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ABSTRACT

Size Theory was proposed in the early 90’s as a geometadpaltigical approach to the problem of Shape
Comparison, a very lively research topic in the fields of Catep Vision and Pattern Recognition. The

basic idea is to discriminate shapes by comparing shapegirepthat are provided by continuous functions
valued inR, called measuring functions and defined on topological epassociated to the objects to be
studied. In this way, shapes can be compared by using a pescnamed size function, whose role is to

capture the features described by measuring functionseprésent them in a quantitative way. However,
a common scenario in applications is to deal with multidisienal information. This observation has led

to considering vector-valued measuring functions, andequently the multidimensional extension of size
functions, namely the k-dimensional size functions. Irsthork we survey some recent results about size
functions in this multidimensional setting, with partiauteference to the localization of their discontinuities.

Keywords: multidimensional size function, shape analysize theory, topological persistence.

INTRODUCTION function ¢. Part of the qualitative information
contained in(.#,¢) is then quantitatively stored

Shape Analysis and Comparison are probablyn the associated size functiofy , 4), describing
two of the most challenging issues in the fieldssome topological attributes that persist in the sublevel
of Computer Vision, Computer Graphics, Imagesets of.# induced by¢. Following this approach,
Analysis and Pattern Recognition. Shape modelsomparing two shapes can be reduced to the simpler
are characterized by a considerable amount ofomparison of the associated size functions, making
visual, semantic and digital data, and therefore th&se of a suitable distance asg, thematching distance
development of methods able to extract the mosfd’Amico et al, 2003; 2006; 2010). In the context of
relevant properties of a shape is necessary whehlgebraic Topology, an analogous notion to the one of
dealing with such an information. Recently, ansize function has been developed under the name of
increasing interest has been devoted to methodkize homotopy grouffrosini and Mulazzani, 1999).
deriving from Topological Persistence, giving
relevance to consider the topological features of
shape with respect to some geometrical properti
conveyed by real functions defined on the sha
itself (Frosini and Landi, 1999; Carlssoat al,
2005; Cohen-Steineet al, 2005). In this context,
Size Theory was introduced in the early 90's as
geometrical/topological approach to the problem o
Shape Analysis and Comparison, studying the concept Since their introduction, size functions have
of size functiona mathematical tool able to capturebeen extensively studied and applied to concrete
the qualitative aspects of a shape and represent themnoblems in the fields of Computer Vision and
in a quantitative way. More precisely, the main ideaGraphics, Image Analysis and Pattern Recognition,
in Size Theory is to model a shape by means of avith particular reference to the 1-dimensional setting,
topological space#, endowed with a continuous i.e. to the case of measuring functions taking values
function¢ calledmeasuring functionSuch a function in R (Merri et al, 1993; Uras and Verri, 1997
is chosen according to applications and describes tHeibos et al, 2004; Cerri et al, 2006; Biasotti
features considered relevant for shape characterizatiogt al, 2008c). Similarly, Persistence Homology was
In this way, thesize pair (.#,¢) can be seen as initially developed in a 1-dimensional versione(,
a representation of a given shape with respect tstudying the topological evolution of a one-parameter
the properties expressed by the selected measuriimicreasing family of spaces), with applications in

