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Abstract

We prove lower bounds on the maximum genus of a graph in terms of its connec-
tivity and Betti number (cycle rank). These bounds are tight for all possible values of
edge-connectivity and vertex-connectivity and for both simple and non-simple graphs. The
use of Nebeský’s characterization of maximum genus gives us both shorter proofs and a
description of extremal graphs. An additional application of our method shows that the
maximum genus is almost additive over the edge cuts.
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1 Introduction
We study cellular embeddings of graphs in orientable surfaces of large genus. Suppose that
G is a connected graph with v vertices and e edges embedded with f faces on an orientable
surface of genus g, denoted here by Sg . Our goal is to find the maximum genus of G,
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γM (G), which is the maximum value of g over all cellular embeddings of G. The Euler-
Poincaré formula asserts that v − e + f = 2 − 2g. By combining this formula with the
formula β(G) = 1− v + e for the Betti number (cycle rank) of G we get f − 1 = β − 2g.
Since the maximum genus g corresponds to the minimum number of faces f and since
every embedding has at least one face, f − 1 (or equivalently β − 2g) measures how far
the embedding is from the extreme of only one face. We call this quantity the deficiency ξ
of the embedding. The deficiency of G, ξ(G), is the minimum deficiency over all possible
embeddings, and so ξ(G) = β(G)− 2γM (G). Note that ξ(G) always has the same parity
as β(G). In particular, an embedding of a graph with odd Betti number always has at least
two faces and hence deficiency at least one. A graph with deficiency 0 or 1 is called upper
embeddable. For more background on the maximum genus we refer the reader to [3].

In this paper we give lower bounds N on the maximum genus of graphs in various
classes C defined by the graph’s Betti number and edge-connectivity. The graphs are al-
lowed to have loops and multiple edges; if these are forbidden we say that the graph is
simple. Our results can be rephrased as “Every graph in C has an embedding in a surface
with at least N handles”. We also get analogous results for Betti number and vertex-
connectivity. These classes have been examined before [2, 4, 5, 7, 8, 11], nevertheless, we
present a unified approach with new, much shorter proofs, providing additional information
about the structure of the extremal graphs.

In addition to the bounds on the maximum genus of a graph in terms of its connectivity,
we explore the relationship between the maximum genus of a graph and the maximum
genera of components resulting from the removal of an edge-cut. By an edge-cut in a graph
G we mean a minimal set F of edges that separate two sets of vertices V1 and V2 forming a
partition {V1, V2} of the vertex-set ofG; every edge from F has precisely one vertex in each
of V1 and V2. We show that the maximum genus of a graph is almost additive over its edge-
cuts (in a sense to be made clear in Section 3). We also investigate a related question asking
for the smallest size of an edge-cut that can separate a non-upper-embeddable component.

The primary tool used in this paper is Nebeský’s Theorem [12], stated below as Theo-
rem 1.1 (or its equivalent version due to Khomenko and Glukhov [9] stated later in Equa-
tion 3.4). Let G be a connected graph and let A be a set of its edges. Let oc(G−A) denote
the number of components of G−A with odd Betti number and ec(G−A) the number of
those with even Betti number. Let

ν(G,A) = ec(G−A) + 2oc(G−A)− |A| − 1.

Theorem 1.1 (Nebeský [12]). The deficiency of a graph G is given by

ξ(G) = max{ν(G,A) : A ⊆ E(G)}.

