. International Conference on
High Performance Computing for Computational
Science, Porto, Portugal, Lecture Notes in
Computer Science, 2565:451-463, Springer-Verlag,
2002

[27] Nedjah, N. and Mourelle, L.M., Hardware
simulation model suitable for recursive
computations: Karatsuba-Ofman’s multiplication
algorithm, Proceedings of ACS/IEEE International
Conference on Computer Systems and
Applications, Tunis, Tunisia, July 2003.

[28] Nedjah, N. and Mourelle, L.M., A Reconfigurable
recursive and efficient hardware for Karatsuba-
Ofman’s multiplication algorithm, Proceedings of
IEEE International Conference on Control and
Applications, Istambul, Turkey, June 2003, IEEE
System Control Society Press.

[29] Nedjah, N. and Mourelle, L.M. (Eds.), Embedded
Cryptographic Hardware: Methodologies and
Applications, Nova Science Publishers, Hauppauge,
NY, USA, 2004.

[30] Nedjah, N. and Mourelle, L.M. (Eds.), Embedded
Cryptographic Hardware: Design and Security,
Nova Science Publishers, Hauppauge, NY, USA,
2005.

[31] Nedjah, N. and Mourelle, L.M. (Eds.), New Trends
on Embedded Cryptographic Hardware, Nova
Science Publishers, Hauppauge, NY, USA (to
appear).

[32] Paar, C., A new architecture for a parallel finite
field multiplier with low complexity based on
composite fields, IEEE Transactions on Computers,
45(7):856-861, 1996.

[33] Rabaey, J., Digital integrated circuits: A design
perspective, Prentice-Hall, 1995.

[34] Rivest, R., Shamir, A. and Adleman, L., A method
for obtaining digital signature and public-key
cryptosystems, Communications of the ACM,
21:120-126, 1978.

[35] Shindler, V., High-speed RSA hardware based on
low-power piplined logic, Ph. D. Thesis, Institut für
Angewandte Informations-verarbeitung und
Kommunikationstechnologie, Technishe Universität
Graz, January 1997.

[36] Zuras, D., On squaring and multiplying large
integers, In Proceedings of International
Symposium on Computer Arithmetic, IEEE
Computer Society Press, pp. 260-271, 1993.

[37] Walter, C.D., A verification of Brickell’s fast
modular multiplication algorithm, International
Journal of Computer Mathematics, 33:153:169,
1990.

[38] Walter, C.D., Systolic modular multiplication, IEEE
Transactions on Computers, 42(3):376-378, 1993.

[39] Walter, C. D., Systolic modular multiplication,
IEEE Transactions on Computers, 42(3):376-378,
1993.

[40] Xilinx, Inc. Foundation Series Software,
http://www.xilinx.com.