More recently, similar ideas have been re-proposed
%y Persistent Homology according to a homological
ez§pproach (Edelsbrunnest al, 2002; Edelsbrunner
P&nd Harer, 2008). In this setting, the concept of size
function coincides with the dimension of the O-th
multidimensional persistent homology groue,, the
-th rank invariant (Carlsson and Zomorodian, 2007).
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shape description (Carlssoet al, 2005), hole a continuous function. However, since some of the
detection in sensor network (de Silva and Ghrist, 2007)esults we are going to present imply differential
and data simplification (Bubenik and Kim, 2007). considerations, for the sake of simplicity we prefer
S . .. hereto restrict our hypothesis, by assuming that
However, a common scenario in apphcaﬂonsls a closedC! Riemannian manifold, endowed with a
is to deal with multidimensional information: This CL functiond — (¢ o) '%H]R,k
can be easily understood if we considerg, the Lo ¥k '
representation of color in the RGB model. Other In the context of Size Theory, any pau ,§),
similar examples can be found in the context ofwith .Z and§ = (¢1,...,¢x) : .# — R¥ satisfying
computational biology, in medical environments, aghe previous assumptions, is calledsize pair The
well as in scientific simulations of natural phenomenafunction ¢ is said to be &-dimensional measuring
These observations had led to pay close attention to tHenction We define the following relations< and
study of Topological Persistence in a multidimensiona< in R¥: for X = (x1,...,%) and ¥ = (y1,...,¥),
setting (Frosini and Mulazzani, 1999; Biasatial, ~We shall writeX <y (resp.X <) if and only if
2007; Carlsson and Zomorodian, 2007; Biasettal, X < Vi (resp.x <y;) for every indexi = 1,....k.
2008a; Edelsbrunner and Harer, 2008: Ghrist, 2008¥loreover, R will be endowed with the usual max-
Carlsson, 2009). Referring to Size Theory, the ternorm:|[(X1,Xz, ..., %)l = Max<i<k|x|. Now we are
multidimensionalis related to considering vector- réady to introduce the concept of size fUECUOQ for a
valued measuring functions, and consequently th&ize pair(.#,¢). The open sef(X.y) € R* x R*:
multidimensional extension of size functions, namelyX < ¥} Will be denoted byA*. For everyk-tuple X =
the k-dimensional size functions (x1,---,%) € R¥, we shall define the se# (¢ < X) as

, _ (Ped $i(P)<x,i=1,... K}

In this paper we review some recent results. . ) ) )
concerning the theory of size functions associatedefiniton 1.1. We call the (k-dimensional) size
to measuring functions taking values R¥ (Biasotti ~ function associated with the size pait#,@) the
et al, 2007: 2008a), with particular reference tofunction £, g : A" — N, defined by setting
the study of their structure and to the localization’(.#.3)(X.¥) equal to the number of connected
of their discontinuities (Cerri and Frosini, 2008).components in the se# (¢ <y) containing at least
Indeed, this last research line is a necessary stee point of.Z (¢ <X).

toward the development of efficient algorithms for thepamark1.2 The concept of size function is strongly
computat_ion _of multidimensional size functions and,gated to the ones of persistent homology group
their application to concrete problems. and rank invariant (Edelsbrunneet al, 2002;
Carlsson and Zomorodian, 2007). More precisely,
the (multidimensional) size functiofy , 5y coincides
MULTIDIMENSIONAL SIZE THEORY  with the 0-th rank invariant associated with the
(multi)filtration induced on.#Z by ¢. For a formal
In this section we introduce the basic definitionsdefinition of rank invariant the reader is referred to
and results about size functions, confining ourselve€arlsson and Zomorodian (2007).
to those we consider relevant to the survey purposes . )
of this paper. For further details about Size Theory, N what f_oIIollez the case of measuring functions
the reader is referred to Frosini and Mulazzani (1999)Eak|ng value iR will be addressed by using the term
Biasottiet al. (2007; 2008a:b). k-dimensional”.

The main idea underlying the notion ok-( Example 1.3 (The particular case k= 1). Close

dimensional) size function is to study a given shapé‘ttention S.hOUId be' paid to 'the particular f_ramework
by performing a topological exploration of a suitable®f Mmeasuring functions taking values R, i.e, to

: : . the 1-dimensional case. Indeed, Size Theory has
topological space#, with respect to some geometric . ; . ' . )
properties provided by arRK-valued continuous been widely developed in this setting (Biasatial,,

function§ = (@1, ...,¢x) defined on#. Under these 2803:9)’ proving th?t each 1-otlirpensional ?ize fulnctio_n
assumptions, theize functiory, , %) is then a stable 2¢MIS @ compact representation as a formal Series

and compact descriptor of the topological change goliom;s and nllnes ?}fR f('i{]?sm' arl]idr L?rnd[[, ;
occurring in the lower level setsP € .7 : ¢;(P) < ) As a consequence of this peculiar structure,

o o Lk — a suitablematching distancéetween 1-dimensional
=1, .kjast=(t,...,t) varies inR". size functions cang be easily introduced, showing the
In the classical formulation of Size TheoryZ  stability of these descriptors with respect to such
is required to be a non-empty, compact and locallya distance (d’Amicoet al, 2003; 2010). All these
connected Hausdorff space, agd: .# — RK is properties make the concept of 1-dimensional size
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function central in the approach to thkedimensional Due to their typical structure, it has been proved
case proposed in Biasodt al. (2008a). that the information conveyed by a 1-dimensional size