The idea behind Nebeský’s Theorem is easy and its understanding is important to this
paper. Consider a maximum-genus embedding of G with f faces. Delete the edges of A
one at a time. If deleting an edge increases the number of components, then we embed each
new component on its own connected surface. With this convention, deleting an edge can
increase the total number of faces, but by at most one. Hence the embedding of G−A has
at most f+ |A| faces. If a component ofG−A has odd Betti number, then its surface has at
least two faces. If the Betti number is even, then its surface has at least one face. It follows
that f + |A| ≥ ec(G − A) + 2oc(G − A), and so ξ(G) = f − 1 ≥ ν(G,A). Nebeský’s
Theorem also asserts that there is a set A of edges in a maximum genus embedding that
reverses the steps just described; the proof in this direction is more difficult.
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Previous results relating maximum genus, connectivity, and the Betti number mostly
used Xuong’s Theorem [15] to determine the maximum genus. It is our use of Nebeský’s
alternative characterization [12] that gives us new insights and shorter proofs; these tech-
niques were first introduced in an earlier unpublished version of this paper (1996).

2 Graphs with given connectivity
In this section we state and prove our results giving upper bounds on the deficiency of
graphs with a particular Betti number and connectivity. We then translate these results to
give lower bounds on the maximum genus. We need several observations before proceed-
ing.

First, note that if G has a vertex v of degree one, then γM (G− v) = γM (G). If v is of
degree two, then we can replace its two incident edges with a single edge joining the other
two incident vertices. This does not change the maximum genus, but can turn a simple
graph into a non-simple one. Since simple and non-simple graphs behave differently, the
statements of our results are cleaner if we forbid degree two vertices. Hence we require
that our graphs are of minimum degree at least three.

The proofs involve calculating ν(G,A) and bounding β(G) from below. Different
types of components in G−A will play different roles. Let c0 = c0(G−A) be the number
of components in G − A with Betti number zero. Let c1 denote those components with
Betti number one. Let c2 be the number of components with even Betti number at least 2,
and c3 be the number of components with odd Betti number at least 3. With this notation
observe that

ν(G,A) = c0 + 2c1 + c2 + 2c3 − |A| − 1. (2.1)

To bound the Betti number of G, first note that G − A has components whose Betti
numbers sum to at least c1 +2c2 +3c3. Adding in c0 + c1 + c2 + c3− 1 edges from A, we
can build a connected graph whose Betti number is also at least c1+2c2+3c3. Adding the
remaining edges in A increases the Betti number by |A| − (c0 + c1 + c2 + c3 − 1). Hence

β(G) ≥ −c0 + c2 + 2c3 + |A|+ 1. (2.2)

We are now ready for the first version of our main result.

Theorem 2.1. Let G be a graph of minimum degree at least three. Then upper bounds on
the deficiency ξ(G) are given in following table. The rows correspond to edge-connectivity
k = 1, 2, 3, or ≥ 4. The same bounds hold where k is the vertex-connectivity and are
achieved by graphs of arbitrarily large Betti number.

k simple non-simple
1 (β(G)− 2)/2 (β(G) 6= 3) β(G)
2 (β(G)− 4)/3 (β(G) 6= 3, 5) β(G)− 2
3 (β(G)− 4)/3 (β(G) 6= 3, 5) (β(G)− 4)/3 (β(G) 6= 3, 5)
≥ 4 1 1

Proof. We prove the upper bounds for k-edge-connected graphs G. Since k-vertex-con-
nected implies k-edge-connected, the bounds also hold for vertex-connectivity. We achieve
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the bounds with k-vertex-connected graphs, so the bounds are best possible in both cases.
The proof has five main cases.

Case (i). We begin with possibly non-simple graphs having edge connectivity (or vertex
connectivity) k ≥ 4. First observe that ν(G, ∅) is 0 when β(G) is even and is 1 when
β(G) is odd. We will show that no 4-edge-connected G has a non-empty subset A with
ν(G,A) > 0. As a consequence, any such graph is upper-embeddable and the bounds
in our table are best possible. This result has been noted by many authors, usually using
Kundu’s Theorem [10] combined with Xuong’s Theorem [15].

To establish the inequality, first note that ifA is non-empty andG−A is connected, then
ν(G,A) ≤ 0. If G−A is disconnected, then each component of G−A is incident with at
least 4 edges inA. Counting edge ends and dividing by 2 we get |A| ≥ 2c0+2c1+2c2+2c3.
Substituting in Equation 2.1 gives ν(G,A) ≤ −c0 − c2 − 1 < 0 as desired.

