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Robust H∞ Control of a Doubly Fed Asynchronous Machine

Gherbi Sofiane
Department of electrical engineering, Faculty of Science of the engineer
20 August 1956 University, Skikda, Algeria
E-mail: sgherbi@gmail.com

Yahmedi Said
Department of electronic, Faculty of Science of the engineer 
Badji Mokhtar University, Annaba, Algeria
E-mail: sais.yahmedi@carmail.com

Sedraoui Moussa
Department of electronics, Faculty of Science of the engineer 
Constantine University, road of AIN EL BEY Constantine, Algeria
E-mail : msedraoui@gmail.com

Keywords: doubly fed asynchronous machine, robust control, H control,  LMI’s

Received: April 25, 2008

The doubly fed asynchronous machine is among the most used electrical machines due to its low cost, 
simplicity of construction and maintenance [1]. In this paper, we present a method to synthesize a 
robust controller of doubly fed asynchronous machine which is the main component of the wind turbine
system (actually the most used model [2]), indeed: there is different challenges in the control of the wind
energy systems and we have to take in a count a several parameters that perturb the system as: the wind 
speed variation, the consumption variation of the electricity energy and the kind of the power consumed 
(active or reactive) ...etc.. The method proposed is based on the H control problem with the linear 

matrix inequalities (LMI’s) solution: Gahinet-Akparian [3], the results show the stability and the 
performance robustness of the system in spite of the perturbations mentioned before.

Povzetek: Opisana je metoda upravljanja motorja vetrnih turbin.

1 Introduction
From all the renewable energy electricity production 
systems, the wind turbine systems are the most used 
specially the doubly fed asynchronous machine based 
systems, the control of theses systems is particularly 
difficult because all of the uncertainties introduced such 
as: the wind speed variations, the electrical energy 
consumption variation, the system parameters 
variations, in this paper we focus on the robust control 
( H controller design method) of the doubly fed 

asynchronous machine which is the most used in the 
wind turbine system due to its low cost, simplicity of 
construction and maintenance [1]. 
This paper is organised as follow: 
Section 2 presents the wind turbine system equipped 
with the doubly fed asynchronous machine and then the 
mathematical electrical equations from what the system 
is modelled (in the state space form) are given.
The section 3 presents the H robust controller design 

method with the LMI’s solution used to control our 
system.
The section 4 presents a numerical application and  
results in both the frequency and time plan are presented 
And finally a conclusion is given in section 5. 

2 System presentation and 
modelling

The following figure represents the wind turbine system

                
           
           The system use the wind power to drag the double fed 

asynchronous machine who acts as a generator, the 
output power produced must have the same high quality 
when it enters the electrical network, i.e.: 220 volts 
amplitude and 60 Hz frequency and the harmonics held 
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Figure 1: The Wind turbine system 
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to a low level in spite of wind speed changes and 
electrical energy consumption in active or reactive 
power form. References [4], [5], [6] describe detailed 
models of wind turbines for simulations, we use the 
model equipped with the doubly fed induction 
generators (asynchronous machine) (for more details see 
[7]), the system electrical equations are given 
in  qd , frame orientation, then the stator voltage 

differential equations are:

qssdsdssds w
dt

d
IRV  .                       (1)

dssqsqssqs w
dt

d
IRV  .                        (2)

The rotor voltage differential equations are:

qrrdrdrrdr w
dt

d
IRV  .                        (3)

drrqrqrrqr w
dt

d
IRV  .                  (4)

The stator flux vectors equations are:

drdssds IMIL ..                                    (5)

qrqssqs IMIL ..                                    (6)

The rotor flux vectors equations:

dsdrrdr IMIL ..                                  (7)

qsqrrqr IMIL ..                                   (8)

The electromagnetic couple flux equation :

)..(. drqsqrds
s

em II
L

M
pC                   (9)     

The electromagnetic couple mecanic equation :




 .f
dt

d
JCC rem                           (10)

With:

qsds VV , : Statoric voltage vector components in ‘d’

and ‘q’  axes respectively.

qrdr VV , : Rotoric voltage vector components in ‘d’

and ‘q’  axes respectively.

qsds II , : Statoric current vector components in ‘d’

and ‘q’  axes respectively.

qrdr II , : Rotoric current vector components in ‘d’ 

and ‘q’  axes respectively.

qsds  , : Statoric flux vector components in ‘d’

and ‘q’  axes respectively.

qrdr  , : Rotoric flux vector components in ‘d’

and ‘q’  axes respectively.

rs RR , : Stator and rotor resistances (of one phase)

respectively.

rs LL , : Stator and rotor cyclic inductances 

respectively.

rs ww , : Statoric and rotoric current pulsations 

respectively.
M : Cyclic mutual inductance.
p : Number of pair of the machine poles.

rC : Resistant torque.

f : Viscous rubbing coefficient.

J : Inertia moment.

2.1 State space model
In order to apply the robust controller design method, 
we have to put the system model in the state space from; 

we consider the rotoric voltage qrdr V,V as the inputs 

and the statoric voltage qsds VV , as the outputs, i.e. we 

have to design a controller who acts on the rotoric 
voltages to keep the output statoric voltages at 

volts220 and Hz50 frequency in spite of the electric 
network perturbations (demand variations … etc) and 
the wind speed variations (see figure.2).

