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Abstract

For a simple graph G on n vertices, the signless Laplacian Estrada index is defined as
SLEE(G) =

∑n
i=1 e

qi , where q1, q2, . . . , qn are the eigenvalues of the signless Laplacian
matrix of G. In this paper, the unique graph on n vertices with maximum signless Lapla-
cian Estrada index is determined among graphs with given number of cut edges, pendent
vertices, (vertex) connectivity and edge connectivity, respectively.

Keywords: Signless Laplacian Estrada index, semi-edge walk, cut edge, vertex connectivity, edge
connectivity.
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1 Introduction
Throughout this paper, each graph, say G, is simple with its vertex and edge sets V (G) and
E(G), respectively. If |V (G)| = n, then G is considered as an n-vertex graph. Let u and v
be two vertices of G. We say that u is a neighbor of v, if they are joined together in G. The
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number of neighbors of v in G is called the degree of v, and denoted by dG(v). The vertex
v of G is referred to as a pendent vertex if it has only one neighbor (i.e. dG(v) = 1). A cut
edge of a (connected) graph G is an edge whose deletion disconnects G. The vertex (resp.
edge) connectivity of G is the minimum number of vertices (resp. edges) which need to be
removed to disconnect G or convert it to a single vertex.

Let A(G) be the adjacency matrix of G and D(G) = [dij ]n×n be the diagonal matrix,
where the element dij is equal to dG(vi) if i = j, and 0 otherwise. The Laplacian matrix
and signless Laplacian matrix of G are denoted by L(G) and Q(G), respectively, where
L(G) = D(G)−A(G) and Q(G) = D(G)+A(G) (see [7,22]). We represent the eigen-
values of A(G), L(G) and Q(G) by λ1, λ2, . . . , λn; µ1, µ2, . . . , µn; and q1, q2, . . . , qn,
respectively.

Estrada [11,12], for the first time, defined a graph-spectrum-based invariant and named
it Estrada index, which is as follows:

EE(G) =

n∑
i=1

eλi .

Fath-Tabar et al. [13] proposed the Laplacian Estrada index (after here LEE), in full
analogy with Estrada index as

LEE(G) =

n∑
i=1

eµi .

Estrada and Laplacian Estrada indices have been studied in a large variety of problems. In
the mathematical literature, there are two types of problems in almost all papers researching
on such indices: finding bounds for the index (e.g. [1, 4, 16, 20, 24]), and determining
extremal graphs with respect to the index (e.g. [10, 21, 23, 25]).

Ayyaswamy et al. [2] defined the signless Laplacian Estrada index (SLEE) as

SLEE(G) =

n∑
i=1

eqi .

They also established lower and upper bounds for SLEE in terms of the number of vertices
and edges. They showed that for any graph G on n vertices and m edges,√

n+ 4m+ n (n− 1) e
4m
n ≤ SLEE(G) ≤ n− 1 + e

√
(n2−n+2m)m

with equality on both sides if and only if G is empty. In the same sense, Binthiya et al. [5]
established upper bound for SLEE in terms of the vertex connectivity of graph and the
specific corresponding extremal graph. They find that [5, Theorem 3.1.] for each (n,m)-
graph G with vertex connectivity κ,

SLEE(G) ≤ κ en−2 + (n− κ− 2) en−3 + e2n+κ−4.

It is well-known that the Laplacian and signless Laplacian spectra of bipartite graphs
coincide (see [14,15]). Thus, for a bipartite graphG, SLEE(G) = LEE(G). Chemically,
since the vast majority of molecular graphs are bipartite, we can use the provided statements
in SLEE for LEE, and vice versa. However, the interesting case occurs when SLEE
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and LEE differ, namely, in fullerenes, fluoranthenes and other non-alternant conjugated
species [3, 9, 17–19].

Moreover, Cvetković et al. [8] gathered many reasons about advantage of studying Q-
spectra. They found that the signless Laplacian spectra perform better in comparison to
spectra of other commonly used graph matrices, say the Laplacian, or the Seidel matrix.
Also, they expressed that among generalized adjacency matrices, i.e. matrices which are
a linear combination of A(G), J (the all-ones matrix) and I (the identity matrix) with a
non-zero coefficient for A(G), the signless Laplacian seems to be the most convenient for
use in studying graph properties.