According to the notations used in the Iiteraturefuncnon can be combinatorially stored in a formal

_ . series of points and lines (Frosini and Landi, 2001).
?55;2;2%2%2%&;}; é;exs;/mbols(ﬁ, X, y will be Roughly speaking, this can be done by observing that

each 1-dimensional size function is representable by
When referring to a (1-dimensional) measuringmeans of a linear combination (with natural numbers
function ¢ : .# — R, the size function/ ,4) as coefficients) of characteristic functions associated
associated with(.#,¢) contains information about to triangles, possibly unbounded, lying on the domain
the pairs(.Z (¢ <X),.# (¢ <y)), where.# (¢ <t) A*. Indeed, the bounded triangles are of the form
is defined by setting# (¢ <t)={Pc.#:¢(P) <t} {(xy) €A™ :a <x<y< B}, while the unbounded
fort € R. ones are of the form{(x,y) € AT : n < x < y)}.
Hence, a simple and compact representation can be
ngrovided if one considers the formal series obtained
y associating a triangular set given pix,y) € A* :
a < x<y< B} to the point(a,f), and a triangular
Fig. 1 shows an example of a size pé&iw7,$) setgiven by{(x,y) € AT :n < x<y)} to the point at
together with the size functiod , 4). On the left infinity (n,+c). The points of a formal series having
(Fig. 1(a)) the considered size pait#,¢) can be finite coordinates are callgmoper cornerpointswhile
found, where.# is the curve drawn by a solid line, the ones with a coordinate at infinity are named
and¢ is the ordinate function. On the right (Fig(t)) ~ cornerpoints at infinityor cornerlines For example,
the associated 1-dimensional size functign, 4, is ~ the size functiort( , 4) shown in Fig. 1b) admits the
depicted. representation by formal series giventoy p1 + p2 +
p3+ P4, Wherer is the only cornerpoint at infinity, with
) coordinateg0, +).

Before going on, we observe that far= 1, the
domainA™ of a size function reduces to be the ope
subset of the real plane given fgx,y) € R? : x < y}.

According to the 1-dimensional setting, the
problem of comparing two size pairs can be easily
translated into the simpler one of comparing sets of
points, via the representation by formal series of the
associated 1-dimensional size functions. In d’Amico
et al. (2003; 2010), thematching distance ghich

, X has proven to be a suitable distance between these
(a) (b) descriptors. In plain words, the matching distance
dmatch Measures the cost of moving the points of a
Fig. 1. (a) The topological space# and the formal series onto the points of another one, with
measuring functior. (b) The associated size function respect to the max-norm. An application @fatch is
Cn g)- shown in Fig. 2c).

As can be seen, the domalit = {(x,y) € R?: VY, ,
X <y} is divided into regions by solid lines. These
lines represent the discontinuities@j/,’d,), which are
located by the following theorem:

Theorem 1.4. Let .# be a closed & Riemannian @ X B X
manifold, and let¢ : .# — R be a C measuring
function. If (x,y) is a discontinuity point fo , 4,

then eitherx or y or both are critical values foip. Fig. 2. (a) The size function corresponding to

the formal series # p+ g. (b) The size function
corresponding to the formal serie$+ p'. (c) The
matching between the two formal series, realizing the
énatching distance between the two size functions.

Each region of A" is labeled by a number,
coinciding with the constant value thét,, ) takes in
the interior of that region. For example, let us comput
the value of( , 4) at the point(c,d). By Definition As can be seen in Fig. 2, different 1-dimensional
1.1inthe cas& =1, itis sufficient to count how many size functions may in general have a different number
of the three connected components in the sublevelf cornerpoints. Therefor@mnaich allows a proper
(¢ < d) contain at least one point of7 (¢ < c). cornerpoint to be matched to a point of the diagonal:
It can be easily checked thgt,, 4(c,d) = 2. this matching can be interpreted as the deletion of a
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proper cornerpoint. Moreover, we stress thatdfgcn (b1, ..., by) of R¥ such thatzik:1 b, =0, the pair(r,B)
has proven to be stable with respect to perturbationis said to beadmissible The set of all admissible pairs
of the measuring functions (d’Amicet al, 2003; in R¥ x R¥ is denoted byAdmy. Given an admissible
2(_)10), m_akir_lg thi_s framework suita_lble when copingpair(r,ﬁ), the ha|f_p|an9-[(r5) of R x RK is defined by
W|tr_1 g_ppllcatlons in Shape Qomparlson. For a forr_na[he following parametric équations:
definition and further details about the matching