Figure 2:  A Doubly fed wind turbine system control                                     
configuration

Where: u , y and e are the rotoric voltage vector 

(control vector), statoric output voltage vector and the 
error signal between the input reference and the output 
system respectively. K , G are the controller and the
wind turbine system respectively. R : is the statoric
voltage references vector and onsperturbati are the 

electric energy demand variations, wind speed 
variations …etc.

Let us consider  Tqrdrx  as a state vector, and 

 Tqsdsqsds VVIIu  as the command vector, the 

stator flux vector is oriented in d axis of Parks reference 
frame then : 0 qs and qsds II , are considered 

constant in the steady state i.e.: 0 qsds II  .

We use the folowing doubly fed asynchronous machine 
parameters:  

 5sR ;  0113.1rR ; HM 1346.0
HLs 3409.0 ; HLr 605.0 ; Hzwr 6.146 ;

Hzws 502  

Let rs www  and
rs LL

M




2

1 .

The state space (11) can be obtained by the combining
of the equations (1) to (8) as follow:     








uDxCy

uBxAx
                    (11)

Where:

onsperturbati
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 Tqrdrx 

 Tqrdrqsds VVIIu 

 Tqsds VVy 
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3 The H∞ controller design method
It is necessary to recall the basics of a control loop 
(figure.3). With G’: the perturbed system.

Figure 3: The control loop with the output 
multiplicative uncertainties

The multiplicative uncertainties at the process output 
which include all the perturbations that act in the system 

are then : 1' ).(  GGGm , with )( mIGG  : is 

the perturbed system, figure.4 show the singular values 

plot at the frequency plan of m , we can see that the 

uncertainties are smaller at low frequencies and grow at 
the medium and high frequencies, this mean a strong 
perturbation at high frequencies (the transient phase), 
we also note a pick at: srad /260 , this is due to 
the fact that the system is highly coupled at this 
pulsation.
We can bound the system uncertainties by the following 
weighting matrix function:


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jw
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jwWt     (12)

The figure.5 show that the singular values of 
)( jwWt bounds the maximum singular values of the 

uncertainties in the entire frequency plan.
The robust stability condition [11] is then:

                         1jwWjwT t                          (13)

Or: 

                   1 jwWjwT t                   (14)

Where:  is the maximum singular value and  jwT is 

the nominal closed loop transfer matrix defined by:

           1 jwKjwGIjwKjwGjwT            (15)

The equations (13) allow us to guaranty the stability 
robustness, in other hand we most guaranty satisfying 
performances (no overshoot, time response …etc) in the 
closed loop (performances robustness), this can by done 
by the performance robustness condition [8]:

     1jwWjwS p                          (16)

Or:

      1 jwWjwS p                     (17)

Where: 
 jwS is the sensitivity matrix given by:  

       1 jwKjwGIjwS           (18)

)( jwWP is a weighting matrix function designed to meet 

the performance specifications desired in the frequency 
plan, we choose the following matrix function:
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0
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)1005.0(

)(           (19)

The figure.6 represent the singular values of  jwWP in 

the frequency plan, one notice that the specifications on 
the performances are bigger in low frequencies 
(integrator frequency behaviour), and this guaranty no 
static error.
Then the standard problem of H∞ Control theory is 
then: 

   
   





jwWjwS

jwWjw

p
gstabiliK

t

sin

T
min                          (20)                             

i.e.: to find a stabilising controller K that minimise the 
norm (20).

With:  


is The Hinfinity norm.

∆m

K G
y
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_
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4 Application
The minimisation problem (20) is solved by using two 

Riccati equations [9] or with the linear matrix 

inequalities approach. For our system, we use the linear 

matrix inequalities solution (for more details see [10]). 

The solution (controller) can be obtained via the Matlab 

instruction hinflmi available at ‘LMI Toolbox’ of 

Matlab® Math works Inc [11].

The figure 7 and the figure 8 show the satisfaction of 
the stability and performances robustness conditions 
(14) and (17).
The figure.9 show the step responses step responses of 
the closed loop controlled nominal system with: 

 1
0

0
1

__  refqsrefds VVR respectively.

The Outputs dsV and qsV follow the references with a 

good time response and no overshoot. 
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Figure 4:  The system uncertainties maximum singular values
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Figure 5:  Maximum singular values of the system uncertainties m bounded by the singular values of  jwWt .
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Figure 6: Singular Values of the weighting performance specification
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Figure 7:  Stability robustness condition
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Figure 8:  Performances robustness condition

Figure 9: Step response of the controlled closed loop nominal system

5 Conclusion
In this paper we deal with the control problem of a wind 
turbine equipped with a doubly fed asynchronous 
machine subject to various perturbations and system 
uncertainties (wind speed variations, electrical energy 
consumption, system parameters variations ...etc), we 
show that the H∞ controller design method can be 
successfully applied to this kind of systems keeping 

stability and good performances in spite of the 
perturbations and system uncertainties. 
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