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Abstract. In the last years, there have been many attempts made to improve urban traffic signal
control systems as this is one of the most cost-effective ways to improve the traffic flow through a
network of intersections. Besides the traditional methods for traffic signal control that are usually

based on a traffic flow model, the development of new systems started to consider the various

emerging technologies including artificial intelligence. Application of metaheuristic methods has

proven to be worth of being researched. One of them is particularly fuzzy logic when combined with
methods for system optimization. It offers a greater degree of flexibility, adaptability and above all
the possibility of handling uncertain information and dealing with conflicting situations. We made an
overview of the research that has been done so far in this area.
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Povzetek. lzboljsanje sistemov za upravljanje mestne [1, 2]. Some of the researches focus also on other

prometne signalizacije je eden cenovno najuéinkovitejsih
nacinov za izboljSanje prometnega pretoka skozi mrezo

VVVVV Pri razvoju novih sistemov
se zadnja leta poleg tradicionalnih metod, ki temeljijo
na uporabi modelov prometnega pretoka, Cedalje vec
uporabljajo nove tehnologije, ki vkljuéujejo uporabo
umetne inteligence. Raziskave so pokazale ucinkovitost
metahevristicnih metod. Posebno mehka logika, tudi v
kombinaciji z optimizacijskimi metodami, ponuja fleksi-
bilnost, prilagodljivost, upravljanje pri neto¢nih informa-
cijah in v konfliktnih situacijah. Naredili smo pregled
raziskav s tega podrocja.

Kljucne besede: prometna signalizacija, mehka logika,
hibridni sistemi, porazdeljeno upravljanje.

1 Introduction

Urban traffic signal control systems are systems that
control and coordinate signals in a group of intersec-
tions in order to enable the vehicles to move fluently
though the traffic network. The traffic signal control
systems are developed to achieve maximum effective-
ness, depending on the goals and the measures for the
quality of service that we use. The objective of a traf-
fic signal control system is safety, but the main goal
is usually to achieve shorter delays and travel times
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aspects, such as public transport priority or greater
mobility for pedestrians and cyclists [12]. We expect
from an up-to-date traffic signal control system to op-
erate in real time and to adapt to the dynamic traffic
conditions.

Traffic signal control systems, like the one that
are in use today, emerged in the sixties of the last
century. We divide them in three generations. The
first generation signal control systems use pre-stored
timing plans that are developed offline using histo-
rical data. These plans are optimized for stationary
traffic demands and we usually switch between them
depending on the time of the day. They are still in
use today, but they serve also as benchmarks in the
development of new signal control systems.

The second generation of urban traffic control sys-
tems introduced the traffic-dependent signal timing
plans that are switched or generated in real time.
These systems came out in the seventies. They op-
erate from a centralized computer and are character-
ized by a common cycle length. Systems like these are
still mostly in use today, but they lose effectiveness
in situations of big and quick variations. The pro-
blems arise when new timing plans are implemented
too frequently and the coordination is lost because of
the oscillations between timing plans.

In the third generation we deal with adaptive traf-
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fic signal control systems that are able to adapt to
traffic conditions, coping with complex flow patterns
and unpredictable variations. They seek continu-
ous optimal system performance. SCOOT [14] and
SCATS [15] are two of the most known adaptive traf-
fic signal control systems. They gather the data on
traffic flows in real-time at each intersection. This
data is fed via the traffic control signal box to a cen-
tral computer. The computer makes incremental ad-
justments to traffic light timings based on changes in
the traffic flow at each intersection. SCATS performs
a vehicle count at each stop line, while SCOOT uses
a set of advance vehicle detectors upstream of the
stop line. This gives the system a higher resolution
picture of the traffic flows and a count of the number
of vehicles in each queue, several seconds before they

1ICIES ral SeCOIAds 1€Y

touch the stop line. Other systems like RHODES [10]
and OPAC [4] use distributed control instead of cen-
tralized control. They run locally and provide coordi-
nation between the intersections by talking to their
neighbours. For example, an iupstream intersection
releases a queue of traffic and tells the downstream
intersection when and how many vehicles to expect.
This scheme allows to have different cycle lengths at
signalized intersections, yet provides for signal coor-

dination.

