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Abstract

The connected Turán number is a variant of the much studied Turán number, ex(n, F ),
the largest number of edges that an n-vertex F -free graph may contain. We start a system-
atic study of the connected Turán number exc(n, F ), the largest number of edges that an
n-vertex connected F -free graph may contain. We focus on the case where the forbidden
graph is a tree. Prior to our work, exc(n, T ) was determined only for the case T is a star
or a path. Our main contribution is the determination of the exact value of exc(n, T ) for
small trees, in particular for all trees with at most six vertices, as well as some trees on
seven vertices and several infinite families of trees. We also collect several lower-bound
constructions of connected T -free graphs based on different graph parameters.

The celebrated conjecture of Erdős and Sós states that for any tree T , we have
ex(n, T ) ≤ (|T | − 2)n2 . We address the problem how much smaller exc(n, T ) can be,
what is the smallest possible ratio of exc(n, T ) and (|T | − 2)n2 as |T | grows.
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1 Introduction
For a graph G, we write e(G) and |G| to denote the number of edges and vertices in G.
For a pair U, V of disjoint sets of vertices in G, we use eG(U, V ) to denote the number of
edges inG with one endpoint in U and the other in V . G will be omitted from the subscript
if it is clear from context.

One of the most studied problems in extremal graph theory is to determine the Turán
number ex(n, F ), the largest number of edges that an n-vertex graph can have without
containing a subgraph isomorphic to F . In this paper, we start a systematic study of a
variant of this parameter: the connected Turán number exc(n, F ) is the largest number
of edges that a connected n-vertex graph can have without containing F as a subgraph.
Observe that if F is 2-edge-connected, then any maximal F -free graph G is connected,
as if G has at least two connected components, then adding an edge between them would
not create any copy of F . Also, if the chromatic number of F is at least 3, then by the
famous theorem by Erdős, Stone, and Simonovits [6, 7], we know that ex(n, F ) is attained
asymptotically (and for some graphs precisely) at the Turán graph that is connected. These
two observations imply the following proposition.

Proposition 1.1.
(1) If all connected components of F are 2-edge-connected, then ex(n, F ) = exc(n, F ).

(2) If χ(F ) ≥ 3, then exc(n, F ) = (1 + o(1)) ex(n, F ).

The asymptotics of ex(n, F ) is unknown for most bipartite F (for a general overview
of the so-called degenerate Turán problems, see the survey by Füredi and Simonovits [8]).
However, it is known that for any graph F that contains a cycle, ex(n, F ) grows super-
linearly. If ex(n, F ) is attained at a non-connected graph with a connected component of
size m, then we have ex(n, F ) ≤ ex(m,F ) + ex(n − m,F ), which does not hold for
’nice’ superlinear functions. There is a relatively large literature on the Turán number of
forests (see e.g. [3, 11, 12, 14, 15]), and in many cases the extremal graphs turned out to
be connected, so for those forests F , we have ex(n, F ) = exc(n, F ). In this paper, we
concentrate on the family of trees. A famous conjecture of Erdős and Sós (that appeared
in print first in [4]) states that any n-vertex graph with more than (k−2)n

2 edges contains
any tree T on k vertices. A proof was announced in the early 1990’s by Ajtai, Komlós,
Simonovits, and Szemerédi, but only arguments of special cases have appeared. A recent
survey of these and other degree conditions that imply embeddings of trees is given in
[13]. The universal construction that shows the tightness of the Erdős–Sós conjecture is
the union of vertex-disjoint cliques of size k− 1. This is not a connected graph and we are
only aware of two explicit results concerning exc(n, T ) (but there exist results on Turán
problems in connected host graphs, see e.g. [2]). The connected Turán number of stars
follows from the existence of (nearly) regular connected graphs. Apart from stars, paths on
k vertices, denoted by Pk, have been considered. The value of exc(n, Pk) was determined
by Kopylov, and independently by Balister, Győri, Lehel, and Schelp with the latter group
also showing the uniqueness of extremal constructions.

Theorem 1.2 ([1, Balister, Győri, Lehel, Schelp], [10, Kopylov]). If G is an n-vertex
connected graph that does not contain any paths on k + 1 vertices, then

e(G) ≤ max

{(
k − 1

2

)
+ n− k + 1,

(
dk+1

2 e
2

)
+

⌊
k − 1

2

⌋(
n−

⌈
k + 1

2

⌉)}
holds.
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In the remainder of the introduction, we shall present the various results obtained con-
cerning exc(n, T ). Lower bound constructions are given in Section 2 and exact determi-
nation of exc(n, T ) including all trees on up to six vertices and some trees having seven
vertices is included in Section 3.

Our first result gathers several constructions, all based on some graph parameters, that
provide lower bounds on exc(n, T ). For those parameters we use the following notation.

Definition 1.3.
• p(G) denotes the maximum number of vertices in a path P of G such that for all
x ∈ V (P ) we have dG(x) ≤ 2.

• ∆(G) and δ(G) denote the maximum and the minimum degree in G.

• ν(G) denotes the number of edges in a largest matching of G.

• δ2(T ) denotes the smallest degree in T that is larger than 1.

• For a vertex v ∈ V (T ) let mT (v) be the size of largest component of T − v and let
m(T ) = min{mT (v) : v ∈ V (T )}.

• For a vertex v ∈ V (T ) letmT,2(v) be the sum of the sizes of two largest components
of T − v and let m2(T ) = min{mT,2(v) : v ∈ V (T )}.

• For an edge e = xy ∈ E(G) we write w(e) = min{dG(x), dG(y)} and define
w(G) = max{w(e) : e ∈ E(G)}.

Notation. For graphs H and G, their disjoint union is denoted by H ∪ G. The join of H
and G, denoted by H+G, is H ∪G with all edges hg h ∈ H, g ∈ G added. For a graph H
and a positive integer k, kH denotes the pairwise vertex-disjoint union of k copies of H .
Sk denotes the star with k leaves, Pk, Ck,Kk, Ek denote the path, the cycle, the complete
graph and the empty graph on k vertices, respectively. The complete bipartite graph with
parts of size a and b is denoted by Ka,b.

In the following remark, we gather the consequences of known constructions (mostly
used for distinct purposes).

Remark 1.4.
(1) The existence of connected (nearly)-regular graphs show exc(n, T ) ≥ bn(∆(T )−1)

2 c.

(2) The construction of Theorem 1.2 shows that if T has diameter d, then exc(n, T ) ≥(d d+1
2 e
2

)
+ bd−1

2 c(n− d
d+1

2 e).

(3) Ka−1,n−a+1 shows that if the bipartition of T consists of classes of sizes a and b
with a ≤ b, then exc(n, T ) ≥ (a−1)(n−a+1). In particular, we have exc(n, T ) ≥
(w(T )− 1)(n−w(T ) + 1) and exc(n, T ) ≥ (ν(T )− 1)(n− ν(T ) + 1). The latter
can be improved to exc(n, T ) ≥ (ν(T ) − 1)(n − ν(T ) + 1) +

(
ν(T )−1

2

)
shown by

Kν(T )−1 + En−ν(T )+1, the largest graph with matching number less than ν(T ) if n
is large as proved by Erdős and Gallai [5].

