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Abstract

A graph is a bi-Cayley graph over a group if the group acts semiregularly on the vertex
set of the graph with two orbits. Let G be a non-abelian metacyclic p-group for an odd
prime p. In this paper, we prove that if G is a Sylow p-subgroup in the full automorphism
group Aut(Γ) of a graph Γ, then G is normal in Aut(Γ). As an application, we classify the
half-arc-transitive bipartite bi-Cayley graphs over G of valency less than 2p, while the case
for valency 4 was given by Zhang and Zhou in 2019. It is further shown that there are no
semisymmetric or arc-transitive bipartite bi-Cayley graphs over G of valency less than p.
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1 Introduction
All graphs considered in this paper are finite, connected, simple and undirected. For a
graph Γ, we use V (Γ), E(Γ), A(Γ) and Aut(Γ) to denote its vertex set, edge set, arc set
and full automorphism group, respectively. A graph Γ is said to be vertex-transitive, edge-
transitive or arc-transitive if Aut(Γ) acts transitively on V (Γ), E(Γ) or A(Γ) respectively,
semisymmetric if it is edge-transitive but not vertex-transitive, and half-arc-transitive if it
is vertex-transitive, edge-transitive, but not arc-transitive.

Let G be a permutation group on a set Ω and α ∈ Ω. Denote by Gα the stabilizer of
α in G, that is, the subgroup of G fixing the point α. We say that G is semiregular on Ω
if Gα = 1 for every α ∈ Ω and regular if G is transitive and semiregular. A group G is
metacyclic if it has a normal subgroup N such that both N and G/N are cyclic.

Let Γ be a graph with G ≤ Aut(Γ). Then Γ is called a Cayley graph over G if G is
regular on V (Γ) and a bi-Cayley graph overG ifG is semiregular on V (Γ) with two orbits.
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In particular, if G is normal in Aut(Γ), the Cayley graph or the bi-Cayley graph Γ is called
a normal Cayley graph or a normal bi-Cayley graph over G, respectively.

Determining the automorphism group of a graph is fundamental in algebraic graph
theory, but very difficult in general. If Γ is a connected normal Cayley graph over a group
G, then Aut(Γ) is determined by Godsil [27], and if Γ is a connected normal bi-Cayley
graph over G, then Aut(Γ) is also determined by Zhou and Feng [55]. Thus a natural
problem is to determine normality of Cayley graphs or bi-Cayley graphs over groups.

The normality of Cayley graphs over cyclic group of order a prime and over group of
order twice a prime was solved by Alspach [1] and Du et al. [19], respectively. Dobson [14]
determined all non-normal Cayley graphs over group of order a product of two distinct
primes, and Dobson and Witte [16] determined all non-normal Cayley graphs over group of
order a prime square. Dobson and Kovács [15] determined the full automorphism groups
of Cayley graphs over elementary abelian group of rank 3. However, it seems still very
difficult to obtain normality of Cayley graphs for general valencies. On the other hand,
many results on the normality of Cayley graphs with small valencies were obtained, and
for example, one may refer to [20, 21, 22] for finite non-abelian simple groups and to
[4, 23, 26, 51, 54] for solvable groups. Due to nice properties on automorphism groups of
non-abelian p-groups, the normality of Cayley graphs with general valencies over certain
non-abelian p-groups was obtained. A connected Cayley graph or bi-Cayley graph over a
non-abelian metacyclic p-group, for an odd prime p, is called a p-metacirculant or a bi-
p-metacirculant, respectively. Li and Sim [34] proved that a p-metacirculant Γ is normal
except a special case when the non-abelian metacyclic p-group is a Sylow p-subgroup of
Aut(Γ), and Wang and Feng [50] proved that this special case cannot occur. In this paper
we prove the following theorem.

Theorem 1.1. Let Γ be a connected bipartite bi-p-metacirculant over a non-abelian meta-
cyclic p-group G. If G is a Sylow p-subgroup of Aut(Γ), then G is normal in Aut(Γ).

