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Abstract: The optimal thermo-mechanical processing in steel industry is 
difficult because of the multi-constituent and multiphase charac-
ter of the commercial steels, variety of multi-constituent the pos-
sible processing paths, and plant specific equipment characteris-
tics. This paper shows successful implementation of the genetic 
programming approach for increasing the furnace conveyor speed 
and consequently productivity of the heat treatment furnace in the 
soft annealing process. The data (222 samples covering 24 differ-
ent steel grades) on a furnace conveyor speed, chemical composi-
tion of steel (weight percent of C, Cr, Mo, Ni and V) and Brinell 
hardness before and after the soft annealing were collected during 
daily production. On the basis of the monitored data a mathemati-
cal model for the hardness after the soft annealing was developed 
by genetic programming. According to the modeled influences on 
the hardness, the higher furnace conveyor speed was attempted in 
practice. The experimental results of the hardness after the soft an-
nealing with the increased conveyor speed and the predictions of 
the mathematical model were compared within the agreement of 
3.24 %. The productivity of the soft annealing process increased 
(from the furnace conveyor speed 3.2 m/h to 7 m/h) as a conse-
quence of the used computational intelligence approach.

Izvleček: Zaradi težko določljivih lastnosti komercialnih jekel, razno-
likosti tehnoloških poti in specifične opreme je optimalno termo-
-mehansko procesiranje v jeklarstvu izredno problematično. V 
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članku je predstavljena uporaba genetskega pogramiranja z name-
nom povečati hitrost transportnega traku žarilne peči in posledično 
produktivnost žarilne peči in procesa žarjenja samega. Med tipično 
proizvodnjo so bili zbrani podatki (222 vzorcev, 24 kvalitet jekla) 
o hitrosti peči, kemijski sestavi jekla (masni deleži C, Cr, Mo, Ni 
in V) ter trdota po Brinellu pred mehkim žarjenju in po njem. Na 
podlagi zbranih podatkov je bil izdelan matematični model trdote 
po mehkem žarjenju z metodo genetskega programiranja. Glede 
na izračunane vplive na trdoto po mehkem žarjenju smo povečali 
hitrost žarjenja. Po povečanju hitrosti žarjenja se izmerjene trdote 
materiala ujemajo z izračunanimi v povprečju 3,24-odstotno. Pro-
duktivnost mehkega žarjenja se je povečala iz 3,2 m/h na 7 m/h kot 
posledica umetne inteligence.
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gramming, modeling
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IntroductIon

There is a strong trend in steel indus-
try for enhanced productivity, safety, 
and environmental friendliness of the 
involved processes, in parallel with the 
enhanced product variety and quality. 
In the last two decades, the thermo-
mechanical physical models are in-
creasingly developed for casting, roll-
ing, and heat treatment operations.[1] 
However, the current state-of-the-art in 
physical modeling does not permit to 
quantitatively model the whole range 
of steel behavior neither from the mi-
croscopic materials science point of 
view, nor from the macroscopic process 
level. This is probably due to the multi-
constituent and multi-phase character 

of the steel as well as due to the fact 
that the important physical processes 
took place over a huge range of length 
scales from the nano up to 100 m. The 
physical modeling is thus increasingly 
connected with the intelligent algo-
rithms (such as for example artificial 
neural networks, evolutionary com-
putation, swarm intelligence, artificial 
immune systems, and fuzzy systems)
[2] which complement or replace the 
physical models in solving realistic in-
dustrial problems. An example of such 
symbiosis[3] is the continuous casting 
physical modeling with the evolution-
ary algorithm for searching the opti-
mum casting conditions. The purpose 
of the heat treatment of the steels is to 
cause the desired changes in the met-
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allurgical structure and thus material 
properties.[4] Soft annealing represents 
heat treatment wherein a material is 
altered, causing changes in its duc-
tility and hardness. Several attempts 
have been made to attain the control of 
the above mentioned material proper-
ties at the soft annealing treatment.[5–9] 
The aim of the present research is to 
find out the possibilities of increasing 
the furnace productivity (speed of the 
furnace conveyor) at the soft anneal-
ing process. The genetic programming 
method is used in the present paper 
to establish the relations between the 
chemical composition of the principal 
alloying elements (carbon, chromium, 
molybdenum, nickel and vanadium), 
the principal process parameters (such 
as the speed of the furnace conveyor), 
and the principal material property 
(hardness after the soft annealing treat-
ment). Having this relations set, more 
optimal conveyor speed could be eas-
ily determined with respect to the pro-
cess parameter constraints, i.e. maxi-
mum possible speed of the conveyor, 
and product properties constraints, i.e. 
maximum hardness.