Observe that if T is balanced, i.e. a = b in its bipartition, then the number of edges in
Ka−1,n−a+1 is just a constant smaller than the number of edges in n

k−1Kk−1, the extremal
graph of the Erdős-Sós conjecture. The next proposition states lower bounds due to new
constructions. The proof of Proposition 1.5 will be given in Scetion 2.
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Proposition 1.5. Suppose T is a tree on k ≥ 4 vertices.

(1) If T is not a path and thus p(T ) ≤ k − 3, then exc(n, T ) ≥ (
(
k−2p(T )−3

2

)
+

p(T ) + 2)b n
k−p(T )−2c. Furthermore, if T contains at least two vertices of degree

at least three, then exc(n, T ) ≥ (k−p(T )−1
2 )+p(T )+2

k n−O(k).

(2) If T is not a star and δ2(T ) > 2, then exc(n, T ) ≥ bn−1
k−1 c(

(
k−2

2

)
+ δ2(T )− 1).

(3) If T is not a path, then exc(n, T ) ≥ n− 1 + b n−1
m(T )−1c

(
m(T )−1

2

)
.

(4) exc(n, T ) ≥ b n
k−m2(T )c(1 +

(
k−m2(T )

2

)
).

Next, we determine exc(n, T ) for all trees on k vertices with 4 ≤ k ≤ 6 (note that
there do not exist P3-free connected graphs), some trees on 7 vertices and for some infinite
families of trees. We need some notation first.

LetDa,b denote the double star on a+b+2 vertices such that the two non-leaf vertices
have degree a + 1 and b + 1. Sa1,a2,...,aj with j ≥ 3 denotes the spider obtained from j
paths with a1, a2, . . . , aj edges by identifying one endpoint of all paths. So Sa1,a2,...,aj has
1 +

∑j
i=1 ai vertices and maximum degree j. The only vertex of degree at least 3 is the

center of the spider, the maximal paths starting at the center are the legs of the spider. Mn

denotes the matching on n vertices (so if n is odd, then an isolated vertex and bn2 c isolated
edges).

The values of exc(n, Pk+1) were determined by Theorem 1.2, and for k ≥ 3, the
statement exc(n, Sk) = bn(k−1)

2 c follows from Remark 1.4(1) and that the degree-sum of
an Sk-free graph is at most n(k−1). So in the next theorem, we only list those trees that are
neither paths nor stars. In particular, all trees have 5 or 6 vertices. Proofs of the following
theorems will be given in Section 3.

Theorem 1.6. For non-star, non-path trees with 5 or 6 vertices, the following exact results
are valid.

(1) For any T = S2,1,...,1 we have exc(n, T ) = bn(∆(T )−1)
2 c if n ≥ |T |. In particular,

exc(n, S2,1,1) = n if n ≥ 5 and exc(n, S2,1,1,1) = b 3n
2 c if n ≥ 6.

(2) We have exc(n,D2,2) = 2n− 4 if n ≥ 6.

(3) We have exc(n, S3,1,1) = b 3(n−1)
2 c if n ≥ 7 and ex(6, S3,1,1) = 9.

(4) We have exc(n, S2,2,1) = 2n− 3 if n ≥ 6.

Let D∗2,2 be the tree obtained from D2,2 by attaching a leaf to one leaf of D2,2.

Theorem 1.7. exc(n,D∗2,2) = 2n − 3 for all n ≥ 7, and exc(n,D
∗
2,2) =

(
n
2

)
for

1 ≤ n ≤ 6.

Theorem 1.8. exc(n, S2,2,2) = 2n − 2 for all n ≥ 7, and exc(n, S2,2,2) =
(
n
2

)
for

1 ≤ n ≤ 6.

Theorem 1.9. exc(n, S3,2,1) = 2n − 3 for all n ≥ 7, and exc(n, S3,2,1) =
(
n
2

)
for

1 ≤ n ≤ 6.
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Theorem 1.10. For any T = S3,1,...,1 with ∆(T ) ≥ 4, if n is large enough, then
exc(n, T ) = b (∆(T )−1)n

2 c.
The broom, which we denote by B(k, a), is the special spider Sa−1,1,1,...,1 on k ver-

tices. So its maximum degree is k − a+ 1 and its diameter is a.

Theorem 1.11.

(1) For any a ≤ k−2, exc(n,B(k, a)) ≥ max{b (k−a)n
2 c,

(d a+1
2 e
2

)
+ba−1

2 c(n−b
a+1

2 c)}
holds.

(2) For any a ≤ k/3, exc(n,B(k, a)) = b (k−a)n
2 c holds if n is large enough.

For a better overview, we include tables with previous results, our results and open
cases for trees on up to 7 vertices. SD2,2 denotes the tree on 7 vertices obtained from the
double star D2,2 by subdividing the edge connecting its two centers.

Number of vertices Tree exc(n, T ) Construction
4 P4 n− 1 Sn−1

S3 n Cn

5 P5 n K1 + (K2 ∪ En−3)

S4 b 3n
2 c (nearly) 3-regular

S2,1,1 n Cn

6 P6 2n− 3 K2 + En−2

S5 2n 4-regular
S2,1,1,1 b 3n

2 c (nearly) 3-regular
S2,2,1 2n− 3 K2 + En−2

S3,1,1 b 3(n−1)
2 c K1 +Mn−1

D2,2 2n− 4 K2,n−2

Table 1: The value of exc(n, T ) for all trees up to 6 vertices.

Tree exc(n, T ) Construction Tree exc(n, T ) Construction
S6 b 5n

2 c (nearly) 5-regular P7 2n− 2 K2 + (En−4 ∪K2)

S4,1,1 ≥ 2n− 3 K2 + En−2 S3,2,1 2n− 3 K2 + En−2

S3,1,1,1 b 3n
2 c (nearly) 3-regular S2,1,1,1,1 2n 4-regular

S2,2,2 2n− 2 K2 + (En−4 ∪K2) S2,2,1,1 ≥ 2n− 3 K2 + En−2

D∗2,2 2n− 3 K2 + En−2 D2,3 ≥ 2n− 4 K2,n−2

SD2,2 ≥ 13n
7 −O(1) Proposition 1.5(1) D2,3 ≥ 2n− 2 if 6|n− 1 Proposition 1.5(2)

Table 2: Exact values and lower bounds on exc(n, T ) for trees with 7 vertices.

The starting point of our final subtopic is the Erdős–Sós conjecture, ex(n, T ) = k−2
2 n+

Ok(1). We would like to know how much smaller exc(n, T ) can be than ex(n, T ). For any
tree T we introduce

γT := lim sup
n

2

|T | − 2
· exc(n, T )

n



6 Ars Math. Contemp. 24 (2024) #P4.01

where |T | denotes the number of vertices in T . It is well-known that any graph with average
degree at least 2d contains a subgraph with minimum degree at least d. Also, any tree on
k vertices can be embedded to any graph with minimum degree at least k. This shows that
γT ≤ 2 for any tree T on k vertices. The Erdős–Sós conjecture would imply γT ≤ 1.