It is well-known that Cayley graphs play an important role in the study of symmetry of
graphs. However, graphs with various symmetries can be constructed by bi-Cayley graphs.
The smallest trivalent semisymmetric graph is the Gray graph [6], which is a bi-Cayley
graph over a non-abelian metacyclic group of order 27, and infinite semisymmetric graphs
were constructed in [17, 18, 37]. Boben et al. [5] studied properties of cubic bi-Cayley
graphs over cyclic groups and the configurations arising from these graphs. Kovács et
al. [31] gave a description of arc-transitive one-matching bi-Cayley graphs over abelian
groups. All cubic vertex-transitive bi-Cayley graphs over cyclic groups, abelian groups or
dihedral groups were determined in [39, 52, 54]. Recently, Conder et al. [11] investigated
bi-Cayley graphs over abelian groups, dihedral groups and metacyclic p-groups, and using
these results, a complete classification of connected trivalent edge-transitive graphs of girth
at most 6 was obtained. Furthermore, Qin et al. [41] classified connected edge-transitive
bi-p-metacirculants of valency p, and as an application of Theorem 1.1, we prove that there
are no such graphs with valency less than p.

Theorem 1.2. For any odd prime p, there are no connected arc-transitive or semisymmetric
bipartite bi-p-metacirculants of valency less than p.

In 1966, Tutte [46] initiated an investigation of half-arc-transitive graphs by showing
that a vertex- and edge-transitive graph with odd valency must be arc-transitive. A few
years later, in order to answer Tutte’s question on the existence of half-arc-transitive graphs
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of even valency, Bouwer [7] constructed a 2k-valent half-arc-transitive graph for every
k ≥ 2. One of the standard problems in the study of half-arc-transitive graphs is to clas-
sify such graphs for certain orders. Let p be a prime. It is well known that there are no
half-arc-transitive graphs of order p or p2, and no such graphs of order 2p by Cheng and
Oxley [8]. Alspach and Xu [2] classified half-arc-transitive graphs of order 3p and Kutnar
et al. [33] classified such graphs of order 4p. Despite all of these efforts, however, further
classifications of half-arc-transitive graphs with general valencies seem to be very difficult,
and special attention has been paid to the study of half-arc-transitive graphs with small va-
lencies, which were extensively studied from different perspectives over decades by many
authors; see [3, 9, 10, 24, 25, 29, 32, 35, 38, 40, 43, 47, 48, 49] for example.

The smallest half-arc-transitive graph constructed in Bouwer [7] is a bi-Cayley graph
over the non-abelian metacyclic group of order 27 with exponent 9. Zhang and Zhou [56]
proved that a half-arc-transitive bi-Cayley graph over cyclic group has valency at least 6,
and this was extended to abelian groups by Conder et al. [11]. In fact, half-arc-regular
bi-Cayley graphs of valency 6, over cyclic groups, were classified in [56], and two infi-
nite families of bipartite tetravalent half-arc-transitive bi-p-metacirculants of order p3 were
constructed in [11], of which one is Cayley and the other is not Cayley. Furthermore,
Zhang and Zhou [53] classified tetravalent half-arc-transitive bi-p-metacirculants, and all
these graphs are bipartite. This was the main motivation for the research leading to Theo-
rem 1.3, namely the classification of bipartite half-arc-transitive bi-p-metacirculants of va-
lency less than 2p. It was also motivated in part by the classification of half-arc-transitive
p-metacirculants of valency less than 2p, given by Li and Sim [35].

For a positive integer n, denote by Zn the cyclic group of order n, as well as the ring of
integers modulo n, and by Z∗n the multiplicative group of the ring Zn consisting of numbers
coprime to n.

Theorem 1.3. Let p be an odd prime and let Γ be a connected bipartite bi-p-metacirculant
of valency 2k with k < p over a non-abelian metacyclic p-group G. Then Γ is half-arc-
transitive if and only if

k ≥ 2, k | (p− 1), G ∼= Gα,β,γ and Γ ∼= Γ±m,k,`,

where 0 < γ < α ≤ β+ γ, m ∈ Z∗pα−γ , 0 ≤ ` < k with k
(k,`)

∣∣ (p−1)
2 , and Aut(Γ±m,k,`)

∼=
(Gα,β,γ o Zk).Z2.