Research in the field of area traffic signal control
by means of methods of artificial intelligence started
in the 1990’s, although the first paper about isolated
traffic signal control with fuzzy logic was published
already in 1977. The first applications used only
fuzzy logic, then neural nets or genetic algorithms, af-
terwards these methods started to be used together
in the so called hybrid systems. Fuzzy logic serves
as a tool for knowledge representation and the de-
scription for the control logic. By using methods like
neural nets or genetic algorithms we enable the fuzzy
logic systems to adapt to the traffic patterns and to
learn better signal control strategies. In this paper
we will make a review of the research that has been
done so far and we will describe different approaches
that have been used. We are also experimenting in
this field [8]. Systems like these are still evolving and
only starting to be implemented in real environments.
Examples are a fuzzy traffic signal control system for
an isolated intersection in Finland [12] and a fuzzy
ramp-metering system in Germany [1].

2 Fuzzy logic systems

Fuzzy logic is a control method suitable for managing
conflicting goals with information given in linguis-
tic terms. Representing the input information with
fuzzy sets enables the system to handle uncertain in-
formation and inexact data.

Fuzzy logic maps the inputs values of the system
to the output values. The system domain is divided
in fuzzy sets that represent some linguistic values.
For example the traffic flow can be low, medium or
high. We define these linguistic values by member-
ship functions that tell us to which degree is a given
numerical value part of a fuzzy set. To some degree
it can be part of more than one fuzzy set. We can do
the same with the output space. The translation of
numerical values to linguistic values is called fuzzy-
fication, while the opposite procedure is defuzzyfi-
cation (Fig. 1). The fuzzy inference describes and
defines the system logic by using simple if-then rules.
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Figure 1. Structure of a fuzzy logic system

Rule example:
If the demand is high, then extend the current phase.

For a given input data also more than one rule
can be combined and applied in order to obtain the
desired control effect. Description of the system with
fuzzy logic is very comprehensive and all the available
knowledge can be easily integrated into the system.

The structure of a fuzzy logic system gives us the
possibility to easily identify how and also why the
system is operating the way it is. Hence, we can
quickly see what is not good and where the prob-
lems we should be more focused on are. Modifying
a fuzzy logic system is not difficult. The system is
quite flexible: we can modify the membership func-
tions that define the linguistic values, change their
number, distribution, overlapping, modify, add or
delete rules, change the system operators, apply dif-
ferent defuzzyfication methods and so on. But the
hard part of the optimization procedure, especially
of traffic signal control, is knowing if the system has
improved or not, since there are no standard evalu-
ation methods or measures of effectiveness. Another
problem of a fuzzy logic system is that by increas-
ing the number of linguistic variables and values, the
rule base grows exponentially (when wanting to cover
all the possible value combinations) which causes a
combinatorial explosion. Usually, the solution to this
is choosing a different system structure, hierarchical
for example [3], or a distributed problem-solving ap-
proach. Instead of centrally we can operate locally
at each intersection [2].
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3 Hybrid systems

The construction optimization a fuzzy logic system
can be a very time-consuming procedure. 10 solve
this problem, many optimization techniques have
been adopted in the area of fuzzy logic. The most
widely used are neural nets and genetic algorithms
[5]. The systems that combine these technologies
are called neuro-fuzzy, genetic-fuzzy or simply hy-
brid systems. The optimization algorithms are also
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called learning algorithms. There are different types

of learning procedures: offline or online, supervised,

tnannerviced or reinforcem
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nent type [5)].
Neuro-fuzzy systems are represented as a feedfor-
ward neural network, where the units of the fuzzy
logic system take the role of neurons. The connec-
tions between neurons follow the structure of the
fuzzy system (Fig. 2). During the learning proce-
dure the parameters of the neuro-fuzzy system are
being updated in order to achieve the desired or the
optimal behaviour. A standard learning algorithm
is the backpropagation algorithm, common in super-
vised learning in neural networks, where the output
of the network at each input is compared with a de-
sired output, known in advance.
inference

fuzzyfication defuzzyfication

Figure 2. Example of a neuro-fuzzy structure

Genetic-fuzzy systems are another metaheuristic
algorithm that join fuzzy logic with an optimization
technique. Genetic algorithms are a search technique
and are a particular class of evolutionary algorithms
that use methods such as inheritance, mutation, na-
tural selection, and crossover. First, we need to
choose an adequate set of the system parameters that
we want to modify and a suitable representation for
the candidate solutions (Fig. 3).

low medium

Figure 3. Example of a genetic-fuzzy representation

Traditionally, a solution can be represented by a
string of bits, number or characters called chromo-
somes. Second, there must be some method of mea-
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suring the quality of any proposed solution, using a
fitness function [3, 9].