Let Tk denote the set of trees on at least k vertices. We write γk := inf{γT : T ∈ Tk}
and γ := limk→∞ γk. Observe that γk is monotone increasing as T2 ⊃ T3 ⊃ T4 ⊃ . . . ,
and thus the limit γ exists.

Theorem 1.12. The following upper and lower bounds hold: 1
3 ≤ γ ≤

2
3 .

2 Constructions
Proof of Proposition 1.5. For all lower bounds we need constructions.

For the general lower bound of (1), we construct a graph G(V,E) as follows: let s :=
b n
k−p(T )−2c and let V be partitioned into

⋃s
i=1(Ai∪Qi) with |Ai| = k−2p(T )−3 for all

1 ≤ i ≤ s, |Qi| = p(T ) + 1 for all 1 ≤ i < s. G[Ai] is a clique for all i. Every clique Ai
contains a special vertex xi, and G[{xi, xi+1}∪Qi] is a path with end vertices xi and xi+1

(with xs+1 = x1). Then G cannot contain T , as a copy of T could contain the vertices of
an Ai and then at most p(T ) vertices from both of Qi−1 and Qi, so at least one vertex of T
cannot be embedded.

To see the furthermore part of (1), we have the following construction G: we partition
the vertex set of G into {v}∪

⋃s
i=1(Ai∪Qi), where s = dn−1

k e with |Ai| = k−p(T )−1,
|Qi| = p(T ) + 1 for all 1 ≤ i < s, and |Qi| ≤ p(T ) + 1 and if |Ai| > 0, then |Qi| =
p(T ) + 1. The edges of G are defined such that G[{v} ∪

⋃s
i=1Qi] is a spider with center v

and legsQi,G[Ai] is a clique and exactly one vertex ofAi is connected to the leaf of the leg
inQi. The number of edges adjacent toAi∪Qi is

(
k−p(T )−1

2

)
+p(T )+2, therefore e(G) is

as claimed. Finally, to see that G is T -free, observe that as T contains at least two vertices
of degree at least 3, if G contained a copy of T , then this copy should contain a vertex u
from one of the Ais. Also, such a copy cannot contain all vertices of Qi as p(T ) < |Qi|.
Therefore, the vertices of the copy of T should be contained in |Ai|+ |Qi|−1 < k vertices
— a contradiction.

The lower bound of (2) is shown by the following construction of a connected n-vertex

T -free graph G: we partition the vertex set of G into {v} ∪
⋃dn−1

k−1 e
i=1 Ai with |Ai| = k − 1

for all i = 1, 2, . . . , bn−1
k−1 c and every Ai containing a special vertex xi. The edges of G

are defined as follows: G[Ai \ {xi}] is a clique, v is adjacent to all xi, and xi is adjacent to
δ2(T )− 2 other vertices of Ai, so dG(xi) = δ2(T )− 1. We claim that G is T -free. Indeed,
as G − v has components of size at most k − 1, a copy of T must contain v. As T is not
a star, at least one of v’s neighbors is not a leaf and so its degree should be at least δ2(T ).
But all v’s neighbors are xi vertices that have degree δ2(T )− 1 in G. The number of edges

in G[{v} ∪
⋃bn−1

k−1 c
i=1 Ai] is bn−1

k−1 c(
(
k−2

2

)
+ δ2(T )− 1).

The construction yielding the lower bound of (3) is G = K1 + (rKm(T )−1 ∪ Ks),
where r = b n−1

m(T )−1c and s ≥ 0. Indeed, if G contained a copy of T , then this copy should
contain the vertex v of K1 as otherwise T would be contained in m(T ) − 1 vertices. But
then we cannot embed the largest branch pending on v as it has size at least m(T ).

To obtain the construction yielding the lower bound of (4), we partition the vertex set to
A1, A2, . . . , As, As+1 with s = b n

k−m2(T )c and |Ai| = k −m2(T ) for all i = 1, 2, . . . , s.
As T is not a path, we have k−m2(T ) ≥ 2, so in eachAi we can pick two distinct vertices
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xi, yi, maybe with the exception of As+1. Then we define G as a “cycle of cliques”, so
G[Ai] is a clique for all i, and xiyi+1 is an edge (formally there should be three cases
depending whether As+1 has size 0, 1, or at least 2). To see that G is T -free, consider
the vertex v with m2(T ) = mT,2(v), i.e. the largest two connected components B1, B2 in
T − v have a total size of m2(T ). Suppose G contains a copy of T and the vertex playing
the role of v belongs to Ai. Then, as there are only two edges leaving Ai, T apart from
two components of T − v must be embedded into Ai. Moreover, since the two edges leave
from distinct vertices, at least one vertex of the two exceptional components must also be
embedded to Ai. So Ai should contain at least k −m2(T ) + 1 vertices — a contradiction.
(If i = s + 1 and xi = yi, then we have the same contradiction, as then As+1 should
contain at least k −m2(T ) vertices, but As+1 is strictly smaller than that.)

3 Proofs
We start by proving Theorem 1.6. We restate and prove its parts separately.

Theorem 3.1. For T = S2,1,...,1, the equality exc(n, T ) = bn(∆(T )−1)
2 c holds if n ≥ |T |.

Proof. The constructions giving the lower bounds are connected (nearly) regular graphs of
degree ∆(T )− 1.

If T = S2,1,1,...,1, then the upper bound proof is a special case of Theorem 1.11, but for
completeness, we give a simpler proof of this case. If G is a connected, n-vertex, T -free
graph and for some x we have dG(x) ≥ ∆(T ), then G is the star. Indeed, the neighbors
of x can be adjacent only to other neighbors of x, otherwise T would be a subgraph of
G. So by connectivity NG[x] = V (G). But then if there is at least one edge between two
neighbors of x, then, as |V (G)| ≥ |V (T )|, again T would be a subgraph of G. The star has
fewer edges than the claimed maximum, so to have exc(n, T ) edges, G must be (nearly)
(∆(T )− 1)-regular.

Theorem 3.2. For any n ≥ 6, exc(n,D2,2) = 2n− 4 holds.

Proof. To see the lower bound, observe that K2,n−2 is D2,2-free as w(K2,n−2) = 2, while
w(D2,2) = 3.

To see the upper bound, observe first that all connected graphs with 6 vertices and at
least 9 edges contain a copy ofD2,2 as can be checked in the table of graphs of [9] on pages
222–224.

Suppose there exists a minimum counterexample: a connected graph G on n ≥ 7
vertices and e(G) ≥ 2n− 3 edges with no copy of D2,2. We consider several cases.

CASE I: δ(G) ≤ 2 and there is a vertex v of degree at most 2 which is not a cut vertex.
Delete this vertex v of degree 1 or 2 to obtain a connected H = G\v with |H| ≥ 6. By

minimality e(H) ≤ 2(n−1)–4 and 2n−3 ≤ e(G) ≤ e(H)+2 ≤ 2(n−1)–4+2 = 2n−4
— a contradiction.

CASE II: δ(G) = 2 and every vertex of degree 2 is a cut vertex.
Consider v of degree 2 such that in H = G − v out of the two components A and B,

|A| is as small as possible. Let w be the vertex in A adjacent to v and let z be the vertex in
B adjacent to v.