The groups Gα,β,γ and graphs Γ±m,k,` above are defined in Equation (2.1) and Equa-
tion (4.3). By Zhang and Zhou [53], the graphs Γ±m,2,` can be Cayley or non-Cayley for
certain values m and `, and this implies that the extensions (Gα,β,γ oZ2).Z2 above can be
split or non-split.

2 Background results
LetG be a finite metacyclic p-group. Lindenberg [36] proved that the automorphism group
of G is a p-group when G is non-split. The following proposition describes the automor-
phism group of the remaining case whenG is split. It is easy to show that every non-abelian
split metacyclic p-group G for an odd prime p has the following presentation:

Gα,β,γ = 〈a, b | ap
α

= 1, bp
β

= 1, b−1ab = a1+pγ 〉, (2.1)
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where α, β, γ are positive integers such that 0 < γ < α ≤ β+γ. Li and Sim characterized
the automorphism group Aut(Gα,β,γ) of the group Gα,β,γ .

Proposition 2.1 ([35, Theorem 2.8]). For an odd prime p, we have

|Aut(Gα,β,γ)| = (p− 1)pmin(α,β)+min(β,γ)+β+γ−1.

Moreover, all Hall p′-subgroups of Aut(Gα,β,γ) are conjugate and isomorphic to Zp−1. In
particular, the map θ : a 7→ aε, b 7→ b induces an automorphism of Gα,β,γ of order p− 1,
where ε is an element of order p− 1 in Z∗pα .

A p-groupG is said to be regular if for any x, y ∈ G there exist di ∈ 〈x, y〉′, 1 ≤ i ≤ n,
for some positive integer n such that xpyp = (xy)p

∏n
i=1 d

p
i . If G is metacyclic, then the

derived subgroup G′ is cyclic, and hence G is regular by [30, Kapitel III, 10.2 Satz]. For
regular p-groups, the following proposition holds by [30, Kapitel III, 10.8 Satz].

Proposition 2.2. Let G be a metacyclic p-group for an odd prime p. If |G′| = pn, then for
any m ≥ n, we have

(xy)p
m

= xp
m

yp
m

,

for any x, y ∈ G.

Remark 2.3. For the non-abelian split metacyclic group Gα,β,γ given in Equation (2.1),
we have |G′α,β,γ | = pα−γ and α − γ ≤ β, and by Proposition 2.2, if (p,m) = 1 then
o(bman) = max{o(an), pβ}, and if β < α and p | n then o(bman) ≤ pα−1.

For a finite group G, N ≤ G means that N is a subgroup of G, and N < G means that
N is a proper subgroup of G. The following proposition lists non-abelian simple groups
having a proper subgroup of index prime-power order.

Proposition 2.4 ([28, Theorem 1]). Let T be a non-abelian simple group withH < T , and
let |T : H| = pa for a prime p. Then one of the following holds.

(1) T = PSL(n, q) and H is the stabilizer of a line or hyperplane. Furthermore,
|T : H| = (qn − 1)/(q − 1) = pa and n must be a prime.

(2) T = An and H ∼= An−1 with n = pa.

(3) T = PSL(2, 11) and H ∼= A5.

(4) T = M23 and H ∼= M22 or T = M11 and H ∼= M10.

(5) T = PSU(4, 2) ∼= PSp(4, 3) and H is the parabolic subgroup of index 27.

For a group G and a prime p, denote by Op(G) the largest normal p-subgroup of G,
and by Op′(G) the largest normal subgroup of G whose order is not divisible by p. The
next proposition is about transitive permutation groups of prime-power degree.

Proposition 2.5 ([34, Lemma 2.5]). Let p be a prime, and letA be a transitive permutation
group with p-power degree. Let B be a nontrivial subnormal subgroup of A. Then B has
a proper subgroup of p-power index, and Op′(B) = 1. In particular, Op′(A) = 1.