Case (ii). We next consider graphs that are either 3-edge-connected and non-simple or
2-edge-connected and simple. The bound for simple graphs was first shown in [2].

Let A be a non-empty subset of edges. We need to show that ν(G,A) ≤ (β(G)−4)/3.
Substituting Equation 2.1 for ν(G,A), Equation 2.2 for β(G), and simplifying, it suffices
to show that

2|A| ≥ 2c0 + 3c1 + c2 + 2c3. (2.3)

If G is 3-edge-connected, then every component is incident with at least three edge-
ends from A. Hence 2|A| ≥ 3(c0 + c1 + c2 + c3) implying Equation 2.3. The bound is
achieved if and only if c0 = c2 = c3 = 0.

IfG is 2-edge-connected and simple, then every component ofG−A contributing to c0
is incident with at least 3 edges (by minimum degree at least 3). A component contributing
to c1 is incident with at least 3 edges by simplicity. The remaining components are incident
with 2 edges by connectivity. Hence 2|A| ≥ 3c0 + 3c1 + 2c2 + 2c3. Again, Equation
2.3 is shown and the bounds follow. The bound is achieved if and only if c0 = c2 = 0,
every component contributing to c1 is a triangle and every component contributing to c3 is
incident with precisely 2 edges from A.

If A is an empty set of edges, then ν(G,A) = 0 or 1, depending on whether β(G) is
even or odd respectively. This is less than (β(G) − 4)/3 unless β(G) = 3 or 5, hence the
two excluded cases.

One way to achieve the above bound is to replace every vertex of a 3-connected simple
graph with a triangle so that every vertex is of degree three. Here the set A corresponds to
all of the original edges in the graph. This example shows that the bound is best possible
in both classes.

Case (iii). The next case is when G is simple and connected, first done in [4]. As before,
we need to show that ν(G,A) ≤ (β(G) − 2)/2 for every pair (G,A). Again substituting
in Equations 2.1 and 2.2, it suffices to show that

µ(G,A) := 3|A| − (3c0 + 4c1 + c2 + 2c3) + 1 ≥ 0. (2.4)

Our goal is to show that there is a pair (G,A) minimizing µ with a certain structure,
allowing us to show that µ(G,A) ≥ 0. We start by choosing a pair (G,A) minimizing
µ(G,A) where A is minimal with respect to inclusion, and proceed by proving several
claims about (G,A).

Claim 1: Every edge from A joins two distinct components of G−A.
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If there were an edge x such that both ends of x are incident with a single component
of G−A, then µ(G,A− {x}) ≤ µ(G,A), which contradicts the minimality of A.

Claim 2: Each component of G−A has odd Betti number.

To see this, first note that c0 = 0. If not, we could replace an acyclic component with
a cycle of suitable length incident with the same edges of A as the original component to
obtain a simple graph G′ with minimum degree at least 3. For the resulting pair (G′, A) we
have µ(G′, A) < µ(G,A), which contradicts the minimality of µ. We further observe that
c2 = 0. If not, we could replace a component contributing to c2 with a suitable subdivision
of K4 contributing to c3. This can always be done in such a way that the resulting graph
G′ is simple and has minimum degree at least 3. However, µ(G′, A) < µ(G,A), again
contradicting the minimality of µ.

Claim 3: No component of G−A is incident with exactly two edges of A.

Suppose there were such a component C, and let e, f denote the edges from A incident
with C. As shown above, β(C) is odd, and since G is simple and has minimum degree
at least three, β(C) ≥ 3. Consider a pair (G′, A′) constructed by deleting C from G
and joining the other ends of the edges incident with C. It is not difficult to see that G′

has minimum degree at least three and that µ(G′, A′) < µ(G,A); however, the graph G′

may not be simple. If the graph G′ is simple, then µ(G′, A′) < µ(G,A) contradicts the
minimality of µ. If G′ is not simple, then we distinguish two cases: e and f join C with
either one or two components of G−A.