There are many tools that offer offline optimiza-
tion of the traffic signal timing parameters like Tran-
syt or Syncro. They operate with historical and usu-
ally stationary data. Optimizing a fuzzy logic system
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ing procedure that optimizes the system online and
consequently adapts the fuzzy traffic signal control
system to the dynamically changing traffic domain.

Characteristic for the area of traffic signal control
is that the outputs of the system are not predefined
and neither are we interested in an exact output. The
control actions have an impact on the traffic flow,
delays and the number of stops and this is what we
are concerned about. Thus, the learning algorithm
must be goal-oriented and the learned signal timing
strategies must be evaluated accordingly.

Two of the strategies for system evaluation are:
1. The traffic signal control system is connected with
a traffic flow model predicting the system behaviour
and estimating the system performance.
2. Instead of the traffic flow model, the control sys-
tem uses the feedback from the traffic system to esti-
mate the system performance. In this case the system
can iteratively learn directly from the consequents of
its own actions. This is what we call reinforcement
learning.

4 Fuzzy traffic signal control

In this section we will present some of the approaches
that were taken for fuzzy urban traffic signal control.

The first attempt to control traffic signals with
fuzzy logic at isolated intersections was made by Pap-
pis and Mamdany in 1977 [13]. They were followed
by many others. One of the recent research projects
was FUSICO conducted in Finland [12].

One of the first attempts to control traffic sig-
nals for a group of intersections with fuzzy logic was
presented by Chiu and Chand in 1993 [2]. Their ap-
proach is based on a distributed system of coopera-
tive local controllers. Each local controller uses a set
of fuzzy decision rules to adjust the standard signal
timing parameters: cycle time, phase split, and off-
set. The rules for adjusting the cycle time and phase
split follow the general principles used by SCATS, ex-
cept that cycle time and phase split adjustments are
here coupled, determined with common rules. For
example:

If east-west saturation is low and
north-south saturation is high

then cycle time change is zero and
east-west phase change is negative medium.



294 Malej, Brodnik

Their approach also allows the local controllers to
have different cycle times when coordination is not so
important. A group of rules limits the cycle time dif-
ference. They performed simple simulations to verify
the effectiveness of the control scheme considering a
mesh of nine intersections.

Mikami and Kakazu [9] are known for having used
reinforcement learning and genetic algorithms, al-
though they did not use fuzzy logic. With their multi-
agent vehicle-actuated traffic signal control approach
each signal controller learned its control plans indi-
vidually by reinforcement learning. The long-term
cooperation was acquired through the combinatorial
search by genetic algorithms, but the learning scheme
converged only when the environment was stationary.

Lee and Lee-Kwang [7] presented a distributed
vehicle-actuated system for area traffic signal con-
trol that uses fuzzy logic. Each local controller of
an intersection controls its own traffic and cooper-
ates with its neighbors. The controllers consist of
three modules (Fig. 4) that decide every 2 seconds
about the next phase and whether to switch the green
phase or not. The decisions are based on the infor-
mation obtained from local and neighbour detectors.
The system has 8 input, 1 output and 3 intermedi-
ate variables. It differs from other systems as it uses
also the number of vehicles between this and the next
intersection and the time that is still needed for the
vehicles from the upstream intersection to get to this
intersection. So this system needs two detectors per
lane for every intersection. Three modules together
have 61 rules. But the system doesn’t consider pedes-
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Figure 4. Fuzzy system with three ruleblocks

A similar approach was suggested also by Kosonen
in [6]. He proposed traffic signal control that com-
municates with an on-line traffic simulation system
that operates with real-time data. At the Helsinki
University of technology they have been researching
in the area of isolated fuzzy signal control [12] and
they now try to use the experiences to run distributed
control for an area.