If |A| ≥ 6 then by minimality of G, 2n − 3 ≤ e(G) ≤ 2|A| − 4 + 2|B| − 4 + 2 =
2(|A| + |B| + 1) − 8 = 2n − 8 — a contradiction. Otherwise 3 ≤ |A| ≤ 5 as |A| ≤ 2
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would imply δ(G) = 1 and we were in Case I. Also, |A| ≥ 4 as |A| = 3 would imply that
A must contain a vertex of degree 2 which is not a cut vertex and we were in Case I again.

Suppose |A| = 5. If dG(w) = 2 then |A| is not minimum, so in the induced subgraph
on A all vertices have degree at least 2 and dG(w) ≥ 3. But then the induced graph on
A either contains a vertex of degree 2 which is not a cut vertex and we are in Case I or
all degrees in G[A ∪ {v}] (except for v) are at least 3. Then one can find a copy of D2,2

with w being one of the centers and v being a leaf pending from w. Indeed, by the degree
condition, G[A \ {w}] contains a C4, so if N(w) contains two non-neighbor vertices x, y
of this C4, then x can be the other center of the copy of D2,2 and y the other leaf pending
from w. Otherwise w has exactly two neighbors in A, and then by the degree condition
G[A \ {w}] is K4 and it is trivial to embed D2,2.

Finally suppose |A| = 4. As |B| ≥ |A| = 4, it follows that B∗ = B ∪ {v, w} has at
least 6 vertices and |B∗| = n − 3, and hence by minimality of G, e(B∗) contains at most
2(n−3)−4 edges and together with at most 6 edges inA gives e(G) ≤ 2n−10+6 = 2n−4
— a contradiction.

CASE III: δ(G) ≥ 3.
If all vertices are of degree 3, we have 3n/2 edges, which is at most 2n− 4 for n ≥ 8.

For n = 7 this is impossible by parity, hence δ(G) ≥ 3 and ∆(G) ≥ 4. Consider an edge
e = xy with dG(y) = ∆(G) ≥ 4 and dG(x) ≥ 3.

If dG(y) ≥ 5, then for u, u′ ∈ N(x) we have |N(y) \ {x, u, u′}| ≥ 2, so x and y are
centers of a copy of D2,2. If dG(y) = 4 and dG(x) = 4 then either x and y have distinct
neighbors s not in N [y] and t not in N [x] and we find a copy of D2,2 with centers x, y, or
x and y are twins having the same neighbors a, b, c excluding themselves. But as |G| ≥ 7,
at least one vertex, say a, has a neighbor d not adjacent to the other 4 vertices and then a
and x can be centers of D2,2 with y and d pending from a.

So we can assume that all vertices have degree 3 or 4 and vertices of degree 4 form an
independent set Q. Let P = V \ Q, and consider the bipartite G[P,Q] where p + q = n,
|P | = p and |Q| = q. Clearly, 4q = e(P,Q) ≤ 3p. Hence 3n = 3q + 3p ≥ 7q and
q ≤ 3n/7, p ≥ 4n/7. But then

e(G) =
4q + 3p

2
≤ 12n/7 + 12n/7

2
=

12n

7
< 2n− 3

for n ≥ 11. So we are left with n = 7, 8, 9, 10.
For n = 7: q ≤ 3n/7 = 3 and q must be an integer. If q = 3, then G = K4,3

containing D2,2. The case q = 2 is impossible as the degree sum would be odd (by the
number p of odd-degree vertices). Hence q = 1 and p = 6. Consider a vertex v of degree 4
and its neighbors a, b, c, d all of degree 3. If say a is adjacent to a vertex outside {v, b, c, d},
then there is D2,2. But as this holds for all of a, b, c, d it means A = {v, a, b, c, d} has no
neighbor in V \A and G is not connected.

For n = 8, we still have q ≤ b 3n
7 c = 3 and p ≥ 5. But p = 5, 7 are impossible, again

due to parity, hence q = 2 and p = 6. Let Q = {a, b} be the set of vertices of degree
4. If some vertex x in P is adjacent to both a and b, then consider the only neighbor z
of x in P . Here a is adjacent to x and three more vertices in P , so at least two vertices
except x and z are neighbors of a and x can use z and b to obtain a copy of D2,2 with
centers x and a. Hence every vertex in P is adjacent to at most one vertex in Q, yielding
|P | ≥ e(P,Q) = 4|Q|— a contradiction.



Y. Caro et al.: Connected Turán number of trees 9

For n = 9, we have q ≤ b 3n
7 c = 3. The case q = 2 is impossible by parity and q = 1,

p = 8 implies e(G) = (4 + 24)/2 = 14 = 2n− 4 as stated by the theorem. So only q = 3,
p = 6 is to be checked. Let Q = {a, b, c} be the set of vertices of degree 4. If some vertex
v in P has at least two neighbors in Q, say a, b, then we have a copy of D2,2 with centers
v and a, as all the four neighbors of a are in P and at most two of them belong to N [x]. So
every vertex in P can have at most one neighbor in Q and as in the previous case we have
|P | ≥ e(P,Q) = 4|Q|— a contradiction.

For n = 10, q ≤ b 3n
7 c = 4, and so parity of the degree sum implies q = 4 or q = 2. If

q = 2 then e(G) = (8 + 24)/2 = 16 = 2n − 4 as stated in the theorem, so only q = 4,
p = 6 remains to be checked.

Let Q = {a, b, c, d} be the set of vertices of degree 4. If some vertex v in P has all its
neighbors in Q, say a, b, c, then we obtain a copy of D2,2 with centers v and a. Otherwise,
we have 4|Q| = e(P,Q) ≤ 2|P |— a contradiction.

Theorem 3.3. exc(n, S3,1,1) = b 3(n−1)
2 c if n ≥ 7 and exc(6, S3,1,1) = 9.

Proof. The lower bounds are shown by K1 +Mn−1 for n ≥ 7 and by K3,3 for n = 6. The
former is S3,1,1-free as shown in Proposition 1.5(3) with m(S3,1,1) = 3. The graph K3,3

is S3,1,1-free as the bipartition of S3,1,1 has a part of size 4.
To obtain the upper bound, we consider an S3,1,1-free connected graph G. The general

idea is to choose a longest cycle C = v1v2, . . . , vk in G, and argue depending on its length
k.

If k = n, then C is a Hamiltonian cycle. It cannot have short chords; e.g. if v2v4

is an edge, then S3,1,1 can have center v2 and legs v2v1, v2v3, v2v4v5v6. Moreover if
n > 6, then longer chords cannot occur either. Indeed, if v2vj with j = 5, . . . , n − 2 is
an edge, then v2 with vj and its two successors can form the leg of length 3. Likewise for
j = 6, . . . , n − 1 such a leg can be formed using the two predecessors of vj , still keeping
the legs v2v1 and v2v3. This excludes all chords if n > 6, hence |E(G)| = n. If n = 6,
then antipodal vertices can be adjacent without creating any copy of S3,1,1, but no other
chords may occur. In this way we obtain the extremal graph K3,3.