If there is one component, it can contribute to µ by at most 4. It follows that µ(G,A−
{e, f}) ≤ µ(G,A), contradicting the minimality of A.

If there are two components call them D1 and D2. Then joining the ends of e and f in
G creates a pair of parallel edges in G′. Moreover, this implies that D1 and D2 are joined
by some edge in A, say g. As both D1 and D2 can contribute to µ by at most 4 and C
contributes by 2, it follows that µ(G,A − {e, f, g}) ≤ µ(G,A), again contradicting the
minimality of A.

Claim 4: A component C of G− A has β(C) = 1 if and only if it is incident with at least
three edges of A.

Let C be a component of G − A incident with at least three edges. If β(C) ≥ 3, then
we can replace it with a cycle of suitable length to obtain a simple graph G′ with minimum
degree at least 3. For the resulting pair (G′, A′) we again have µ(G′, A′) < µ(G,A), a
contradiction. If D is a component incident with just one edge of A, then the simplicity
and the minimum degree of G guarantee that β(D) ≥ 3. This proves Claim 4.

Having established some properties of G − A, we return to the proof of Case (iii).
Form the graph H = G/(G−A) from G by contracting each component of G−A into a
vertex. Note that |E(H)| = |A| and that H has no vertices of degree 2. As H is connected,
|E(H)| ≥ c1 + c3 − 1. Denote the number of vertices of degree 1 in H by v1 and the
number of vertices of degree at least 3 by v3. Observe 2|E(H)| ≥ 3v3 + v1 = 3c1 + c3.
By adding the two inequalities we get 3|E(H)| = 3|A| ≥ 4c1 + 2c3 − 1. Substituting this
into (2.4) yields

µ(G,A) = (4c1 + 2c3 − 1)− (4c1 + 2c3) + 1 = 0.
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To achieve the bound (β(G) − 2)/2 ≥ ν(G,A), start with any tree H having only
vertices of degree 1 or 3. Replace each degree three vertex with a triangle and each degree
one vertex with a copy of K4 (possibly with one edge subdivided) so that every vertex has
degree at least three.

Case (iv). We next turn to the case where G is non-simple and 2-edge-connected. Every
component is incident with at least two edges in A, so |A| ≥ c0 + c1 + c2 + c3. This gives
ν(G,A) ≤ c1 + c3 − 1 and β(G) ≥ c1 + 2c2 + 3c3 + 1. To maximize ν with an upper
bounded β we must have c2 = c3 = 0. Hence ν(G,A) ≤ β(G) − 2, giving another entry
in our table. This bound is achieved by the graph formed by replacing every other edge of
the cycle C2n with two edges in parallel. These graphs are the necklaces of [2].

Case (v). When G is non-simple and 1-edge-connected we have |A| ≥ c1 + c2 + c3 − 1.
This gives ν(G,A) ≤ β(G) as desired. The bound is achieved by duplicating every other
edge on a path with an even number of edges and contracting one of the two edges incident
with a vertex of degree two. Complete characterization of non-simple 1-edge-connected
graphs achieving this bound can be found in [13].

We have completed filling in the table and the proof of our theorem.

Recall that for a graphG embedded in the surface Sg , we have f −1 = β(G)−2g, and
hence ξ(G) = β(G)− 2γM (G). We use this formula to translate the upper bounds on ξ to
lower bounds on the maximum genus γM , giving the following second form of our main
result.