It is well-known that GL(d, q) has a cyclic group of order qd − 1, the so called Singer-
cycle subgroup, which also induces a cyclic subgroup of PSL(d, q).
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Proposition 2.6 ([30, Kapitel II, 7.3 Satz]). The groupG = GL(d, q) contains a cyclic sub-
group of order qd−1, and it induces a cyclic subgroup of order qd−1

(q−1)(q−1,d) of PSL(d, q).

LetG andE be two groups. We call an extensionE ofG byN a central extension ifN
lies in the center of E and E/N ∼= G, and if E is further perfect, that is, the derived group
E′ = E, we call E a covering group of G. Schur [42] proved that for every non-abelian
simple group G there is a unique maximal covering group M such that every covering
group of G is a factor group of M (also see [30, Chapter 5, Section 23]). This group M
is called the full covering group of G, and the center of M is the Schur multiplier of G,
denoted by M(G). For a group G, we denote by Out(G) the outer automorphism group of
G, that is, Out(G) = Aut(G)/ Inn(G), where Inn(G) is the inner automorphism group
of G induced by conjugation.

The following proposition is about outer automorphism group and Schur multiplier of
a non-abelian simple group having a proper subgroup of prime-power index.

Proposition 2.7 ([34, Lemma 2.3]). Let p be an odd prime and let T be a non-abelian
simple group that has a subgroup H of index p` > 1. Then

(1) p - |M(T )|;

(2) either p - |Out(T )|, or T ∼= PSL(2, 8) and p` = 32.

A group G is said to be a central product of its subgroups H1, . . . ,Hn (n ≥ 2) if
G = H1 · · ·Hn and for any i 6= j, Hi and Hj commute elementwise. A group G is
called quasisimple if G′ = G and G/Z(G) is a non-abelian simple group, where Z(G) is
the centralizer of G. A group G is called semisimple if G′ = G and G/Z(G) is a direct
product of non-abelian simple groups. Clearly, a quasisimple group is semisimple.

Proposition 2.8 ([45, Theorem 6.4]). A central product of two semisimple groups is also
semisimple. Any semisimple group can be decomposed into a central product of quasisim-
ple groups, and this set of quasisimple groups is uniquely determined.

A subnormal quasisimple subgroup of a group G is called a component of G. By
[45, 6.9(iv), p. 450], any two distinct components of G commute elementwise, and by
Proposition 2.8, the product of all components of G is semisimple, denoted by E(G),
which is characteristic in G. We use F (G) to denote the Fitting subgroup of G, that is,
F (G) = Op1(G) × Op2(G) × · · · × Opt(G), where p1, p2, . . . , pt are the distinct prime
factors of |G|. Set F ∗(G) = F (G)E(G) and call F ∗(G) the generalized Fitting subgroup
of G. The following is one of the most significant properties of F ∗(G). For a group G and
a subgroup H of G, denote by CG(H) the centralizer of H in G.

Proposition 2.9 ([45, Theorem 6.11]). For any finite group G, we have

CG(F ∗(G)) ≤ F ∗(G).

An action of a group G on a set Ω is a homomorphism from G to the symmetric group
SΩ on Ω. We denote by Φ(G) the Frattini subgroup ofG, that is, the intersection of all max-
imal subgroups ofG. Note that for a prime p, Op(G) is a p-group and Op(G)/Φ(Op(G)) is
an elementary abelian p-group. Thus, Op(G)/Φ(Op(G)) can be viewed as a vector space
over the field Zp. The following lemma considers a natural action of a group G on the
vector space Op(G)/Φ(Op(G)).



596 Ars Math. Contemp. 17 (2019) 591–615

Proposition 2.10 ([50, Lemma 2.9]). For a finite group G and a prime p, let H = Op(G)
and V = H/Φ(H). Then G has a natural action on V , induced by conjugation via ele-
ments of G on H . If CG(H) ≤ H , then H is the kernel of this action of G on V .