The goal of this paper is to find the unique extremal graph with maximum SLEE
among all n-vertex graphs with given number of cut edges, pendent vertices, (vertex) con-
nectivity, or edge connectivity.

Our main results are the following two theorems:

Theorem 1.1. Let 0 ≤ p < n, and Gn,p be the graph obtained by attaching p pendent
vertices to one vertex of complete graph Kn−p (see Figure 1). Then, up to isomorphism,
we have:

1. Among the set of all n-vertex graphs having p cut edges, Gn,p is the unique graph
with maximum SLEE.

2. Among the set of all n-vertex graphs having p pendent vertices, Gn,p is the unique
graph with maximum SLEE.

Kn−p

··· p

Gn,p
(General form)

K3

G7,4

(n = 7, p = 4)

K5

G11,6

(n = 11, p = 6)

Kr

Kp Kq

K(p,q)r

(General form)

K2K2

K1

K(2,2)1

(p = q = 2, r = 1)

K2

K3K1

K(1,3)2

(p = 1, q = 3, r = 2)

Figure 1: An illustration of the general forms of Gn,p and K(p,q)r, with some examples.

Theorem 1.2. Let p, q and r be three non-negative integers, and let K(p,q)r be the graph
obtained from three vertex-disjoint complete graphs Kp, Kq and Kr, by attaching any
vertex of Kr to all vertices of both Kp and Kq (see Figure 1). Then, up to isomorphism,
we have:
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1. Among the set of all n-vertex graphs with vertex connectivity κ, where 0 ≤ κ ≤ n−1,
K(n−1−κ,1)κ is the unique graph with maximum SLEE.

2. Among the set of all n-vertex graphs with edge connectivity κ′, where 0 ≤ κ′ ≤ n−1,
K(n−1−κ′,1)κ′ is the unique graph with maximum SLEE.

2 Preliminaries and lemmas
Before proving our main theorems, we shall provide some fundamental definitions and
propositions. In this section, we first declare some basic and useful notations, definitions
and a proved theorem; afterward, we propose three effective lemmas to prove Theorems
1.1 and 1.2.

Denote by Tk(G) the k-th signless Laplacian spectral moment of the graph G, i.e.,
Tk(G) =

∑n
i=1 q

k
i . By applying the Taylor expansion to the function ex, we have:

SLEE(G) =
∑
k≥0

Tk(G)

k!
. (2.1)

Moreover, by the following definition and theorem, we can easily compare the SLEE’s of
some graphs.

Definition 2.1. [8] A semi-edge walk of length k in a graph G is an alternating sequence
W = v1e1v2e2 · · · vkekvk+1 of vertices v1, v2, . . . , vk, vk+1 and edges e1, e2, . . . , ek such
that the vertices vi and vi+1 are end-vertices (not necessarily distinct) of the edge ei, for
any i = 1, 2, . . . , k. If v1 = vk+1, then W is said to be a closed semi-edge walk.

Theorem 2.2. [8] The signless Laplacian spectral moment Tk is equal to the number of
closed semi-edge walks of length k.

Let G and G′ be two graphs, and x, y ∈ V (G), and x′, y′ ∈ V (G′). Denoting
by SWk(G;x, y), the set of all semi-edge walks of length k in G, each of which starts
at vertex x and ends at vertex y. Note that |SWk(G;x, y)| = |SWk(G; y, x)| for any
x, y ∈ V (G). For convenience, we may denote SWk(G;x, x) by SWk(G;x). The nota-
tion SWk(G) will be used as the set of all closed semi-edge walks of length k in G, i.e.
SWk(G) =

⋃
x∈V (G) SWk(G;x). We will use the notation (G;x, y) �s (G′;x′, y′) when

for any k ≥ 0, |SWk(G;x, y)| ≤ |SWk(G
′;x′, y′)|. Moreover, if (G;x, y) �s (G′;x′, y′),

and there exists some k0 where |SWk0
(G;x, y)| < |SWk0

(G′;x′, y′)|, then we will write
(G;x, y) ≺s (G′;x′, y′). We abbreviate (G;x, x) �s (G′;x′, x′) as (G;x) �s (G′;x′),
and (G;x, x) ≺s (G′;x′, x′) as (G;x) ≺s (G′;x′).