Genetic programming is one of the 
methods of the evolutionary computa-
tion.[10, 11] In the genetic programming, 
organisms which are more or less com-
plicated computer programs, are sub-
ject to adaptation. The computer pro-
grams are in fact models for prediction 

of the hardness after the soft anneal-
ing in the present study. Many differ-
ent prediction models, differing in the 
quality of prediction and the complex-
ity of the structure, were obtained dur-
ing the simulated evolution. Only one 
model out of many is discussed in the 
present paper.

the heat treatMent furnace desIgn 
and the experIMental data

All experimental data, used in the pre-
sent paper, have been obtained from 
the pusher-type furnace of Štore Steel 
steelworks - Slovenia, one of the major 
spring-steel producers in Europe. The 
scheme of the furnace is depicted in 
Figure 1. The hardness after the anneal-
ing process depends on the chemical 
composition of the steel and the furnace 
process parameters. The main method-
ological constraint of the present paper 
is, according to production pace, that 
the production lining parameters could 
only be monitored and not allowed to 
vary. The experimental data have been 
thus obtained directly from the undis-
turbed production. The principal seven 
adjustable furnace process parameters 
are the six different temperatures of the 
heat treatment zones and the time of 
the annealing (inversely proportional 
to the speed of the furnace conveyor). 
The principal two fixed construction 
parameters of the furnace are the maxi-
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mum bond specific weight 2.5 t/m and 
the maximum conveyor speed 7 m/h. 
The cross-sections of the round and 
flat bars in the bond varied from 43.28 

mm2 to 5676.40 mm2. The temperature 
of the six heat treatment zones was kept 
constant in all cases (see data in Figure 
1). The only influential heat treatment 

Figure 1. Heat treatment furnace with its six equidistant temperature zones

Table 1. The number of steel grade specimens and the average chemical composition

Composition, w/% C Cr Mo Ni V 

# Steel grade Number of
specimens

1 15CrNi6 1 0.14 1.56 0.04 1.53 0
2 16MnCr5 1 0.19 1.03 0.02 0.09 0
3 17CrNiMo6 2 0.18 1.65 0.28 1.50 0
4 18 CrNi 8 1 0.19 1.95 0.02 2.01 0
5 18CrNiMo7-6 15 0.17 1.64 0.29 1.53 0.001
6 18CrNiMo7-6 HH 2 0.19 1.69 0.29 1.53 0
7 23MnNiCrMo5-2-A 12 0.22 0.49 0.21 0.47 0
8 25CrMo4 4 0.24 1.01 0.20 0.10 0
9 34CrNiMo6 28 0.36 1.61 0.22 1.60 0.003
10 41Cr4 7 0.42 1.08 0.03 0.11 0
11 42CrMo4 33 0.42 1.07 0.22 0.11 0
12 42CrMoS4 8 0.43 1.03 0.21 0.11 0
13 50CrMoS4 14 0.51 1.04 0.22 0.13 0
14 50CrV4 34 0.50 1.05 0.04 0.11 0.156
15 51CrMoV4 1 0.54 1.06 0.18 0.09 0.11
16 51CrV4 11 0.51 1.08 0.04 0.11 0.1555
17 51CrV4 HH 3 0.51 1.08 0.04 0.12 0.170
18 52CrMoV4 6 0.54 1.05 0.18 0.10 0.113
19 55Si7 16 0.57 0.29 0.04 0.12 0
20 70MnVS4 20 0.70 0.15 0.03 0.08 0.113
21 25CrMo4 1 0.24 1.05 0.21 0.14 0
22 42CrMo4 2 0.43 1.03 0.21 0.11 0
SUM 222
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productivity process parameter was 
the speed of the furnace conveyor. The 
speed of the furnace conveyor was kept 
steady during the heat treatment of the 
individual bond. The required hardness 
of the annealed steel has to be below 
260 HB before the bond steel bars are 
subsequently saw-cut.