distance the reader is referred to d’Amieoal. (2006; [ x=d+Db
2010). Tip) - { y=ti+b ’
Remark1.5. The notion ofdmatch is strictly related .
to the ones of bottleneck distance, used in Coher{-Or StER, with s<t.

Steineret al.(2005) to prove the stability of persistence Remark2.1 It can be easily proved that the collection
diagrams, and Hausdorff distance. More preciselypf half-planes{ g - (ﬁb’) c Adnk} is a foliation of

dmatc_h rfeduces to be the bo_ttleneck Qistance under thg+ hence for every point of the domait there exists
restriction that the measuring functions aaene (we '

recall that a continuous real functioh: .# — R is e and only one half-plarg;, with (1,b) € Adm,
tame if it has a finite number of homological critical containing the point itself. Moreover, the half-plane
values and the homology groupt(f~1(—,a]) are T, depends continuously on the pdirb).
finite-dimensional for allk € Z and a € R). The _ _
matching distance reduces to be the Hausdorff distance We are now ready to present the main result in
when considering left- and right-total relations insteadhe approach to the multidimensional case proposed in

of bijections between cornerpoints. Biasottiet al. (2008a):
Theorem 2.2 (Reduction Theorem)Let (I,b) be an
REDUCTION TO THE admissible pair, and Iet(&) . ./ — R be defined by
1-DIMENSIONAL CASE setting

In this section we review the approach to the b
k-dimensional extension of size functions proposed . .
in Biasotti et al. (2008a). In that work, the authors Then, for every(X,y) = (s + b,tl +b) € i) the
show that the cask > 1 can be reduced to the 1- following equality holds:
dimensional setting by a change of variable and the
use of a suitable foliation. In particular, they prove bRV =L, eo
that a parameterized family of half-planes itf x " (b
RK can be given, such that the restriction ofka
dimensional size functiofy_, ) to each of these half- In the following, we shall use the symbE)?B) in
plangs turns out to be a partlcular. 1-(:_i|mer_13|onal SiZG e sense of the Reduction Theorem 2.2. ’
function. This approach finds motivations in the fact
that generalizing to an arbitrary dimensioie( to Roughly speaking, the Reduction Theorem 2.2
the casek > 1) the concepts of proper Cornerpointstates that, on each half-plane of the foliation, the
and cornerpoint at infinity seems not to be trivial.restriction of a given multidimensional size function
We recall that these notions, defined in the casgoincides with a particular size function in two scalar
of 1-dimensional size functions, play a central rolevariables;i.e, a 1-dimensional one. A first important
in the introduction of the representation by formalconsequence is the possibility of representing a
series. Consequently, at a first glance it seems n#ultidimensional size functiofy_, 5 by a collection
possible to provide the multidimensional analogue oPf formal series of points and lines, following the
the matching distancemarch and therefore it is not machinery described in Example 1.3 for the case
clear how to obtain stability under perturbations ofk = 1. Indeed, each admissible paj,b) can be
the measuring functions. On the other hand, all thesassociated with a formal seri@%rﬁ) describing the
problems can be overcome via the results we are goingdimensional size functiof . Therefore, on
to survey.

1) .
|50

(///’F<?,B>)
each half-planen(rﬁ) the matching distance between
9-dimensional size functions can be applied, showing
. that it is stable with respect to perturbations of
For every unit vectol = (Iy,...,lk) of R such  the multidimensional measuring functions and to the
thatl; > 0 fori =1,...,k, and for every vectob = choice of the leaves of the foliation (Biasot al,

Before proceeding, we need to introduce som
further notation.