Theorem 2.2. Let G be a graph of minimum degree at least three. Then lower bounds
on the maximum γM (G) are given in following table. The rows correspond to edge-
connectivity k = 1, 2, 3, or ≥ 4. The same bounds hold where k is the vertex-connectivity
and are achieved by graphs of arbitrarily large Betti number.

k simple non-simple
1 (β(G) + 2)/4 (β(G) 6= 3) 0
2 (β(G) + 2)/3 (β(G) 6= 3, 5) 1
3 (β(G) + 2)/3 (β(G) 6= 3, 5) (β(G) + 2)/3 (β(G) 6= 3, 5)
≥ 4 (β(G)− 1)/2 (β(G)− 1)/2

�

We note that our table is slightly different than the one in [2] where, for example, they
give the lower bound dβ(G)/3e for the maximum genus of 2-edge-connected simple graphs
of minimum degree at least 3. Both bounds are tight. They are achieved only for graphs
with β(G) congruent to one modulo three, when the bounds are the same.

3 Edge-cuts
We now investigate the relationship between the deficiency of a graph and the deficiency of
components resulting from the removal of an arbitrary edge-cut. Our motivation is twofold.
First, the assumptions concerning arbitrary edge-cuts are much weaker than the connectiv-
ity requirements used in Section 2. Second, similar ideas were pursued by Jaeger, Payan,
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and Xuong [6] who proved that, under natural parity conditions, a graph that can be sep-
arated by an edge-cut into two upper-embeddable components is itself upper-embeddable.
Our aim is to generalize this result by replacing upper-embeddability with an arbitrary defi-
ciency. The resulting lower bound for deficiency suggests the following question: “What is
the minimum size of an edge-cut that can separate a non-upper-embeddable component in a
k-edge-connected graph for k ≥ 4?” Our final result, Theorem 3.4, answers this question.

As in the previous section, a crucial role is played by various types of components
depending on their Betti numbers. Let F be a fixed edge-cut of a connected graph G
with components G1 and G2. Let A be an arbitrary subset of edges of G. We distinguish
between two types of components of G − A: a pure component has its vertices entirely in
G1 or entirely in G2, while a mixed component is incident with vertices in both. Let d0
denote the number of mixed components of G− A with even Betti number. Let d1 denote
the number of pure components of G − A with even Betti number and with vertices from
G1. Define d2 similarly for pure components with vertices fromG2. Finally, let d3, d4, and
d5 denote the odd counterparts of d0, d1, and d2, respectively. Notice that pure components
contribute to d1, d2, d4, and d5 and mixed components contribute to d0 and d3.

With this notation, Theorem 1.1 implies the following:

ξ(G) ≥ ν(G,A) = ec(G−A) + 2oc(G−A)− |A| − 1

= d0 + d1 + d2 + 2d3 + 2d4 + 2d5 − |A| − 1. (3.1)

We now proceed to the main result of this section, Theorem 3.1. To show that the
bounds stated in it are tight we need one more ingredient, Xuong’s Theorem [15]: The
deficiency of a graph G equals the minimum number of components with odd number of
edges (which we call odd for short) in the subgraph G − E(T ), where the minimum is
taken over all spanning trees T of G.

Theorem 3.1. Let G be a connected graph and let F be an edge-cut such that G− F has
precisely two components G1 and G2. Then

ξ(G1) + ξ(G2)− |F |+ 1 ≤ ξ(G) ≤ ξ(G1) + ξ(G2) + 1,

both bounds being tight. Equivalently,

γM (G1) + γM (G2) + |F |/2− 1 ≤ γM (G) ≤ γM (G1) + γM (G2) + |F | − 1.

Proof. First we show that ξ(G) ≤ ξ(G1) + ξ(G2) + 1. Let A be some set of edges of G
maximal with respect to inclusion such that ξ(G) = ν(G,A). Set Ai = A ∩ E(Gi) for
i ∈ {1, 2} and note that

A− (A1 ∪A2) = A ∩ F. (3.2)

Our goal is to bound the values of ν(G1, A1) and ν(G2, A2). Pure components are also
components of either G1 − A1 or G2 − A2. Therefore, a pure component contributing to
d1 or d2 increases the value of ν(G1, A1) or ν(G2, A2) by precisely 1. Pure components
contributing to d4 or d5 increase the value of ν(G1, A1) or ν(G2, A2) by precisely 2.