Assume next that 4 < k < n. We show that this is impossible whenever n ≥ 6. Since
G is connected, there is a vertex x not in C but having at least one neighbor in C. If e.g.
xv2 is an edge, we find S3,1,1 with center v2 and legs xv2, v2v1, v2v3v4v5.

Assume now k = 4, C = v1v2v3v4, n ≥ 6. If P is any path with one end in C and
all its other vertices in V (G) \ V (C), then P can have no more than two edges, otherwise
S3,1,1 would be found, with the long leg in P and the two short legs in C. We are going to
prove that if P is shorter than 3, the number of edges in G is smaller than what is given in
the theorem.

If P has length 2, let xyv1 be a path attached to C. Then the edges xv2, xv3, xv4,
yv2, yv4 cannot be present because C is a longest cycle. Also the edges v1v3 and v2v4 are
excluded because G is S3,1,1-free. This implies |E(G)| ≤ 8 if n = 6. If n > 6, there
should be a further vertex z adjacent to C ∪P , but any edge from z to C ∪P would create
an S3,1,1. (For zx the center is v1, and for any other edge the center is the neighbor of z.)
Hence n > 6 is impossible in this case.

Suppose that P = yv1 is a single edge not extendable to a longer path outside C. Then
a sixth vertex x can only be adjacent to v2 or v4 (or both), otherwise an S3,1,1 would occur.
And also here, it is not possible to extend this graph to a connected graph of order 7 without
creating an S3,1,1 subgraph. Hence n = 6. Moreover, the diagonals of C must be missing;
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e.g. the edges xv2 and v2v4 would yield S3,1,1 with center v2 and legs xv2, v2v3, v2v4v1y.
Thus the number of edges is only 4 plus the degree sum of x and y, which is at most 7
because the presence of all four edges xv2, xv4, yv1, yv3 would make G Hamiltonian,
hence C would not be a longest cycle.

Finally we have to consider graphs without any cycles longer than 3. It means that
each block of G is K2 or K3. Let f(n) denote the maximum number of edges in such a
graph. We clearly have f(1) = 0, f(2) = 1, f(3) = 3. Let B be an endblock of G, with
cut vertex w. Deleting B − w from G we obtain a S3,1,1-free connected graph of order
n− |V (B)|+ 1, where |V (B)| is 2 or 3. Hence

f(n) ≤ max{f(n− 1) + 1, f(n− 2) + 3}.

This recursion implies f(n) ≤ b3(n−1)/2c for every n, completing the proof of the upper
bound for n ≥ 7.

Theorem 3.4. exc(n, S2,2,1) = 2n− 3 if n ≥ 6.

Proof. The lower bound is shown by K2 + En−2 as it has matching number 2, while
ν(S2,2,1) = 3.

To obtain the upper bound on exc(n, S2,2,1), we proceed by induction: for n = 6 every
connected graph on 6 vertices and 10 edges contains S2,2,1 (by inspecting the table of
graphs of [9] on pages 222–224).

For the induction step assume that the statement of the theorem holds for graphs of at
most n − 1 vertices and assume on the contrary that G is a connected graph on n vertices
and 2n− 2 edges without S2,2,1. Here 2n− 2 suffices as otherwise if e(G) ≥ 2n− 1, we
can delete an edge on a cycle.

If δ(G) ≤ 2 and there is a vertex v of degree at most 2 which is not a cut vertex, then we
can apply induction toH = F −v to obtain e(G) ≤ e(H)+2 ≤ 2(n−1)−3+2 = 2n−3
— a contradiction.

Suppose δ(G) = 2 and every vertex of degree 2 is a cut vertex. Then let v be such a
cut vertex with neighbors x and y. Consider H = G − v + (xy). Here |H| = n − 1 and
e(H) = 2n− 2− 2 + 1 = 2(n− 1)− 2 + 1, hence by induction H contains a copy S of
S2,2,1. If S does not use the edge xy, then S is also in G — a contradiction. If S uses xy
such that one of x and y, say x, is a leaf in S, then replace x by v and the edge xy by vy to
obtain a copy S′ of S2,2,1 in G — a contradiction. Finally, if xy is the edge of a 2-leg of S
containing the center, say x and the leg is xyz, then replace this leg by xvy to obtain S′ in
G — a contradiction.

So we can assume δ(G) ≥ 3. If all vertices are of degree 3, then e(G) = 3n/2 < 2n−2.
If all vertices are of degree at least 4, then e(G) ≥ 2n > 2n−2, hence there exists a vertex
y of degree 3 adjacent to a vertex x of degree at least 4. Let u, v be the other two neighbors
of y, and let z 6= u, v, y be a neighbor of x. If u or v has a neighbor outside these 5
vertices, then we obtain a copy of S2,2,1 with center y. If not and N(x) = {u, v, y, z},
then z must have a neighbor outside these 5 vertices and we obtain a copy of S2,2,1 with
center x. Finally, if N(u) ∪ N(v) ⊆ {u, v, x, y, z} and z′ is another neighbor of x, then
dG(z′) ≥ 3 implies that z′ must have a neighbor outside these 6 vertices, and we obtain a
copy of S2,2,1 with center x. This contradiction finishes the proof.

Proof of Theorem 1.7. The assertion is trivial for n < 7. For larger n the split graph
construction K2 + En−2 shows that 2n− 3 is a lower bound.
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To derive the same as an upper bound, assume n > 6 and consider any D∗2,2-free graph
G of order n with more than 2n− 4 edges. Then, by Theorem 1.6(2), there is a D = D2,2

subgraph in G; let the central edge of D be xy.
If some vertex not in D is adjacent to a leaf of D, then a copy of D∗2,2 arises — a

contradiction. More generally, there cannot exist any vertex at distance exactly 2 from
{x, y}. By the connectivity of G, it follows that every vertex of G is adjacent to at least
one of x and y. On this basis we partition V (G)− {x, y}, defining

X = N(x)−N [y], Y = N(y)−N [x], Z = N(x) ∩N(y).

Let us assume |Y | ≥ |X|. Due to the presence of D2,2 we know that |X|+ |Z| ≥ 2 holds.
Moreover, |Y | ≥ |X| with n ≥ 7 implies |Y |+ |Z| ≥ 3. Hence there cannot be any X−Y
edges, moreover Y ∪ Z is an independent set, both because G is D∗2,2-free. For the same
reason, if |X|+ |Z| > 2, then also X ∪Z is independent. In this case the entire X ∪Y ∪Z
is independent and G cannot have more than 2n− 3 edges, yielding just the extremal split
graph K2 + En−2. Otherwise, if |X|+ |Z| = 2, there can be just one edge inside X ∪ Z,
hence we have 6 edges in theK4 subgraph induced byX∪Z∪{x, y}, and there are further
n−4 edges from Y to y. These are altogether n+2 edges only, i.e. fewer than the assumed
2n− 3. This contradiction completes the proof.

