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Abstract. An image segmentation algorithm quality assessment is usually visual, subjective and

based on non-standard measures. Non-transparencies among assessment results present a problem in

objective evaluation of segmentation algorithms accuracy. This paper introduces an image processing

assessment tool (IPA-tool) for objective assessment with standard accuracy measures and reference
annotations. These annotations are considered as a ground truth. It is difficult to get the ground

truth of real-world images in practice. The IPA-tool, therefore, supports also a mean observer

mechanism which creates the ground truth from several annotations. This paper proposes an

assessment chain, mean observer mechanism and supported assessment measures inside the IPA-tool.
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Objektivno ocenjevanje slikovnih segmentacijskih

algoritmov

Povzetek. Ocenjevanje segmentacijski postopkov je
pogosto izvedeno vizualno, subjektivno, z nestandardnimi
in tezko primerljivimi merami. Tak$na neskladnost med
ocenami pa je perec problem, ko zelim lasten postopek do-
bro oceniti in ga primerjati z Zze obstoje¢imi segmentaci-
jskimi postopki.

V delu je predstavljeno orodje IPA, ki je namen-
jeno za objektivno ocenjevanje segmentacijskih postop-
kov in je podprto s standardnimi merami za ocen-
jevanje natancnosti. Ocenitev temelji na primerjavi
racunalniskih oznacb z referen¢nimi. Slednje natancno
opisujejo segmentacijska obmocja, kar pa je v praksi
tezko zagotoviti. Zato orodje IPA podpira mehanizem za
izraCun povprecnega ocenjevalca iz mnozice referenc¢nih
oznacb. V delu so predstavljeni ocenjevalna veriga, meha-
nizem za ocenjevanje povprecnega ocenjevalca in podprte
mere za ocenjevanje natancnosti segmentacijskih postop-
kov z orodjem IPA.

Kluéne besede: obdelava slik, nepristrano ocenjevanje,
povprecni ocenjevalec

1 Introduction

Segmentation algorithms split an image into regions.
These are either a) analyzer additional information or
b) inputs into simulation environments. In both cases
high accuracy is required. Unfortunately, authors
of segmentation algorithms usually use custom-made
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measures or visual estimation. Visual assessment
does not consider intra- and inter-expert variability,
while custom-made measures are non-transparent.
An additional problem is deficiency of objective as-
sessment methods [10]. Therefore, authors frequently
expose the need for measures and tools for evalu-
ation/comparison of segmentation algorithms [12].
The segmentation accuracy assessment depends on
the ground truth availability [2]. If the ground
truth is known, only assessment measures are cal-
culated. However, situations of missing the ground
truth are permanent in real systems (e.g. medical im-
ages) where a) the exact regions positions are non-
detectable due to noise/artefacts and b) optimum-
quality acquisition is impossible [3]. In such situa-
tions the ground truth is usually constructed from
several reference annotations. The major drawback
are high variations in annotations or inter-experts
variability which can be up to 15% [8]. Unfortu-
nately, such assessment approach is inevitable in a)
where fiducial markers can not be placed in known
areas or b) if it is difficult to generate synthetic im-
ages that capture the complexity and deformability of
original images. The proposed IPA-tool implements
the ground truth mechanism based on several refe-
rence annotations.

This paper introduces a robust and reliable ac-
curacy assessment of segmentation algorithms, novel
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mean observer mechanism and supported measures
implemented in the TPA-tool. In comparison with
available assessment tools, which mostly do not sup-
port mean observer mechanisms, our tool evaluates
segmentation algorithm with respect to several refe-
rence annotations.

The paper is organized as follows: Section 2 brings
a short overview of the related works. Section 3 in-
troduces the proposed assessment protocol. Sections
4 and 5 present a mean observer mechanism and as-
sessment, measures, respectively. Section 6 evaluates
the segmentation algorithm, while Section 7 draws
conclusions.

2 Related work

Objective  segmentation accuracy  assessment
methodologies came in sight at the beginning of
1980s [16]. Since then, several quality assessments
measures have been proposed which are classified
either as or empirical methods [17]. The focus
of the formers is on the segmentation algorithms
working (e.g.  expressions like good detection,
good localization in [19]). The latter use disparity
between the segmentation results and the ground
truth. Several volume spatial overlap measures have
been introduced in [11, 14]. The hausdorff distance
and its derivatives [20] represent measures of a
spatial distance between two sets of points. These
measures are denoted as surface or contour-based
measures. Recently, a hybrid measure of the boun-
dary measurements and spatial overlap has been
introduced in [13]. Generally, all these measures are
spatial disparity measures between the segmented
and the reference objects. Regions/bodies are here
denoted as objects while voxels/pixels as points. It
should be noted that some measures do not contain
relevant information and cannot give a satisfactory
assessment of segmentation quality [15]. It is also
important to know the expected/desired quality of
the segmentation algorithm.