IfD is a mixed component, thenD−F has at least one component contained inG1 and
at least one component contained in G2. Therefore D increases ν(G1, A1) + ν(G2, A2)
by at least 2. Note that if β(D) is even (that is, if D contributes to d0), then D increases
ν(G,A) only by one. It follows that

ec(G1, A1) + 2oc(G1, A1) + ec(G2, A2) + 2oc(G2, A2)

≥ 2d0 + d1 + d2 + 2d3 + 2d4 + 2d5. (3.3)
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Combining (3.1), (3.2), and (3.3) we get

ξ(G1) + ξ(G2) ≥ ν(G1, A1) + ν(G2, A2)

= ec(G1, A1) + 2oc(G1, A1)− |A1| − 1 +

ec(G2, A2) + 2oc(G2, A2)− |A2| − 1

≥ 2d0 + d1 + d2 + 2d3 + 2d4 + 2d5 − |A1| − |A2| − 2

= ec(G−A) + 2oc(G−A) + d0 − |A1| − |A2| − 2

= ec(G−A) + 2oc(G−A)− |A| − 1 + d0 + |A− (A1 ∪A2)| − 1

= ξ(G)− 1 + |F ∩A|+ d0 ≥ ξ(G)− 1.

This establishes the upper bound on ξ(G).
To prove the lower bound, for i ∈ {1, 2} let Ai denote a set of edges of Gi maximal

with respect to inclusion such that ν(Gi, Ai) = ξ(Gi). SetA = A1∪A2∪F and calculate:

ξ(G) ≥ ν(G,A) = ec(G−A) + 2oc(G−A)− |A| − 1

= ec(G1 −A1) + ec(G2 −A2) + 2oc(G1 −A1) +

2oc(G2 −A2)− |A1| − |A2| − |F | − 1

= ν(G1, A1) + ν(G2, A2)− |F |+ 1 = ξ(G1) + ξ(G2)− |F |+ 1.

This establishes the lower bound on ξ(G).
To see that both bounds are tight, take two copies of the dipole Dn, which has two

vertices and n parallel edges, and join the copies by two independent edges e and f . Let
G be the resulting graph. Using Xuong’s Theorem it is easy to verify that ξ(Dn) = 1 if
n is even, ξ(Dn) = 0 if n is odd, and that ξ(G) = 1. Let F = {e, f} and let G1 and G2

be the components of G − F . Then ξ(G) = ξ(G1) + ξ(G2) − |F | + 1 if n is even, and
ξ(G) = ξ(G1) + ξ(G2) + 1 if n is odd.

Theorem 3.1 and the fact that ξ(G) and β(G) have the same parity give a shorter proof
for the following result of Jaeger, Payan, and Xuong [6].

Corollary 3.2. Let G be a connected graph and let F be an edge-cut of G such that G−F
has precisely two components G1 and G2, both upper-embeddable. Then G is upper-
embeddable provided that both β(G1) and β(G2) are even, or precisely one of β(G1) and
β(G2) is even and β(G) is odd. �

In the final part of the proof of Theorem 3.1 we have shown that the lower bound on
ξ(G) is tight in the class of 2-edge-connected graphs. Our next example shows that the
lower bound is tight also in the class of 3-edge-connected graphs.

Example 3.3. We construct a rich infinite family of 3-edge-connected graphsG containing
an edge-cut F whose removal produces two components G1 and G2 such that ξ(G) =
ξ(G1) + ξ(G2) − |F | + 1. Recall that the truncation of a cubic graph H is a cubic graph
t(H) obtained by expanding every vertex of H into a triangle.