Proof of Theorem 1.8. To simplify notation, let f(n) = exc(n, S2,2,2). The lower bound
for n ≥ 7 is obtained by the following construction that works for all n. Take a complete
graph K4 on the vertex set {v1, v2, v3, v4} and join all vi for i = 5, 6, . . . , n to v1 and
v2. Equivalently, v1 and v2 are universal vertices, supplemented with the single edge v3v4.
This connected graph with 2n − 2 edges does not contain S2,2,2 because it is not possible
to delete two vertices from S2,2,2 to destroy all but one edges.

The argument for the upper bound applies induction on n, with base cases n ≤ 7, from
which only n = 7 is nontrivial. We note here that n = 5 and n = 6 are the only cases
where 2n− 2 is not an upper bound on the formula given for f(n).

For n = 7 the assertion is that every connected graph G with 7 vertices and at least
13 edges contains S2,2,2 as a subgraph. To prove it, suppose first that G has a cut vertex
x, and consider the vertex distribution between the components of G − x. If it is (3, 3)
— where we unite components if there are more than two, e.g. the distribution (3, 2, 1) is
also viewed as (3, 3) –– then already 9 nonadjacencies are found, hence G would have at
most 21 − 9 = 12 edges — a contradiction. If the distribution is (2, 4), then it forces 8
nonadjacencies, hence G must be the graph in which the two blocks incident with x are
K3 and K5. Obviously this graph contains S2,2,2. If the distribution is (1, 5), then x has
a pendant neighbor, say y, and G − y is a connected graph of order 6, having at least 12
edges. Routine inspection shows that all such graphs G contain S2,2,2.

Assume that G is 2-connected. If G has minimum degree 3, then G has a Hamiltonian
cycle, say C = v1v2v3v4v5v6v7. (More generally it is well known that a graph of order
2d + 1 and minimum degree d is non-Hamiltonian if and only if either it is the complete
bipartite graph Kd,d+1 or it has two blocks incident with a cut vertex, both blocks being
Kd+1; in our case both of them would have only 12 edges.) The presence of any long
chord in C, e.g. v3v6 immediately creates an S2,2,2 with center v3 and legs v3v2v1, v3v4v5,
v3v6v7. Moreover, any three consecutive short chords, e.g. v2v4, v3v5, v4v6 create an S2,2,2

with center v4 and legs v4v2v1, v4v3v5, v4v6v7. And now at least one of these situations
holds because in general a cycle of length n without three consecutive short chords and
with no other chords at all can have no more than n+ 2n/3 < 2n− 2 edges if n ≥ 7.
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Hence in the 2-connected case G has minimum degree exactly 2, and if we remove a
vertex x of degree 2, we obtain a graph on 6 vertices with at least 11 edges. If it is K5 with
a pendant edge, then the pendant vertex must be adjacent to x and we immediately find
S2,2,2. Otherwise there can be at most one vertex of degree 2 in G − x, hence it contains
a C6, say v1v2v3v4v5v6 (as a rather particular corollary of Pósa’s theorem). If the two
neighbors of x are antipodal in C, e.g. v3 and v6, we find S2,2,2 with center v3 and legs
v3xv6, v3v2v1, v3v4v5. If the two neighbors of x are consecutive in C, then C extends to
C7 which we already settled. Hence we can assume that the neighbors of x are v2 and v4.
Since C has at least 5 chords, some of the five chords v1v3, v1v4, v2v5, v3v5, v3v6 must
be present, and each of them creates S2,2,2 with x and the edges of C. This completes the
proof of f(7) = 12.

Turning now to the inductive step, assume that n ≥ 8 and that the upper bound 2n− 2
is valid for all smaller orders other than 5 and 6. Depending on the structure of the graph
under consideration, we will apply one of the following upper bounds:

f(n− 1) + 2, f(n− 3) + 6, f(n− 6) + 12.

Suppose that G is an S2,2,2-free connected graph of order n ≥ 8, and G is S2,2,2-saturated,
i.e. the insertion of any new edge inside V (G) would create an S2,2,2 subgraph. Under the
latter assumption we observe the following.

Claim 3.5. If x is a vertex of degree 2, say with neighbors y and z, then yz is also an edge
of G.

Proof of Claim 3.5. Otherwise yxz would be an induced path in G. Let then G′ be the
graph obtained by the insertion of edge yz. By assumption there is an S = S2,2,2 subgraph
in G′, which necessarily contains the edge yz. If yz is a leaf edge of S, then of course the
degree-3 center of S cannot be x, it must be another vertex w adjacent to y or to z. But then
z or y is a leaf vertex of S, and replacing yz with yx or zx we find another copy of S2,2,2

which is a subgraph of G — a contradiction. The other possibility would be that y or z is
the degee-3 vertex of S, and the edge yz is continued with a leaf edge zw or yw (allowing
also w = x). But then x cannot be a mid-vertex of any leg of S since x does not have a
neighbor other than y and z. Hence the leg yzw or zyw can be replaced with yxz or zxy,
and we would again find a copy of S2,2,2 as a subgraph of G.

As a consequence of Claim 3.5, if G has a vertex of degree 1 or 2, then |E(G)| ≤
f(n− 1) + 2 ≤ 2n− 2 follows by induction, because deleting a vertex of minimum degree
the graph remains connected. Hence from now on we may assume that G has minimum
degree at least 3.

Let C = v1v2v3v4 . . . vs be a longest cycle in G. We have already seen that if s = n,
then |E(G)| ≤ 5n/3 < 2n− 2. Next, we observe that if n > s ≥ 5, then V (G) \ V (C) is
an independent set. Indeed, if xy is an edge outside C then there is a path P (possibly an
edge) from {x, y} to C and in this case a copy of S2,2,2 is easily found using edges of C,
with two edges from P ∪ {xy}. E.g., if v3x is an edge, then S2,2,2 can have center v3 and
legs v3xy, v3v2v1, v3v4v5. Thus, every vertex outside of C has at least three neighbors in
C. Moreover, no two of those neighbors are consecutive in C, because C is longest. This
immediately excludes s = 5. But also s > 5 is impossible because if e.g. v2, v4, v6 are
neighbors of x, then an S2,2,2 can have center x and legs xv2v1, xv4v3, xv6v5.
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As a consequence, investigations are reduced to S2,2,2-free connected graphs with min-
imum degree at least 3 and without any cycles longer than 4. Such a graph G cannot be
2-connected (because due to Dirac’s theorem, 2-connectivity would imply the presence of
a cycle longer than 5). Hence G contains at least two endblocks.

Let B be an endblock of G, attached with cut vertex w to the other part of G. We
argue that B induces K4 in G. All vertices of B except w have degree at least 3 inside B,
therefore B contains a 4-cycle, say C ′ = wxyz. If there is a vertex u in V (B) \ V (C ′),
then 2-connectivity of B and the exclusion of cycles longer than 4 imply that there are
exactly two neighbors of u in C’, either w and y, or x and z. But then there must exist a
third neighbor v of u not in C ′, and v also has two neighbors in C ′; and then a cycle longer
than 4 would occur. Thus B is a K4 indeed.

Now we are in a position to complete the proof of the theorem by induction on n.
Consider any maximal S2,2,2-free connected graphG of order n > 7 that has at least 2n−2
edges. If G has a vertex of degree at most 2, then apply the upper bound f(n− 1) + 2.