The measures proposed in [4] are useful if ground
truth segmentation results are available, while [5]
evaluates segmentation methods quantitatively, if
ground truth segmentation results are unavailable.
Representative assessment of the image segmenta-
tion accuracy and expert quality are in [1], where
reference annotations are calculated from a group of
expert segmentations.

Various alternative methods, especially in
medicine, have been sought to allow for a statistical
assessment [21]. A useful method is to construct
phantoms, either physically or digitally [22]. Never-
theless, sophisticated phantoms and image synthetic
models may frequently not yield images with a full

range of characteristics such as intensity inhomoge-
neous, noise, partial volume artefacts, and pathologic
anatomic variability. Therefore, it is reasonable to
evaluate the segmentation accuracy comparing
computer segmented annotations (detected) and
experts annotations.

3 Assessment Protocol

The segmentation accuracy assessment is a degree for
a measurement correctness [18]. The object accuracy
assessment is defined as a difference between the com-
puted values and the ground truth. The proposed
protocol is based on the ground truth and disparity
measures calculation. The protocol is based on a lan-
guage of set theory and supports a) plane (surface)
assessment when volume information is unavailable
and b) volume assessment when volume information
is available. The protocol chain consists of two pro-
cesses: a) mean observer creation and b) disparity
measures calculation.

3.1 Mean observer

The mean observer is an approximation for the
ground truth in our assessment protocol, calculated
from a set of annotations.

Let I be an image, p a point (z,y) in image I, S)
a set of points p (Sp = {z,y};z,y € R), A = (S, 1)
an annotation, and S, a set of annotations in image
I. The ground truth function signature is prescribed
as g¢. The function implementation is not considered
from the assessment protocol point of view. The re-
sult of g; is the ground truth which is treated as a
plane mean expert E,:

Ep, = g4(Sa);

Plane expert prescription can be used only for 2D
images. If volume information is available, it is better
to make a volume assessment. A volume expert is
structured as a body or as a partial body. The partial
body is a cross-section through an object composed
into the 3D-world with the width equal to the slice
thickness.

Let v be a voxel (z,y,z), P a patch defined by
three non-collinear voxels and bounded by straight
lines between them, and P, a set of patches or sur-
faces. The volume annotation is defined as A, =
(P,,I). Body volume expert E, structure is a set of
volume annotations. Additional information is nec-
essary only for the partial body definition. Let S,
be a set of experts annotations and D, volume data.
The volume data includes the volume position for
each annotation. Partial body volume mean expert
signature g,; is defined as:

E, €S, (1)
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Ev = gvi(EpyDv)- (2)

The output of ground truth calculation is the vo-
lume mean expert. This expert can be considered as
a ground truth for the volume and for plane segmen-
tation results.

3.2 Measure calculation

The volume or plane disparity measures are calcu-
lated between the ground truth and the segmented
annotations. Specialty is a partial body assessment
where disparity measures are calculated for each
cross-section individually. The result is thus pre-
sented as a list of plane disparity measures.

4 TPA-tool mean-observer mechanism

Reliable and quality evaluation of the segmentation
algorithm accuracy is a challenging task. To assure
an objective assessment, it is necessary to known the
ground truth.

The IPA-tool implements the ground truth calcu-
lation method named BigSmall regions (BS-method).
The method follows the idea from [1] and is based on
the set of expert annotations. It is suited for both
the convex and the concave regions (objects).

4.1 BigSmall regions (BS-method)

The problem of ground-truth calculation is formu-
lated as searching of the mean or average among
all the experts objects (annotations). The compu-
tational framework for the two-dimensional regions
is outlined in the sequel, while extension to the
three-dimensional volumes is relatively straightfor-
ward. Firstly, the mean observer between two ma-
nual annotations is described and then followed by
an extension to an arbitrary number of annotations.

Let A and B be two intersecting regions. The
BS-method uses the hypothesis that the mean point
between regions lies in the middle of the straight line
connecting two nearest regions’ points, where the first
point belongs to the contour of region A and the se-
cond to the contour of region B.
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Figure 1. BigSmall region creation.
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The algorithm of ground truth calculation be-
tween two experts annotations consists of six steps
(see Figure 1):

1. Let Br and Sg denote a big and small region,
respectively. The big region is a union of regions
A and B, while the small region is an intersection
between both regions (Figure 1 (a) and (b)):

Br=AUB,Sgp=ANB

2. Select an arbitrary starting point F' on the con-
tour of the big region By (Figure 1 (c)).

3. Find the nearest point E on the small region
contour. Use the Euclidian distance (Figure 1

(d))-

4. Calculate a mean point Py, .., between points F
and E (Figure 1 (e)).

5. If Pyean is not a neighbouring point of the previ-
ous mean point Ppean—old, then connect points
Prcan and Ppean—oiq With a straight line (see
Figure 1 (f) and (g)). The contour continuity is
preserved in this way.