22



Image Anal Stereol 2010;29:19-26

2008a, Prop. 2 and 3). These stability properties lead The matching distanceyaicH ¢ s ))
to the definition of a distancBmatci4(.#,5): ¢(.+,g)) N ()
between two multidimensional size functiofis, g equalsv2—&—(1/V2)=v2/2—e(1>€>0,¢

and 7 . given by D / Y — depending on the “smoothness level”.af), i.e., the
SR Y Dmacllia.9):bir.9) cost of moving the point of coordinaté®, /2 — )

SURE)<Adm, M1kl dmatd(e(//v':?s)’K(Wﬁ?g)) onto the point of coordinate0,1/1/2), computed
(Biasottiet al, 2008a, Def. 8). with respect to the max-norm. The poirfs v/2 — €)
Remark2.3. Let us observe that choosing a non-and (0,1/4/2) are representative of the characteristic
empty and finite subsek C Admy, and substituting triangles of the size functiorié(,/// ) and/
SUR[ B)cAdm, with MaXyg)ca in the definition of

¢ L
(///’F(EB ’

’F<?,B> A "F(?B))’
) respectively. Note that the pseudodistance we obtained
Dmatet(€(.# ), {(.v,p)), We obtain a computable fom D, (cf. Remark 2.3) by computing the

pseudodistance betweksdimensional size functions, |-+ hing distancel for T = (v2/2./2/2) and
that is stable and hence suitable for applications. rnatehing distanc@mateh Tor (V2/2.v2/2) an

b = (0,0), equals to@ : (@ — €). This implies
Before going on, we now provide an examplethat, e€ven by considering just one half-plane of
showing how the Reduction Theorem 2.2 can pdhe foliation, it is possible to effectively compare

applied for comparing-dimensional size functions. multidimer_lsional size functions. Let us conclude
by observing thatf(%m) =Ly and Congy) =

Example 2.4.In R3 take 2 = [-1,1] x [-1,1] x £y, In other words, the multidimensional size
[—1,1] and the spherg” of equationx® +y?>+ 72 =1.  functions, with respect t@, {, are able to discriminate
Let also® : R3 — R? be theC! function taking each the cube and the sphere, while both the 1-dimensional
point (x,y, z) to the pair(x2,22). Now consider the size Size functions, with respect te1,¢> and yn, i,
pairs(.# ,$) and(.¥, ), where.# is the “smoothed ~Cannot do that. The higher discriminatory power of
version” of 0.2 represented in F|g 341/ = .9 and¢, multidimensional size functions pI‘OVideS a further
@ are the restrictions b to .# and./, respectively. motivation for their introduction and use.

In order to compare the (2-dimensional) size functions

lng) andl g, we are interested in studying the The comparison procedure based on Theorem 2.2

ew) S _ and illustrated in Example 2.4 is the core of the
foliation in half-planesrt; , wherel = (cos8,sinf)  machinery developed for concrete applications in the

with 0 < 8 < 11/2, andb = (a,—a) with ac R. Any  context of Shape Analysis. For example, in Biasotti

such half-plane is given by et al. (2007) k-dimensional size functions are used
for comparing and retrieving 2- and 3-dimensional
X1 = ScosO +a data, using both vectorial.€., triangle meshes) and
X2 = SSinf —a raster (voxel images) representations. Indeed, in that
y1 =tcosf+a ’ work the authors consider two different databases
yo =tsinf —a of 280 surface models and of 420 volume models,

respectively. In order to compare and retrieve the

with st € R, s < t. Fig. 3 shows the size functions surface models, each of them is equipped with the
/¢ s . and/ g for@=m/4anda=0,i.e, '= same 2-dimensional measuring function, computing

(4 Fip) (A Fig) the pseudodistance induced Dyaich (cf. Remark 2.3)

(v/2/2,v/2/2) andb = (0,0). In this case we obtain between the related 2-dimensional size functions over
$ _ _ 2 ¢ _ 4 different half-planes of the foliation described in