Let a group T act on two sets Ω and Σ, and these two actions are equivalent if there is
a bijection λ : Ω 7→ Σ such that

(αt)λ = (αλ)t for all α ∈ Ω and t ∈ T.

When the two actions above are transitive, there is a simple criterion on whether or not
they are equivalent.

Proposition 2.11 ([13, Lemma 1.6B]). Assume that a group T acts transitively on the two
sets Ω and Σ, and let W be a stabilizer of a point in the first action. Then the actions are
equivalent if and only if W is the stabilizer of some point in the second action.

For a group G and two subgroups H and K of G, we consider the actions of G on the
right cosets of H and K by right multiplication. The stabilizers of Hx and Ky are Hx and
Ky , respectively. By Proposition 2.11, these two right multiplication actions are equivalent
if and only if H and K are conjugate in G.

3 Automorphisms of bipartite bi-p-metacirculants
Let ΓN be the quotient graph of a graph Γ with respect to N ≤ Aut(Γ), that is, the graph
having the orbits of N as vertices with two orbits O1, O2 adjacent in ΓN if and only if
there exist some u ∈ O1 and v ∈ O2 such that {u, v} is an edge in Γ. Denote by [O1] the
induced subgraph of Γ by O1, and by [O1, O2] the subgraph of [O1 ∪ O2] with edge set
{{u, v} ∈ E(Γ) | u ∈ O1, v ∈ O2}.

Proof of Theorem 1.1. Let G a non-abelian metacyclic p-group of order pn for an odd
prime p and a positive integer n, and let Γ be a connected bipartite bi-p-metacirculant over
G. Set A = Aut(Γ), and let G ∈ Sylp(A), where Sylp(A) is the set of Sylow p-subgroups
of A. To finish the proof, it suffices to show that GEA.

LetW0 andW1 be the two parts of the bipartite graph Γ. Then {W0,W1} is a complete
block system of A on V (Γ) with |W0| = |W1| = |G| = pn. Let A∗ be the kernel of A on
{W0,W1}, that is, the subgroup ofA fixingW0 andW1 setwise. ThenA∗EA,A/A∗ ≤ Z2

and Sylp(A) = Sylp(A
∗). It follows that G ∈ Sylp(A

∗). Noting that |G| = pn, we have
pn
∣∣ |A| and pn+1 - |A|, that is, pn ‖ |A|. The group G has exactly two orbits, that is,

W0 and W1, and G is regular on both W0 and W1. By Frattini argument [30, Kapitel I,
7.8 Satz],A∗ = GA∗u for any u ∈ V (Γ), implying thatA∗u is a p′-group. Clearly,Au = A∗u,
and so Au is also a p′-group.

Let K be the kernel of A∗ acting on W0. Then K ≤ A∗v for any v ∈W0, and K EA∗.
The orbits of K on W1 have the same length, and so it is a divisor of pn. It follows that if
K 6= 1 then p

∣∣ |K|, which is impossible becauseA∗v is a p′-group. Thus, A∗ acts faithfully
on W0 (resp. W1). Since Sylow p-subgroups of A are conjugate, every p-subgroup of A is
semiregular on both W0 and W1.

Claim 1. Any minimal normal subgroup N of A∗ is abelian.
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We argue by contradiction and we suppose thatN is non-abelian. ThenN ∼= T1×· · ·×
Tk with k ≥ 1, where Ti ∼= T is a non-abelian simple group. By Proposition 2.5, p

∣∣ |N |
and so p

∣∣ |Ti| for each 1 ≤ i ≤ k. Since G ∈ Sylp(A
∗), we have G ∩N ∈ Sylp(N), and

hence G∩N = P1 × · · · × Pk for some Pi ∈ Sylp(Ti), where Pi 6= 1 for each 1 ≤ i ≤ k.
Since G is metacyclic and G ∩N EG, G ∩N is metacyclic and this implies k ≤ 2.