If G has minimum degree at least 3, we know that G is not 2-connected. Then we
distinguish cases according to n. If n = 8 or n = 9, remove all the 6 non-cutting vertices of
twoK4 endblocks ofG and apply the upper bound f(n−6)+12. This yields |E(G)| ≤ 13
for n = 8 and |E(G)| ≤ 15 for n = 9, both are smaller than 2n− 2.

If n ≥ 10, remove the 3 non-cutting vertices of a K4 endblock of G and apply the
upper bound f(n− 3) + 6. This yields |E(G)| ≤ 2n− 2.

Remark 3.6. The extremal graphs are not unique if n ≥ 7. In the graph constructed at
the beginning of the proof we can remove three vertices of degree 2 and attach a block K4

to one of the two high-degree vertices. As another alternative for n ≥ 10, we can remove
six vertices of degree 2 and attach two blocks isomorphic to K4, one block to each high-
degree vertex. A further extremal graph of order 7 can be obtained from K5 by attaching
two pendant edges to a vertex of K5.

Proof of Theorem 1.9. A lower bound for n ≥ 7 is the split graph K2 +En−2 with 2n−3
edges which does not even contain S2,2,1 and hence S3,2,1 cannot be a subgraph either.

The proof of the upper bound proceeds by induction on n. The base case n = 7 is left
to the Reader. Assume G is a minimum connected counterexample with n ≥ 8 vertices
and has at least 2n − 2 edges but no copy of S3,2,1. If G contains a vertex v of degree at
most 2 such thatH = G−v is connected, then, by minimality, e(H) ≤ 2(n−1)−3 hence
2n− 2 ≤ e(G) ≤ e(H) + 2 ≤ 2n− 3 — a contradiction.

Next, assume v is a cut vertex with neighbors x and y. Consider the graph H that we
obtain fromG by deleting v and adding the edge xy. We will show that ifH contains S3,2,1

then so does G. Let A be the component containing x and B the component containing y.
By symmetry we may assume that if H contains a copy S of S3,2,1, then its center is in A
and so B can contain vertices of at most one leg of S. We consider cases according to the
number of vertices in S ∩B. If A contains S3,2,1 completely, then so does G.

If A contains all of S3,2,1 except for a leaf played by y, then the same copy with v
replacing y is contained in G. If S ∩B = {y, w}, then the leg of S ending x− y − w can
be replaced in G with x− v − y to obtain a copy S′ of S3,2,1. If S ∩ B = {y, w, z}, then
the leg of S ending x−y−w− z can be replaced in G with x−v−y−w to obtain a copy
S′ of S3,2,1. So, as proved, H must be S3,2,1-free, hence 2n − 2 ≤ e(G) ≤ e(H) + 1 ≤
2(n− 1)− 3 + 1 ≤ 2n− 4 — a contradiction.
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Therefore, from now on we may assume δ(G) ≥ 3. By Theorem 1.6(4), we know
that G contains a copy S of S2,2,1. Let v be the center of S with legs v − u, v − x − y,
and v − a − b. If y or b has a neighbor not in S, then G contains a copy of S3,2,1 — a
contradiction.

Suppose x (or a) has a neighbor z not in S. Then z cannot be adjacent to any of v, y, a, b
as a copy of S3,2,1 would appear. Also, z cannot be adjacent to any vertex outside S as
again a copy of S3,2,1 would appear in G. By δ(G) ≥ 3, z must be adjacent to u, x, and a,
but then a copy of S3,2,1 (this time with center z) would appear in G.

We have shown so far that x, y, a, b cannot have neighbors outside S.
If u has at least two neighbors z andw outside S, then they cannot be adjacent (it would

create the leg v − u − z − w of a copy of S3,2,1) and none of them can have a neighbor
outside S as a copy of S3,2,1 would appear in G. As shown above, they cannot be adjacent
to any of x, y, a, b hence they have degree at most 2 (with neighbors u and possibly v)
contradicting δ(G) ≥ 3.

If u has just one neighbor, say z outside S, then z cannot have a neighbor outside S as
a copy of S3,2,1 would appear, and as before, z cannot be adjacent to any of x, y, a, b hence
z can be adjacent to at most u and v but then dG(z) ≤ 2 contradicts δ(G) ≥ 3.

So the only vertex of S that can have further neighbors outside S is v. We claim that
there cannot exist a path v − w − z with w, z /∈ S. Indeed, if w, z existed, then any of the
edges ax, ay would create a copy of S3,2,1 with center a. Similarly, any of the edges xa,
xb would create a copy of S3,2,1 with center b. But then δ(G) ≥ 3 implies the presence of
ua and ux in G creating a copy of S3,2,1 with center u. Therefore all vertices outside S
must have degree 1, which case has already been dealt with. This finishes the proof of the
induction step.

Proof of Theorem 1.10. It is enough to prove that if G is a connected n-vertex graph with
∆(G) ≥ ∆(T ), thenG contains T or e(G) ≤ b (∆(T )−1)n

2 c. So fix a vertex v with dG(v) =
∆(G) ≥ ∆(T ) and consider the partition {v}, N(v), X := V (G) \N [v].

If X contains an edge xy, then by connectivity of G, there must exist a path (maybe
a single edge) from xy to N(v) and we find a copy of T in G. So we may assume that
X is independent, and thus by connectivity of G, every x ∈ X is adjacent to at least one
u ∈ N(v).

CASE I: dG(v) = ∆(G) > ∆(T ).
Then any x ∈ X is adjacent to exactly one vertex u ∈ N(v) as if xu, xu′ are edges

in G, then uxu′ can form the long leg of a copy of T with center v and other neighbors
of v complete this copy of T . So dG(x) = 1 for all x ∈ X . Let u, u′ ∈ N(v) be two
vertices such that at least one of them has a neighbor in X . Then again if uu′ is an edge,
we find a copy of T . So if U ⊆ N(v) is the set of neighbors of v that are adjacent to a
vertex in X and U ′ = N(v) \U , then e(G) ≤ |U ∪X|+ e(U ′). If |U ′| ≤ ∆(T ) + 1, then
e(U ′) ≤

(
∆(T )+1

2

)
and so e(G) ≤ n − 1 +

(
∆(T )+1

2

)
≤ b (∆(T )−1)n

2 c as ∆(T ) − 1 ≥ 3.
Finally, if |U ′| ≥ ∆(T ) + 2, then either G[U ′] is a (partial) matching and thus e(G) ≤
(1 + |U |+ |X| − 1) + 3|U ′|

2 ≤ 3(n−1)
2 ≤ b (∆(T )−1)n

2 c (here we use ∆(T ) ≥ 4) or G[U ′]
contains a path on 3 vertices, and then by |U ′| ≥ ∆(T ) + 2 we find a copy of T in G.