Indeed, by using the above notations, we can restate the Theorem 2.2 as:

Tk(G) = |SWk(G;x)| = |
⋃

x∈V (G)

SWk(G;x)| =
∑

x∈V (G)

|SWk(G;x)|. (2.2)

Let G be a graph and E be a set of edges. If E ⊆ E(G), then we write G − E for
the graph obtained from G by removing all of its edges in E. Also, if E ⊆ E(G), then
we denote by G + E the graph obtained from G by adding all of edges in E to the graph.
For convenience, we set G + e for G + {e}. The next result immediately follows from
equations (2.1) and (2.2).
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Lemma 2.3. Let G be a graph. If e is an edge such that e 6∈ E(G), then SLEE(G) <
SLEE(G+ e).

Under the terms of the following lemma, we may call the vertices w1, . . . , wr as trans-
ferred neighbors, and the graph G as transfer route graph. Also, we may say that Gu is
obtained from Gv by transferring some neighbors of v to the set of neighbors of u.

Lemma 2.4. Let G be a graph and v, u, w1, w2, . . . , wr ∈ V (G). Suppose that Ev =
{e1 = vw1, . . . , er = vwr} and Eu = {e1 = uw1, . . . , er = uwr} are subsets of edges,
that are not in G (i.e. ei, ei 6∈ E(G), for i = 1, 2, . . . , r). Let Gu ∼= G + Eu and
Gv ∼= G+ Ev . If (G; v) ≺s (G;u), and (G;wi, v) �s (G;wi, u) for each i = 1, 2, . . . , r,
then SLEE(Gv) < SLEE(Gu), where Gu and Gv are shown in Figure 2.

v

u
w1

w2

wr

Gv

v

u
w1

w2

wr

Gu

Figure 2: An illustration of the graphs Gv and Gu in Lemma 2.4.

Proof. Since (G; v) ≺s (G;u), there exists an injection

fk : SWk(G; v)→ SWk(G;u)

for each k ≥ 0. Similarly, (G;wi, v) �s (G;wi, u) implies that there exist following
injections for each i = 1, 2, . . . , r, and k ≥ 0:

f ik : SWk(G;wi, v)→ SWk(G;wi, u)

gik : SWk(G; v, wi)→ SWk(G;u,wi)

For any W ∈ SWk(G;x, y) where x, y ∈ {v, w1, . . . , wr}, let W be as follows:

1) If k = 0 and W = wt, where t ∈ {1, . . . , r}, then W =W .

2) If W ∈ SWk(G; v), then W = fk(W ).

3) If W ∈ SWk(G;wt, v), then W = f tk(W ).

4) If W ∈ SWk(G; v, wt), then W = gtk(W ).

5) If W ∈ SWk(G;wt, wj), where t, j ∈ {1, . . . , r}, then W =W .
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To prove the statement, it is enough to show that Tk(Gv) ≤ Tk(Gu), and there exists
k0 such that inequality is strict.

If W ∈ SWk(Gv), then W can be decomposed uniquely to s + 1 sections as W =
W1ej1W2ej2W3 · · ·WsejsWs+1, where ej1 , . . . , ejs ∈ Ev , and for each i ∈ {2, 3, . . . , s},
there are xi, yi ∈ {v, w1, . . . , wr} such that Wi ∈ SWki

(G;xi, yi). Moreover, since
W is closed, for some x′, y′ ∈ {v, w1, . . . , wr}, W ′ = Ws+1W1 ∈ SWk′(G;x

′, y′)

where k′ = k1 + ks+1. Therefore, we can uniquely decompose W ′ to W s+1W 1, where
W s+1 is a semi-edge walk of length ks+1 in G, starting at x and ending at z, and W 1 is a
semi-edge walk of length k1 in G, starting at z and ending at y, for some z ∈ V (G) and
x, y ∈ {u,w1, . . . , wr}.