The number of each steel grade speci-
mens and the average chemical com-
position (mass fractions w/% of C, Cr, 
Mo, N and V) is represented in Table 1.

According to actual production tech-
nology only two furnace conveyor 
speeds of 2.5 m/h and 3.2 m/h were 
used for soft annealing. Brinell hard-
ness for each data set before and after 
soft annealing was measured at the bar 
centre at the three positions per bond: 
once from the bar taken from the bond 
surface and twice from the bar taken 

from the middle of the bond. Then the 
average hardness per bond was calcu-
lated and used for modeling. Only a 
part of the respective monitored data 
set is shown in Table 2.

genetIc prograMMIng ModelIng of 
the hardness after the soft anneal-
Ing

Genetic programming is probably the 
most general evolutionary optimiza-
tion method.[11] The organisms that 
undergo adaptation are in fact math-
ematical expressions (models) for the 
hardness after the soft annealing in the 
present work. The prediction consists 
of the available function genes (i.e., 
basic arithmetical functions) and ter-
minal genes (i.e., independent input 
parameters, and random floating-point 
constants). In the present case the mod-

Table 2. Part of the monitored data set

# Conveyor
speed [m/h]

Hardness before
the soft annealing 

[HB]
w(C)/% w(Cr)/% w(Mo)/% w(Ni)/% w(V)/%

Hardness after
the soft 

annealing [HB]

1 3.2 298 0.51 1.09 0.22 0.19 0 219
2 3.2 248 0.43 1.08 0.02 0.1 0 191
3 3.2 313 0.69 0.14 0.02 0.08 0.11 229
4 3.2 309 0.70 0.13 0.02 0.08 0.12 215
5 3.2 290 0.55 0.28 0.04 0.12 0 229
6 3.2 290 0.59 0.36 0.05 0.12 0 229

… … … … … … … … …
220 3.2 298 0.17 1.64 0.29 1.53 0 198
221 3.2 290 0.40 1.04 0.22 0.08 0 207
222 3.2 333 0.52 1.14 0.05 0.11 0.15 229
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els consist of the following function 
genes: addition (+), subtraction (–), 
multiplication (*) and division (/), and 
the following terminal genes: furnace 
conveyor speed (speed), measured v/
(m/h), hardness before soft annealing 
(HB), measured in Brinell units, and 
chemical composition of the principal 
alloying elements: carbon (C), chro-
mium (Cr), molybdenum (Mo), nickel 
(Ni) and vanadium (V), measured in 
mass fractions, w/%.One of the ran-
domly generated mathematical models 
is schematically represented in Figure 
2 as a program tree with included func-
tion genes (*, + , /) and terminal genes 
(Mo, speed, V, C, and a real number 
constant 5.1).

The following evolutionary parameters 
were selected for the process of simu-

lated evolutions: 500 for the size of the 
population of organisms, 100 for the 
maximum number of generations, 0.4 
for the reproduction probability, 0.6 for 
the crossover probability, 6 for the maxi-
mum permissible depth in the creation 
of the population, 10 for the maximum 
permissible depth after the operation of 
crossover of two organisms, and 2 for the 
smallest permissible depth of organisms 
in generating new organisms. Genetic 
operations of reproduction and crossover 
were used. For selection of organisms 
the tournament method with tournament 
size 7 was used. 100 independent civili-
zations of mathematical models for pre-
diction of the hardness after the soft an-
nealing have been developed.