CASE II: dG(v) = ∆(G) = ∆(T ).
As X is independent, we have e(G) ≤ (∆(G) + 1)∆(G) = (∆(T ) + 1)∆(T ) =

O(1).
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Proof of Theorem 1.11. The lower bound b (k−a)n
2 c follows from Remark 1.4(1), while, as

the diameter of B(k, a) is a, Remark 1.4(2) yields the lower bound
(d a+1

2 e
2

)
+ ba−1

2 c(n−
ba+1

2 c).
To see the upper bound of (2), let G(V,E) be an n-vertex B(k, a)-free graph with

a ≤ k/3. Assume first that there exists a vertex x with dG(x) ≥ k − 1. We claim that
G[V \ {x}] does not contain a path on 2a − 3 vertices. Indeed, suppose to the contrary
that y1, y2, . . . , y2a−3 is a path in G[V \ {x}]. Then as G is connected, there exists a path
P from x to some yj that does not contain any other yi. Then either x, P, yj , yj−1, . . . , y1

or x, P, yj , yj+1, . . . , y2a−3 contains at least a vertices. So x and the first a − 1 of them
together with the other neighbors of x form a copy of B(k, a) — a contradiction. Theo-
rem 1.2 implies that if n is large enough, then e(G) ≤ n−1+e(G−x) ≤ n−1+b 2a−5

2 cn ≤
an ≤ bk−a2 nc as a ≤ k/3. This finishes the proof in this case.

Assume finally that ∆(G) ≤ k − 2. Then if n is large enough, every vertex x of
G is the endpoint of a path on a · k vertices, since G is connected and have maximum
degree at most k − 2. Suppose towards a contradiction that G contains a vertex x with
dG(x) = d ≥ k − a+ 1. Let z1, z2, . . . zd be the neighbors of x and let x, y2, y3, . . . , ya·k
be a path P . Then y2 is one of the zj’s, and as d ≤ k − 2, there must exist zj such that
zj ∈ P , say zj = yi and either yi−1, yi−2, . . . , yi−a+2 or yi+1, yi+2, . . . , yi+a−2 are not
neighbors of x. Then x, these yis and the neighbors of x form a B(k, a).

We obtained that ∆(G) ≤ k−amust hold, which implies e(G) ≤ b (k−a)n
2 c as claimed.

Theorem 1.11 will provide the upper bound of Theorem 1.12. The next statement
gives a general lower bound on exc(n, T ) and thus will help us obtain the lower bound of
Theorem 1.12.

Theorem 3.7. For any ε > 0 there exists a positive integer k0 = k0(ε) such that for any
tree T on k ≥ k0 vertices, we have exc(n, T ) ≥ (k6 − ε)n if k ≥ k0 and n is large enough.

Proof. CASE I: m(T ) > bk/3c.
Then by Proposition 1.5(3) we have

exc(n, T ) ≥ n− 1 +

⌊
n− 1

m(T )− 1

⌋(
m(T )− 1

2

)
≥ (n− 1)

(
1 +
bk/3c − 1

2

)
≥ nk

(
1

6
− ε
)
,

if k and n are large enough.
CASE II: m(T ) ≤ bk/3c.
Then m2(T ) ≤ 2m(T ) ≤ 2bk3 c, and thus k−m2(T ) ≥ dk3 e. Proposition 1.5(4) yields

exc(n, T ) ≥

⌊
n

dk3 e

⌋(
1 +

(
dk3 e
2

))
≥ nk

(
1

6
− ε
)
,

if k and n are large enough.

Proof of Theorem 1.12. The lower bound follows from Theorem 3.7, the upper bound
from Theorem 1.11(2) with taking a = bk/3c.
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4 Concluding remarks
Theorem 1.12 gave upper and lower bounds on γ. If the lower bound from Theorem 1.11(1)
turned out to be (asymptotically) sharp (which we believe to be the case) for a = (1/2−ε)k
or a = (1/2 + ε)k, then the upper bound on γ would improve from 2/3 to 1/2. Note that a
special case of Theorem 1.10 yields exc(n, S3,1,1,1) = b (∆(S3,1,1,1)−1)n

2 c, so a small case
when a = bk/2c. We have no evidence to believe that the lower bound of 1/3 on γ is best
possible.

In Remark 1.4 and Proposition 1.5, we enumerated several graph parameters based on
which one could define general constructions avoiding trees T for which these parameters
have small value. It would be nice to add other parameters to this list, and would be
wonderful to prove that it is enough to consider a finite set of parameters to determine the
asymptotics of exc(n, T ) for all trees T . Of particular interest is the characterization of
those trees for which ex(n, T ) − c(T ) ≤ exc(n, T ) ≤ ex(n, T ) holds for some constant
c(T ). As we have seen after Remark 1.4, balanced trees share this property assuming the
Erdős-Sós conjecture.

Proposition 1.5 gave constructions that do not contain any tree T on k vertices with
given p(T ), δ2(T ), m(T ), and m2(T ). It would be interesting to figure out whether these
constructions are best possible. For a family G of graphs, we write exc(n,G) to denote
the maximum number of edges in an n-vertex connected graph that does not contain any
G ∈ G as a subgraph.

Problem 4.1. (1) For any k and p let T 0
k,p denote the set of trees T on k vertices with

p(T ) ≤ p. Determine exc(n, T 0
k,p).

(2) For any k and d ≥ 3 let T 0
k,d denote the set of trees T on k vertices with δ2(T ) ≥ d.

Determine exc(n, T 0
k,d).

(3) For any k and m let T 1
k,m denote the set of trees T on k vertices with m(T ) ≥ m.

Determine exc(n, T 1
k,m).

(4) For any k and m let T 2
k,m denote the set of trees T on k vertices with m2(T ) ≤ m.

Determine exc(n, T 2
k,m).

As for special tree classes, one such class that could give some insight is the set of
spiders with all legs of at most 2 vertices. For the spider S = S2,2,...,2,1,1,...,1 with t legs of
two vertices and s legs consisting of a single vertex, we have |S| = 2t+ s+ 1, and

• ν(T ) = t+ 1 if s > 0,

• ∆(T ) = t+ s,

• m2(T ) = 4 if t ≥ 2.

The construction of Remark 1.4(1) based on maximum degree outperforms the one based
on the matching number in Remark 1.4(3) if s > t. But the one based on m2 in Proposi-
tion 1.5(4) is better than both previous ones once s ≥ 5 and t ≥ 2. It would be interesting
to see whether these constructions achieve the asymptotics of exc(n, S).

Classical Turán numbers are monotone with two respects: Firstly, if H is a subgraph of
F then ex(n,H) ≤ ex(n, F ). This inequality is preserved for the connected Turán number
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exc(n, F ) (excluding the small “undefined” cases K2 and P3). Secondly, if m < n, then
ex(m,F ) ≤ ex(n, F ). This property is not necessarily preserved by connected Turán
numbers for small values of n with respect to |T |. There are several examples given by
our results, of the following type: exc(|T | − 1, T ) =

(|T |−1
2

)
> exc(|T |, T ); see e.g.

T = S3,2,1.

Problem 4.2. Is it true that there exists a threshold n0(F ) such that exc(m,F ) ≤ exc(n, F )
holds whenever n0(F ) ≤ m < n?
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[8] Z. Füredi and M. Simonovits, The history of degenerate (bipartite) extremal graph problems,
in: L. Lovász, I. Z. Ruzsa and V. T. Sós (eds.), Erdős Centennial, Springer, Berlin, Heidelberg,
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