6. Select the next point on the big region boundary.

7. Repeat steps from (3) to (6) until all points on
the big region boundary are processed (see Fi-
gure 1 (h)).

The following lines formalize the BS-method de-
scribed above:

1. B. = contour(Bg), S, = contour(Sgr), E, = {}
2. Vs € B,
3. E, = B, U {2},

ming |s—t|ls A t€S.

where E, is the ground truth between two experts.
The function contour returns the boundary of the
input region. Extension to the arbitrary number of
experts is relatively straightforward. The new mean-
observer mechanism with this extension is defined as:

1. Let E,; denotes E, calculated between two ar-
bitrary experts, i = 0.

2. Let Br and Sk denote big and small regions
between E,; and unapplied expert annotation A.

3. B, = contour(Bg),S. = contour(Sg)
E. = contour(Ey;), A, = contour(A), Epit1 =

{}

4. Vs € B, ming|ls—tlls A t€S.

5.8, =4{s} AN t;={t}
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6. Epiy1 = By U {8ty

sitti} =41
7. Steps (2) to (6) are repeated until all experts are
taken in the ground truth calculation.

Major BS-method benefits are: a) low time com-
plexity, b) low global sensitivity to the outliers be-
cause the neighbour pixels compensate outliers posi-
tions, and c¢) designed for both the convex and the
concave regions. On the other hand, local sensitivity
is relatively high. Thus, an averaging filter could be
used for reduction of such variations. The question
is whether local sensitivity controlling has any sense.
Nonetheless, there is no need for annotations to diffe-
rentiate evidently between experts.

The presented mean-observer mechanism is fast,
reliable and treats each expert annotations with
equal probability.

5 IPA tool-supported measures

The proposed IPA tool supports empirical disparity
measures which can be classified into four groups: a)
region-based measures - the expert and calculated ob-
jects regions are compared [6], b) contour-based mea-
sures - the experts and calculated objects boundaries
are compared [7], ¢) body-based measures - the ex-
pert and calculated volumes are compared and d)
surface-based measures - the expert and calculated
objects surfaces are compared to each other.

In the sequel, the TPA tool-supported disparity
measures for measuring the difference (accuracy) be-
tween the calculated and mean observer annotations
are described.

5.1 Ratio R1 and R2

Ratios R1 and R2 are measures considering spatial
objects properties by a pair-wise comparison of two
binary images. Images are analyzed in a point-by-
point manner. Ratios are based on the intersection
between the segmented object and the reference ob-
ject. The ratio R1 is thus defined as the ratio between
the intersection and reference object, while the ratio
R2 is defined as the ratio between the intersection
and segmented region. Both ratios give 1 for perfect
agreement and 0 for complete disagreement between
calculated and reference objects. For example, if ra-
tios R1 and R2 are both 1. then this signifies the
perfect alignment of the calculated object with the
reference object, and vice verse. In another example
with ratio R1 at 0.6 and ratio R2 at 0.3 this align-
ment is poor. The ratio R1 explains that 60% of
the reference object is fitted by the calculated object
and only 30% of the calculated object fits the refer-
ence object. However, the ratios R1 and R2 depend

on the size and object complexity. Their main draw-
back is the penalty function. In this function small
objects get much higher penalty than the large for
the same boundary or surface errors.

5.2 Mean absolute distance (MAD)

The mean absolute distance determines an average
between the two contours/surfaces. It is defined ac-
cording to the following equation:

m

1 & 1

i=1

where A and B are curve/surface, and a; and b;
stand for the curve/surface points. The distance d
is a minimal Euclidean distance between the point
on the object boundary/surface A, and the object
boundary /surface B. The main advantages of MAD
measure are: a) low sensitivity to the outliers and b)
independence of the object size.

5.3 Hausdorff distance (HD)

The Hausdorff distance measures the maximum dis-
tance between two objects boundaries/surfaces. The
distance from the boundary /surface of calculated ob-
ject to the nearest point on the boundary /surface of
reference object is measured, and vice versa. It is
determined in three steps: 1) the Euclidian distances
between the boundary /surface of the reference object
to the boundary/surface of the calculated object is
calculated, 2) the shortest distance from the bound-
ary/surface of the reference object to the calculated
object is kept for each point, and 3) the largest dis-
tance between all distances is taken:

HD = max (h(A, B), h(B, A))

h(A, B) = maxaeaminpepd(a, b) = maxaead(a, B)

where h is a directed Hausforff distance. This mea-
sure is sensitive to outliers and does not reflect the
actual situation along the whole boundary/surface.
If segmentation accuracy remained within the cer-
tain limits (are prescribed), this measure would be
the metrics of choice. The directed measure is non-
symmetric.