We mentioned that fuzzy logic is being used also
for ramp metering, which is a similar type of sig-
nal control, but it is used for managing traffic on
freeways. There are various inputs like occupancy,
speed, and the output variable is the metering rate.
The ramp metering can be isolated or we can have

more controllers for a freeway section that are coor-
dinated. Bogenberger presented a coordinated fuzzy
ramp metering control for a freeway section in Mu-
nich, Germany [1]. He proposed five different mo-
dels, two of them are neuro-fuzzy and the others use
genetic-fuzzy technology. Four models use for the
evaluation a macroscopic traffic model that is called
from an offline learning algorithm. The optimizing
learning algorithm can be executed daily or every
15 minutes, depending on the model. On the other
hand, one of the models, that have also been imple-
mented in the field, called genetic reality, uses an
online learning technique and it doesn’t use a macro-
scopic traffic model. Instead, to achieve the system
objective which is the minimum total travel time, it
uses J.Uﬁul)d.bh J.IJ.J.UI Illd.l/lUIl JJLll lllg l;llﬁ Upbllllléd.blUll,
the membership functions are being updated, while
the ruleblock remains unchanged.

Another type of distributed fuzzy traffic signal
control was presented by Nakamiti and Freitas [11].
The system consists of a group of Local Problem
Solvers and a Case-Based Mechanism (Fig. 5). Local
Problem Solvers operate at individual intersections,
they collect the input data at the given intersections
and also from their neighbours. The input variables
are traffic flows, waiting times and queue lengths and
the system decides about the termination or the ex-
tension of the current green phase and informs the
neighbours. The local controllers cooperate with re-
gard to past experience that is organized in a case-
base.

Outputs
Local

probiem
solver

Inputs

Figure 5. Connection with a case-based mechanism

An evolutive fuzzy case-based mechanism helps
the Local Problem Solvers in unexpected situations
to find an appropriate solution. Its main tasks are to
identify and to retrieve similar cases, combine the se-
lected cases, generate decision, and manage the case-
base. Similar situations are retrieved and combined
through genetic algorithms. After observing and an-
alyzing the system performance by verifying the re-
sulting delays and queues, the new case and its result
are included into the case base, allowing better deci-
sions over time.

Choy et al. [3] chose a different approach and
used a model for traffic signal control with a hier-
archical multi-agent architecture to provide different
levels of control for the traffic network (Fig. 6). The
architecture consists of three layers. The first layer
consists of agents that control individual intersec-
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tions. The agents in the second layer are zone con-
trollers, while the third layer consists of one or more
regional controller agents. The agents make decisions
autonomously, they decide the policies (signal timing
adjustments and direction of offset coordination) and
the levels of cooperation. The policies are stored in a
policy repository which performs arbitration and con-
flict resolution for the entire set of the recommended
policies.

| Online learning module |
2

Intersection
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input parameters, and of how they get the informa-
tion from the intersections in the neighbourhood.

Our focus was on the traffic control systems using
fuzzy logic. We thus distinguish between the sys-
tems that operate based only on fuzzy logic (2, 6, 7]
and those that use also automatic optimization tech-
niques [3, 11].

Table 1 shows some of the main characteristics
of the traffic signal control systems we refer to in

At this Qfama it is not known which of

this paper.

them gives better results as they have not yet been
compared among themselves.

controller agent 1} — Zone controller | v
Intersection agent 1 Regional object of level of position type of
g controller agent 2| 4 cocr%tlr(())ril{ac . control control detectors control
g" Intersection agent Scoot [14] cycl%.‘ split. central upstream _t;ftl.SEd Or:j 1
controller agent 3 Zone controller onet tralfic moce
Int: i ] agent 2 1 Scais [15] cyele. split. ceniral stop-bar not model
ntersection T offset ‘ B based
controller agent 41 Outouts
puts phase A based on
Rhodes [10] durations hierarchical upstream traffic model
Ttraffic Policy o ) cycle. split. o based on
Y pac [4] . distributed upstream §
simulator repository and interpreter _ offset i traffic model
8::::1’ a2] cycég‘sse]zht. distributed stop-bar fuzzy logic
Figure 6. Hierarchical architecture of a fuzzy traffic signal Mikami, phase distributed not genetic reinforce-
control system akazu extension Speciiie ment [earning
trol syst Kakazu [9 i pecified learning
Lee, Lee- phase ‘o upstream, . .
. . . Kw;mg [7] exkt/ension distributed s};op bar fuzzy logic
The system uses input variables like the traffic [Naxamia phase — -
. - ) ) distributed upstream hybrid system
flow, rate of change of flow and occupancy. A special | Freitas[l1] | extension ’
. . . . h C - .
input for higher level agents is the cooperative factor | Kosonen[6] | P | distributed | upstream fuzzy logic
that is the output of lower agents. Besides this, the | Choy cycle, sphit, | . . .
ctal 3] o ffs ot * | hierarchical stop-bar hybrid system
system includes also an online reinforcement learning -2