Now, one can show that the map hk : SWk(Gv)→ SWk(Gu) defined by the rule

hk(W ) = hk(W1ej1W2ej2W3 · · ·WsejsWs+1)

=W 1ej1W 2ej2W 3 · · ·W sejsW s+1

is injective, for each k ≥ 0. Thus, Tk(Gv) ≤ Tk(Gu), for any k ≥ 0.
Moreover, for some k0, fk0 is not surjective, and |SWk0

(G, v)| < |SWk0
(G, u)|, i.e.

Tk0(Gv) < Tk0(Gu). Hence SLEE(Gv) < SLEE(Gu).

The following lemma enables us to provide the necessary conditions in Lemma 2.4,
and to use it to compare SLEE’s of some particular graphs.

Lemma 2.5. Let G be a graph and u, v ∈ V (G). If v is a pendent vertex attached to
u, then (G; v) �s (G;u), with equality if and only if dG(u) = dG(v) = 1. Moreover,
(G;w, v) �s (G;w, u) for each w ∈ V (G) \ {v}.

Proof. The case k = 0 is trivial. Let k > 1 and W = veW ′ev ∈ SWk(G; v), where W ′ is
a semi-edge walk of length k − 2 in G. We may construct an injection fk : SWk(G; v)→
SWk(G;u), by the rule fk(W ) = ueW ′eu. Thus |SWk(G; v)| ≤ |SWk(G;u)|, for any
k ≥ 2. Moreover, if dG(u) > 1, then we have |SW1(G; v)| = dG(v) = 1 < dG(u) =
|SW1(G;u)|. Recall that if dG(u) = 1, then G has an automorphism, interchanges u and
v and fixes the other vertices.

In a similar way, by changing the end of each member of SWk(G;w, v) from v to u,
we find that (G;w, v) �s (G;w, u) for each w ∈ V (G) \ {v}. Note that for k = 0,
|SW0(G; v, v)| = 1 > 0 = |SW0(G; v, u)|.

3 The proof of Theorem 1.1
At the end of this section, we prove our first main theorem which determines the unique
extremal graph with maximum SLEE among the set of all n-vertex graphs with given
number of cut edges or pendent vertices. However, we should bring forth another lemma
to this purpose.
Let us denote by G(n, p), the set of all graphs obtained by attaching p pendent vertices to
some vertices of a complete graph Kn−p , for 0 ≤ p < n.

Lemma 3.1. Suppose that 1 ≤ p ≤ n − 3, and G ∈ G(n, p). If u and v are two distinct
non-pendent vertices of G, such that dG(v) = n− p− 1 < dG(u), then (G; v) ≺s (G;u).
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Proof. Obviously, u has at least one pendent neighbor and each neighbor of v is u itself or
one of its neighbors. Thus, for each k > 1, the map fk : SWk(G; v)→ SWk(G;u) defined
by the rule fk(ve1Wekv) = ue′1We′ku is well-defined and injective, where ei = vwi
and e′i = uwi, for some neighbors wi of v and i ∈ {1, k}. Therefore, |SWk(G; v)| ≤
|SWk(G;u)|, for any k > 1. Moreover, |SW1(G; v)| = dG(v) = n − p − 1 < dG(u) =
|SW1(G;u)| implies (G; v) ≺s (G;u).

Proof of Theorem 1.1. To prove the first part, let G be an extremal n-vertex graph with
maximum SLEE, having p cut edges. We shall show that G ∼= Gn,p.

If p = 0, then by Lemma 2.3, G ∼= Kn
∼= Gn,0. Moreover, if n = 1 or 2, then

p = n− 1, and G ∼= Kn
∼= Gn,n−1. Therefore, suppose that n ≥ 3 and p ≥ 1.

If E is the set of all cut edges in G, then by Lemma 2.3, all of p+ 1 connected compo-
nents ofG−E are complete. Suppose that there exists one edge e ofE, attaching vertices u
and v in G, where dG(u), dG(v) ≥ 2. Let G′ be the graph obtained from G by transferring
all neighbors of v except u to the set of neighbors of u, and H be the transfer route graph.
By Lemma 2.5, (H; v) ≺s (H;u). Thus, Lemma 2.4 results in SLEE(G) < SLEE(G′).
This is a contradiction, because both graphs G and G′ have the same number of cut edges.
Therefore, each cut edge incidents to a pendent vertex.