5.4 Spherical distance (SD)

In the IPA-tool, our novel body/volume based
measure—spherical distance, interpreted as the dis-
tance between two surfaces, is introduced and imple-
mented. The measure defines the distance between
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Figure 2. Two spheres - the smaller and the larger one.
The arrow denotes the normal to patch on the smaller
sphere, while the dotted straight lines with the same di-
rection as normal run through the patch edge points.

two objects surfaces with respect to the normal di-
rection of their patches and their distribution. This
measure is our original contribution.

Figure 2 depicts two spheres - the small and
the large one, where the small sphere is inside the
larger one. The black triangles represent two selected
patches. The arrow is the normal on the patch of the
small sphere and the dotted straight lines through
the patch edge points have the same direction as the
normal.

The spherical distance is calculated in three steps:

1. Calculate normals for all patches on evaluated
surface (e.g. calculated/segmented).

2. Calculate the Euclidean distance between the
patch edge point and the nearest point (on ref-
erence surface) determined by the straight line
piercing through a reference surface. the straight
line, which pierces the patch edge point, has the
same direction as the normal of the patch (see
Figure 2). A distance e; between the patch edge
point from A and surface B is defined as

ed(Tl,B) = ||T1 —T2||2;T1 €eBAT,eS,NA

where T is the nearest point where the straight
line Sy, pierces the reference surface B. Distance
E,; between surfaces A and B is calculated as
follows

Ed(A7B) = Z ed(TlvB)‘
T,€A

3. The spherical distance SD is calculated as the
minimum between the averages of the Euclidian
distances E4(A, B) and E4(B, A):

.1 1
SD = mln{EEd(A,B), EEd(B,A)},

where n and m are the number of patches on the
surfaces A and B, respectively.

The main measure advantages are: a) low sensi-
tivity to the outliers, b) independence of the object
size, and c¢) measure symmetry.

6 Example of segmentation algorithm
assessment

The proposed TPA tool was used in the SimBio
project [9] for the assessment of image segmenta-
tion/registration routines. This tool was tested on a
set of high-quality static MR human knee joint ima-
ges with dimensions of 512x512 pixels, acquired with
T1 weighted sequence. Slice thickness was 2 mm and
an effective pixel size was 0.4 mm. Figure 3 depicts
the example of annotated MR testing image.

Figure 3. Example of annotated knee joint: a) expert
readings overlaid on the original MR image; b) comput-
er-detected knee structures.

The patient MR knee image sequences were
manually annotated by an orthopaedic surgeon (i.e.
ground truth references) and, afterwards, processed
by the segmentation algorithm—Vreglocal3d [9]. The
evaluation was done on three bones (i.e. femur, tibia
and patella) and their corresponding cartilages. The
accuracy of bones and cartilages detection was mea-
sured by ratios R1 and R2, Hausdorff distance (HD),
Mean absolute distance (MAD), and Spherical di-
stance (SD). The disparity measures calculated for
all patients’ image sequences are presented in the se-
quel. The average calculated ratio R1 is 0.82, the
standard deviation is 0.15, the minimum average ra-
tio is 0.57 and the maximum average ratio is 0.94.
The average ratio R2 is 0.73, the standard deviation
is 0.11, the minimum is 0.46 and the maximum is
0.94. The average MAD distance is 0.52 mm, the
standard deviation is 0.34 mm, the minimum is 0.28
mm and the maximum is 0.75 mm. The average HD
distance is 2.78 mm, the standard deviation is 1.89
mm, the minimum is 1.18 mm and the maximum is
4.71 mm. The average SD distance is 1.69 mm, the
standard deviation is 3.21 mm, the minimum is 1.18
mm and the maximum is 4.91 mm. These results
point out the rough assessment of the segmentation
algorithm. Evident segmentation inaccuracies are in-
dicated.

7 Conclusion

The TPA tool, assessment protocol scheme, novel
mean-observer method and disparity measures with



our novel spherical distance were presented in this
paper.

The assessment protocol is a prescription whose
major preferences are a) transparent plane and vol-
ume assessment, and b) simple integration with other
metrics. The supported disparity measures were
classified into four classes with respect to plane and
volume information. The IPA tool overcomes the as-
sessment problems with one biased expert using mean
observer BS method. This mechanism ensures relia-
ble results, because each expert has equal weight in
ground truth calculation. Specialities of the proposed
TPA tool are: a) original mean-observer mechanism
(BS-method) and b) original volume spherical dis-
tance. The assessment results are meaningless for
the non-experts, because it is important to known
and correctly interpret the most appropriate mea-
sures for the segmentation algorithm quality assess-
ment! Our future research will be towards develop-
ment novel statistical measures and extension of the
mean-observer mechanism, with the outliers having
low influence on the final mean observer.
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