Let us start with connected cubic graphs H1 and H2 without loops, of order n1 and n2,
respectively, both greater than 2. Take their truncations G1 = t(H1) and G2 = t(H2), and
connectG1 toG2 by a set F = {f0, f1, f2} of three edges arbitrarily. LetG be the resulting
graph; it is easy to see that ifH1 andH2 are 3-edge-connected, so isG. Bouchet [1] proved
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that ξ(Gi) = ni/2 − 1 (see [14, Theorem 3.3] for a different proof). We now show that
ξ(G) = ξ(G1) + ξ(G2)− 2 = ξ(G1) + ξ(G2)− |F |+ 1 = (n1 + n2)/2− 4.

For i ∈ {1, 2} let Ai be the set of edges of Gi not lying in a triangle, and let A =
A1 ∪ F ∪ A2. Since |A| = 3 + 3(n1 + n2)/2 and G − A consists of n1 + n2 triangles,
Nebeský’s Theorem implies that ξ(G) ≥ ν(G,A) = 2(n1+n2)−3(n1+n2)/2−3−1 =
ξ(G1) + ξ(G2)− 2. To prove the reverse inequality, we take in each Hi a spanning tree Si

such that all components of Hi − E(Si) are paths; it is not difficult to see that this choice
is indeed possible [14, Theorem 3.1]. Extend Si to a spanning tree Ti of Gi by including in
Ti two edges from each triangle of Gi. This can be done in such a way that a component of
Hi−E(Si), which is a path of lengthm ≥ 0, becomes a path of length 2m+1 constituting
a component of Gi − E(Ti). A straightforward calculation reveals that there are ni/2− 1
such components inGi−E(Ti), all other components being isolated vertices. In particular,
Gi−E(Ti) has ni/2−1 = ξ(Gi) odd components. Form a spanning tree T ofG by adding
the edge f0 to T1 ∪ T2. Clearly, T is also a spanning tree of G′ = G − {f1, f2} and the
corresponding cotree has (n1 + n2)/2 − 2 = ξ(G1) + ξ(G2) = ξ(G′) odd components.
We now add f1 and f2 to G′ one by one and modify T , if necessary, each time absorbing
one odd component.

Pick f1 and note that each of its end-vertices belongs to a component P1 ofG1−E(T1)
or a component P2 of G2−E(T2). Clearly, P1 ∪{f1}∪P2 is a component of (G′+ f1)−
E(T ). If P1 and P2 have different parity, then P1 ∪ {f1} ∪ P2 is even, implying that the
cotree (G′ + f1)− E(T ) has ξ(G1) + ξ(G2)− 1 odd components. If both P1 and P2 are
odd, then P1∪{f1}∪P2 is an odd component of (G′+f1)−E(T ) and therefore the cotree
(G′ + f1)−E(T ) has ξ(G1) + ξ(G2)− 2+ 1 odd components. It remains to consider the
case where P1 and P2 are both even. Let v be the end-vertex of f1 in G1, and let K be the
triangle of G1 containing v. The construction of T1 implies that P1 coincides with v and
that both edges of K incident with v belong to T1; take one of them, say k. The third edge
ofK, denoted by q, belongs toG1−E(T1), and the component P ofG1−E(T1) containing
it is an odd path. Note that P − q consists of two even paths, possibly trivial. It follows that
T ′ = T +k−q is a spanning tree ofG′+f1 such that the component of (G′+f1)−E(T ′)
containing f1 is no more odd. Hence, the cotree (G′+f1)−E(T ′) has ξ(G1)+ ξ(G2)−1
odd components, which in turn implies that ξ(G′ + f1) ≤ ξ(G1) + ξ(G2)− 1.

To finish the proof that ξ(G) ≤ ξ(G1) + ξ(G2)− 2 we add f2 to G′ + f1 and proceed
similarly, except that we modify T2 instead of T1. �

We next turn our attention to 4-edge-connected graphs. Our next result exhibits a dra-
matic change in the behavior with regard to the smallest size of an edge-cut that can separate
a component with large deficiency: the size of an edge-cut that separates a component with
deficiency m must be at least linear in m.