F(r-,B) vamax( g, 2} = vV2maxx’,.’} andF(ﬁB) Example 2.4. The same approach is used to compare
V2max i, g} = vV2max{x?,Z}. Therefore, the the volume models, but choosing a 3-dimensional
Reduction Theorem 2.2 implies that, for everymeasuring function instead of a 2-dimensional one,
(X1,%2,¥1,Y2) € i) We have and computing the restrictions of the outcoming 3-
dimensional size functions over a single half-plane of

s s t t At C R3 x R3. The promising results obtained in both
Cen ) (X%, Y1,Y2) = Lin ) <72’ﬁ’72’ﬁ> the applications suggest that Multidimensional Size
_ (st) Theo'ry_ can be effectively used to analyze and compare
(///,F(?B)) f 3D digital shapes (represented by surfa_ce or volume
' s s t ot models) equipped by vector-valued functions.
Cor (X Xe,Y1,Y2) = Low ) (72’%’72’%> For further details about the experimental results
iy (s,t) described here see Biasottit al. (2007). Other
(%/-F?» )T experiments can be found in Biasatial. (2008a).

“ (b
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0
_ 1
t - ﬁ-‘
S
E(%,F(?B)) E(JV,F'ZJB))
Fig. 3. The topological spaces” and./# and the size functioné(/// 9 ),ﬁ(W £ associated wiﬂﬁ the half-
O K ()
planer[(r’B), forl' = (@, @) andb = (0,0).
DISCONTINUITIES IN THE general, notCl. The idea is then to introduce an
MULTIDIMENSIONAL CASE approximation ofF by a sequence of! functions

(Fp). In this way, Theorem 1.4 can be applied, getting
The approach to the case> 1 reviewed in the a differential necessary condition, depending on the

previous section has revealed to be useful both inalf-plane M) for the dISCOI’ltI.I’?UIty pomtg of the
applying multidimensional size functions to concretefunctionst 4 ;). Due to the stability properties of the
problems and in solving some questions related to thefp@tching distancemaich between 1-dimensional size
intrinsic structure. Indeed, the theoretical machineryunctions, it is possible to prove that the differential
introduced in Biasottiet al. (2008a) has been used condition passes to the limt — +o, and therefore it

in a recent work in order to study the localization of@lSo holds for the discontinuity points 6f / ).

the discontinuities for multidimensional size functions.  This first result can then be extended to the
More precisely, in Cerri and Frosini (2008) it has giscontinuities of the multidimensional size function
been proved that a generalization of Theorem 1.4 ~ . Indeed, in Cerri and Frosini (2008) it is shown
holds wherk > 1, giving a necessary condition for a that a correspondence exists between the discontinuity
point (X,y) € A" to be a discontinuity point for &  points of¢ , £, and the ones of , 5. This can be
dimensional size functior_, 3. In this section we proved by applying the Reduction Theorem 2.2 and the
review the main considerations leading to this resultstabi”w of dmatchWith respect to the choice of the half-
which is stated in Theorem 3.3. For further details thqﬂanes foliatingh* .

reader is referred to Cerri and Frosini (2008). _ , _ _
Finally, the result given in Theorem 3.3 refines

Consider the size paft.#,$) and the associated the differential necessary condition obtained for the
multidimensional size functio#_, ). From now to  discontinuity points of {4 4, by removing the
Theorem 3.3 an admissible p&l?,B) € Adm will be  dependance on the foliation Af . In order to do this,
fixed and the 1-dimensional size functiép, F) will in Cerri and Frosini (2008) the following definitions
be considered, wher& (P) = max_1__ «{(¢i(P) — of pseudocritical poinandpseudocritical valudor a
bi)/li} for all P € .. The functionsF and /(4 ) vector-valued?! function have been used:

will be said the (1-dimensional) measuring function

and the size function corresponding to the half-pland€finition 3.1. Let X : .# — R" be aC* function. A
TTrg) respectively. pointP € . is said to be gseudocritical point fory

if the convex hull of the gradientsx;(P),i =1,...,h,

In what follows, the symbow(%?@)(-,y) will contains the null vector,e., there exisfA1,...,Ah € R
denote the function taking eadhtuple X < ¥ to the  such thatzih:i)\i -0xi(P) =0, with 0< A; <1 and
valuef(%@)(i,y). An analogous convention will hold zih:l)\i = 1. If P is a pseudocritical point of, then
for the symbo¥_, 3)(X,-). X (P) will be called apseudocritical value foy.