module for system optimization based on feedbacks
from the environment. The role of this module is to
generate reinforcements which are to be backpropa-
gated to the agents to facilitate the dynamic adjust-
ment of their parameters. The Choy’s system uses
fuzzy logic, neural nets, genetic algorithm and rein-
forcement learning all together. The signal policies
are updated at the end of the signal phases.

The research in this area is still active, although
the publications are very few. This is most probably
due to an elevate commercial potential and business
interests.

5 Comparison

The mentioned traffic signal control systems differ
one from another in many aspects. Some control
the green signal extensions [6, 7, 11] and others the
standard control parameters such as the cycle, split
and offset [2, 3] (Table 1). This affects the fre-
quency at which the control actions must be com-
puted. It is continuous versus point-wise, where con-
tinuous means decisions in regular intervals (usually
seconds) while point-wise is at the beginning or end
of a phase or cycle. Of course, the systems differ one
from another already in terms of detector locations,

Table 1. Studies in fuzzy traffic signal control

6 Simulations

The traffic signal control systems under development
need to be tested and compared to other approved
existing systems. There are many microsimulation
tools on the market that are able to simulate the traf-
fic at a very high level of detail. In order to evaluate
a new traffic signal control system, the simulation
program must provide interactions with an external
signal control system. The simulation program cre-
ates traffic, propagates it through the traffic network
in the simulation environment and generates detector
inputs for the signal control system. The signal con-
trol system reacts to the detector inputs, computes
the control actions and sends the traffic signals back
to the simulator. The simulated vehicles react to
these signals and according to them there are several
measures of the signal control effectiveness computed.
By simulating the same traffic conditions, different
signal control systems can be objectively compared.

The mentioned studies include also simulations of
their traffic signal controllers, but it should be noted
that the different control procedures were simulated



in different environments, traffic network configura-
tions, traffic demands, etc. The control systems were
usually compared with fixed time control, but not
with other sophisticated methods. So we don’t have
an objective evaluation of the described signal con-
trol procedures. Two of the mentioned papers [1,
3] include simulations with real, dynamic traffic de-
mand in real environments, and comparisons with
state-of-the-art traffic signal control systems. Choy
simulated a traffic network of a section of the central
business district area of Singapore with 25 intersec-
tions controlled by his multiagent approach. The sig-
nal settings used for benchmarking were the actual
signal plans implemented by GLIDE, the local name
for SCATS. Detectors were placed at stop lines sim-
ilarly to real-world installations. The resulting aver-
age delay per vehicle and the total stoppage time for
vehicles showed an improvement of 15% and 30%, re-
spectively, during the morning peak hour, and even
40% and 50%, respectively, after all the 6h simula-
tion runs. These are but few simulations, but they
nevertheless show us that there is a big potential in

improving the traffic signal control systems.

7 Conclusion

The continuously growing traffic density and increas-
ing demands for more efficient transport call for an
improvement in the traffic signal control. We pre-
sented the past research in the area of traffic signal
control that proposed the use of fuzzy logic and var-
ious optimization techniques that adopt genetic al-
gorithms or neural nets. Their results show a great
potential in making the traffic signal control systems
more flexible, transparent and adaptable to the traf-
fic dynamics, while producing smaller delays. Conse-
quently, to evaluate and compare different traffic con-
trol systems we need a unified measure for the quality
of service and examples that would serve as bench-
marks in the development of new systems. However,
the research in this area is still active as computer sci-
ence continues to offer new methods towards achieve-
ment of better solutions.
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