A leaf of a graph is a 2-edge-connected subgraph maximal with respect to inclusion.
For a graph H , let ol(H) denote number of leaves of H with odd Betti number. The
following equivalent version of Nebeský’s theorem holds for every connected graph G
(see [9]):

ξ(G) = max{ol(G−A)− |A| : A ⊆ E(G)}. (3.4)

Theorem 3.4. Let G be a k-edge-connected graph with k ≥ 4 and let F be an edge-cut of
G whose removal produces a component with deficiency at least m. Then

|F | ≥ (k − 2)m+ 2.
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Proof. Let H be a component of G − F with ξ(H) ≥ m. Each edge of F has at most
one end in H . Choose a subset A ⊆ E(H) such that ξ(H) = ol(H − A) − |A| and let
l = ol(H − A). As G is k-edge-connected, every leaf from H − A must be incident with
at least k edges in G. These edges can be only from F , from A, or they can be bridges of
H −A. There are l − 1 bridges in H −A. It follows that

kl ≤ |F |+ 2(l − 1) + 2|A|. (3.5)

By substituting l − ξ(H) for |A| in (3.5) and manipulating the resulting expression we
derive

|F | ≥ 2ξ(H) + l(k − 4) + 2.

For k = 4 we get

|F | ≥ 2ξ(H) + 2 = (k − 2)ξ(H) + 2 ≥ (k − 2)m+ 2,

as required. If k ≥ 5, then k − 4 ≥ 1, and using the fact that l ≥ ξ(H) we obtain

|F | ≥ 2ξ(H) + l(k − 4) + 2 ≥ 2ξ(H) + ξ(H)(k − 4) + 2

≥ (k − 2)ξ(H) + 2 ≥ (k − 2)m+ 2.

This again gives the required inequality.

The following corollary follows directly from Theorem 3.4.

Corollary 3.5. If G is a k-edge-connected graph with k ≥ 4 and F is an edge cut of G
such that a component of G− F is not upper-embeddable, then |F | ≥ 2k − 2. �

Let G be a 4-edge-connected graph and let F be an edge-cut separating it into com-
ponents G1 and G2. Assuming that m = ξ(G1) ≥ ξ(G2), Theorem 3.4 implies that
|F | ≥ (k − 2)m + 2 ≥ 2m + 2. Therefore, ξ(G1) + ξ(G2) − |F | + 1 is always negative
and the lower bound in Theorem 3.1 cannot be achieved for 4-edge-connected graphs.
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[4] J. Chen, S. P. Kanchi and J. L. Gross, A tight lower bound on the maximum genus of a simplicial
graph, Discrete Math. 156 (1996), 83–102.

[5] Y. Huang, The maximum genus on a 3-vertex-connected graph. Graphs Combin. 16 (2000), 159–
164.

[6] F. Jaeger, C. Payan and N. H. Xuong, A class of upper-embeddable graphs. J. Graph Theory 3
(1979), 387–391.

[7] S. P. Kanchi and J. Chen, A tight lower bound on the maximum genus of a 2-connected simplicial
graph, manuscript (1992).

[8] S. P. Kanchi and J. Chen, Simplicializing a 3-connected graph: on lower bounds for maximum
genus, manuscript (1992).

[9] N. P. Khomenko and A. D. Glukhov, Single-component 2-cell embeddings and maximum genus
of a graph, in: Some topological and combinatorial properties of graphs, Inst. Mat. Akad. Nauk
Ukrain. SSR, Kiev, 1980, 5–23. (in Russian)

[10] S. Kundu, Bounds on number of disjoint spanning trees, J. Combin. Theory Ser. B 17 (1974),
199–203.

[11] D. Li and Y. Liu, A tight lower bound on the maximum genus of a 3-connected loopless multi-
graph, Appl. Math. J. Chinese Univ. Ser. B 15 (2000), 369–376.
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