The first step toward claiming Theorem 3.3Remark3.2 Definition 3.1 corresponds to the Fritz
consists in the observation that a slightly modifiedjohn necessary condition for optimality in Nonlinear
version of Theorem 1.4 holds for the 1-dimensionapbrogramming (Bazara®t al, 1993). For further
size function /(4 ) associated to the half-plane references see Smale (1973). The concept of the
Mg Indeed, such an adaptation is due to the fagsseudocritical point is strongly related also to the
that the 1-dimensional measuring functiénis, in  ones of Jacobi Set (Edelsbrunner and Harer, 2002)
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and generalized gradient (Clarke, 1983). In literature, In the light of this new information, we

pseudocritical points are also called Pareto-criticatan imagine the possibility of constructing new

points. algorithms to efficiently compute multidimensional

size functions. Let us consider the connected

Roughly speaking, Definition 3.1 states that a pointomponents in which the domain &f , 3, is divided

P € .# is pseudocritical for the functiofi : .2 — R"  py the set#". Since size functions are iocally constant

if, moving from P, it is not possible to “choose a at each point of continuity (we recall that they are

direction” on.# allowing one to decreas the same natural-valued), we immediately obtain thiat, g is

time each component of (P) (with respect to a first constant at each of those connected components. It

order approximation of). According to Definition  follows that the computation of_, 5 just requires

3.1 and considering a suitable projectonR — R",  the computation of its value at only one point for each

with p(X) = (Xiy,...,%,) for some indicesy,...,in, connected component. These observations open the

the next theorem has been proved in Cerri and Frosiniay to new and more efficient methods of computation

(2008), locating the discontinuity points 6f , 5) and  for multidimensional size functions.

avoiding any reference to the half-plarmfﬁﬁ): Our results also make new pseudodistances

Theorem 3.3. Let (%,y) € A be a discontinuity between size pairs computable in an easier way.

: . Let us provide a simple example. Consider the two
oint for /¢ . Then at least one of the followin
Ste;tementéﬂhgl)ds: wing size pairs(.#,$), (,) introduced in Example

_ _ _ o _ 2.4. Let alsoZ; (respectively 7y) be the set of
() X is a discontinuity point for{ , 5 (-.¥) and pseudocritical values ford (resp. ). It can be
then a projectionp exists such thap(X) is a easily verified that?s and &7 are respectively the

pseudocritical value fop o §; subsets ofR? represented in Fig.(4) and Fig. 4b).
(i) ¥ is a discontinuity point for¢, , 4 (%,-) and It is trivial to check that the Hausdorff distance

then a projectionp exists such thap(y) is a Petween¥s and &y approximates the valu% (the
pseudocritical value fop o @. approximation depending on the “smoothness level”

of ), thus giving a measure of the (dis)similarity

In other words, the result claimed in Theorem 3.32etween.#,¢) and(./", ).
states that a discontinuity point for a multidimensional
size function has at least one pseudocritical coordinate
up to a suitable projection, under the hypothesis that CONCLUSIONS
the considered measuring functionds. We observe
that this result implies several relevant consequences. In this paper we surveyed recent advances in the
First, it contributes to clarifying the structure andtheory of multidimensional size functions, spanning
simplifying the computation of multidimensional size the main results leading to their application to concrete
functions. In order to explain this point let us consideroblems in the fields of Computer Vision and
the case of a compact smooth manifolél endowed Graphics, Image Analysis and Pattern Recognition.
with a smooth function = (¢1,¢,) : .# — R? It  Close attention has been paid also to the review of
is immediate to verify that all pseudocritical pointsthe most interesting theoretical properties concerning
belong to the Jacobi set df, that is the set where these shape descriptors, with particular reference to
the gradientsJ¢; and ¢, are parallel. This implies the localization of their discontinuities. Indeed, this
(Edelsbrunner and Harer, 2002) that in the generic cad@ast research line appears to be promising in improving
the pseudocritical points belong to a 1_Submanifo|dhe computation and the use of multidimensional size
7 of . (in local coordinates such a manifold is functions in the context of concrete applications.
determined by the vanishing of the Jacobia@pfFor
the computation of # we refer to Edelsbrunner and ~ ACKNOWLEDGEMENTS
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of critical values for¢, (resp. ¢»). Following these i
notations, if we assume that; = %1 x R®, o = Of INdAM-GNSAGA.
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