The best obtained model for the hard-
ness after the soft annealing is:

with the average percentage deviation of 3.24 %.
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soft annealIng productIvIty optIMI-
zatIon

The maximum furnace conveyor speed, 
declared from the furnace producer, is 
7 m/h. As previously mentioned, the 
required hardness of the cutting mate-
rial should be below 260 HB in order to 
satisfy the product quality requirement.

The previously mentioned results and 
behavior regarding the sensitivity of 
the furnace conveyor speed in the soft 
annealing process allows us to care-
fully (in several steps) increasing the 
conveyor speed up to 5 m/h and at last 
for 7 m/h in industrial practice. The ex-

perimental results of hardness for 13 
specimens are shown in Table 3, com-
pared with the calculated values from 
the computational intelligence model.

conclusIon

In this paper the possibility of the 
productivity enhancement of the heat 
treatment furnace for the soft anneal-
ing of the round and the flat steel bars 
in Štore Steel company was studied. 
The Brinell hardness after the process 
was measured for 24 different steel 
grades as a function of the furnace pro-
cess parameters and steel composition. 

Table 3. Measured and calculated hardness after the soft annealing

#
Conveyor

Speed
v/(m/h)

Hardness
before

softannealing

C
w(C)/%

Cr
w(Cr)/%

Mo
w(Mo)/%

Ni
w(Ni)/%

V
w(V)/%

Hardness
after the soft

annealing
(monitored)

[HB]

Hardness
after the soft

annealing
(genetic

programming
model)
[HB]

Percentage
deviation

5.0 298.0 0.59 0.28 0.05 0.13 0.00 229 237.089 3.53 %
5.0 464.0 0.34 1.51 0.20 1.50 0.01 229 235.528 2.85 %

3 5.0 335.0 0.53 1.13 0.05 0.19 0.14 229 236.332 3.20 %
4 5.0 438.0 0.36 1.64 0.23 1.64 0.01 229 241.571 5.49 %
5 5.0 438.0 0.34 1.51 0.20 1.50 0.01 229 234.982 2.61 %
6 5.0 339.0 0.43 1.18 0.22 0.15 0.00 215 224.551 4.44 %
7 5.0 339.0 0.43 1.18 0.22 0.15 0.00 215 224.551 4.44 %
8 5.0 309.0 0.7 0.12 0.02 0.07 0.11 215 216.467 0.68 %
9 5.0 309.0 0.7 0.12 0.02 0.07 0.11 215 216.467 0.68 %

10 5.0 309.0 0.7 0.13 0.02 0.08 0.12 215 214.519 0.22 %
11 7.0 335.0 0.55 1.14 0.03 0.12 0.15 249 237.717 4.53 %
12 7.0 313.0 0.53 1.13 0.03 0.10 0.15 239 235.34 1.53 %
13 7.0 361.0 0.54 1.08 0.17 0.09 0.12 249 250.438 0.58 %

Average percentage deviation 2.68 %
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This established an experimental data 
base for development of 100 models, 
deduced through the genetic program-
ming methodology. Genetic program-
ming predicts the hardness after the 
soft annealing with the average per-
centage deviation of only 3.24 %. The 
best genetically developed model was 
closely analyzed and it was established 
that the furnace conveyer speed is not a 
sensitive parameter for influencing the 
hardness after the soft annealing. These 
findings lead to the changes of the max-
imum furnace conveyor speed from 3.2 
m/h up to 7 m/h in the production prac-
tice. The substantially higher conveyor 
speed did not influence the hardness of 
the steel after the soft annealing as ex-
pected from the model prediction. The 
hardness after the soft annealing was 
below the required hardness of 260 HB 
also in the case of the enhanced con-
veyor speed in all 13 tested cases. The 
agreement between the tested and the 
calculated data is 2.68 %. The results of 
the research were practically applied.
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