Let Vp be a set of vertices of G, each of which is a pendent vertex of a cut edge such
that there is no cut edge with both ends in Vp. By Lemma 2.3, G− Vp is a complete graph
on n− p vertices. Thus G is a graph obtained from Kn−p, by attaching p pendent vertices
to some vertices of Kn−p, which means G ∈ G(n, p).

If G 6∼= Gn,p, then there are at least two non-pendent vertices, say u and v, such that
each of them has at least one pendent neighbor. Now, by Lemmas 2.4 and 3.1 and transfer-
ring pendent neighbors of v to the set of neighbors of u, we may get a graph with higher
SLEE than G in G(n, p), which is a contradiction again. Therefore, G ∼= Gn,p.

Now, to prove the second part, suppose that G is an extremal n-vertex graph with
maximum SLEE, having p pendent vertices. If H is the graph obtained from G, by
removing all of its p pendent vertices, then by Lemma 2.3, H is a complete graph on n− p
vertices. Thus G ∈ G(n, p). Finally, the proof of this part is accomplished by using the
same argument mentioned in the above paragraph.

4 The proof of Theorem 1.2
In this section, we are going to prove Theorem 1.2, which determines the unique extremal
graph with maximum SLEE among the set of all n-vertex graphs with given (vertex)
connectivity or edge connectivity.

We start with the following lemma:

Lemma 4.1. If 2 ≤ q ≤ p, and r ≥ 0, then

SLEE(K(p,q)r) < SLEE(K(p+q−1,1)r).

Proof. Suppose that V (Kp) = {x1, x2, . . . , xp}, and V (Kq) = {y1, y2, . . . , yq}, and
V (Kr) = {z1, z2, . . . , zr}. Let G be the graph obtained from K(p,q)r by transferring
neighbors y2, . . . , yq of y1 to the set of neighbors of x1, and H be the transfer route graph.

If r = 0, then obviously (H; y1) ≺s (H;x1). If r > 0, then, since any neighbor of y1
in H is a neighbor of x1, by a similar method used in the proof of Lemma 3.1, we can also
show that (H; y1) ≺s (H;x1) and (H; yi, y1) �s (H; yi, x1), for each i ∈ {2, . . . , q}.
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Therefore, Lemma 2.4 implies SLEE(K(p,q)r) < SLEE(G). Note that, since p ≥ 2, G
is a proper subgraph of K(p+q−1,1)r. Thus, by Lemma 2.3,

SLEE(K(p,q)r) < SLEE(G) < SLEE(K(p+q−1,1)r).

Proof of Theorem 1.2. Note that the case κ = n − 1 is trivial, because K(0,1)κ
∼= Kn is

(up to isomorphism) the unique graph with vertex connectivity n− 1.
Let G be an extremal graph with maximum SLEE, among n-vertex graphs with con-

nectivity κ. Suppose that S is a subset of V (G), whereG−S is disconnected, and |S| = κ.
By Lemma 2.3, there exist integers p and q, such that 1 ≤ q ≤ p, p + q = n − κ, and
G− S is the union of two complete components Kq and Kp. Again, by Lemma 2.3, each
vertex in S is attached to another one and also to vertices of both Kq and Kp. It means
that G ∼= K(p,q)κ. If q ≥ 2, then Lemma 4.1 implies SLEE(G) < SLEE(K(p+q−1,1)κ),
which is a contradiction. Hence, q = 1, and therefore G ∼= K(n−1−κ,1)κ. This proves the
first part of the theorem.

To prove the second part, we note that if G is a graph with vertex and edge connectivity
κ and κ′, respectively, then κ ≤ κ′ (see [6]). If κ = κ′, then by previous part of the
proof we have SLEE(G) ≤ SLEE(K(n−1−κ′,1)κ′), and equality holds if and only if
G ∼= K(n−1−κ′,1)κ′ . Moreover, if κ < κ′ then K(n−1−κ,1)κ is a proper subgraph of
K(n−1−κ′,1)κ′ . In this case, Lemma 2.3 and the above arguments show that

SLEE(G) ≤ SLEE(K(n−1−κ,1)κ) < SLEE(K(n−1−κ′,1)κ′).

This completes the proof.
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