Set Ω = {T1, . . . , Tk} and write B = NA∗(T1). Considering the conjugation action
of A∗ on Ω, we have B E A∗ as k ≤ 2, and hence A∗/B . S2, forcing B E A∗. Thus,
Sylp(B) = Sylp(A

∗) and so B is transitive on both W0 and W1.
Let ΓT1

be the quotient graph of Γ with respect to T1. Since T1 E B, all orbits of T1

on W0 have the same length, and the length must be a p-power as |W0| = pn. Since each
p-subgroup is semiregular, this length is the order of a Sylow p-subgroup of T1. Similarly,
all orbits of T1 on W1 have the same length and it is also the order of a Sylow p-subgroup
of T1. Thus, V (ΓT1

) = {∆1, . . . ,∆s,∆
′
1, . . . ,∆

′
s}, the set of all orbits of T1, with W0 =

∆1 ∪ · · · ∪ ∆s and W1 = ∆′1 ∪ · · · ∪ ∆′s. Furthermore, for any 1 ≤ i, j ≤ s we have
|∆i| = |∆′j | = pm for some 1 ≤ m ≤ n, and hence s = pn−m. Since T1 E B, B has a
natural action on V (ΓT1) and let K be the kernel of this action. Clearly, T1 ≤ K. Recall
that p - |Au| for any u ∈ V (Γ). Then p - |(T1)u|, and by Guralnick [28, Corollary 2], T1 is
2-transitive on each ∆i or ∆′i. Since pn ‖ |A∗|, we have pn ‖ |B|, implying that pm ‖ |K|.
Since (T1)u is a proper subgroup of T1 of index p-power, Proposition 2.7 implies that either
T1 = PSL(2, 8) with pm = 32, or p - |Out(T1)|. To finish the proof of Claim 1, we will
obtain a contradiction for both cases.

Case 1. T1 = PSL(2, 8) with pm = 32.

In this case, |∆i| = |∆′j | = 9. If s = 1 then |G| = pm = 32, contradicting that G is
non-abelian. Thus s ≥ 2 and s = 3n−2. By Atlas [12], PSL(2, 8) has only one conjugate
class of subgroups of index 9, and by Proposition 2.11, T1 acts equivalently on ∆i and ∆′j .

αi1

αi2

αipm

α′j1
α′j2

α′jpm

∆i ∆′j

...
...

∆i ∆′j

...
...

∆i ∆′j

...
...

Figure 1: The subgraphs [∆i,∆
′
j ].

Set ∆i = {αi1, αi2, . . . , αi9} and ∆′j = {α′j1, α′j2, . . . , α′j9} for 1 ≤ i, j ≤ 3n−2.
Recall that T1 is 2-transitive on ∆i and ∆′j . Since T1 acts equivalently on ∆i and ∆′j , by
Proposition 2.11, we may assume that (T1)αi` = (T1)α′j` for any 1 ≤ i, j ≤ 3n−2 and
1 ≤ ` ≤ 32. The subgraph [∆i,∆

′
j ] is either a null graph, or one of the three graphs in

Figure 3 because (T1)αi` = (T1)α′j` acts transitively on both ∆i \ {αi`} and ∆′j \ {α′j`}.
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The three graphs have edge sets {{αi`, α′j`} | 1 ≤ ` ≤ 32}, {{αik, α′j`} | 1 ≤ k, ` ≤ 32}
or {{αik, α′j`} | 1 ≤ k, ` ≤ 32, k 6= `}, respectively.

For any g ∈ S9, define a permutation σg on V (Γ) by (αi`)
σg = αi`g and (α′j`)

σg =

α′j`g for any 1 ≤ i, j ≤ 3n−2 and 1 ≤ ` ≤ 32. Then σg fixes each ∆i and ∆′j , and
permutes the elements of ∆i and ∆′j in the ‘same way’ for each 1 ≤ i, j ≤ 3n−2. Since
[∆i,∆

′
j ] is either a null graph, or one graph in Figure 3, σg induces an automorphism of

[∆i,∆
′
j ], for all 1 ≤ i, j ≤ 3n−2. Also σg induces automorphisms of [∆i] and [∆′j ] for

all 1 ≤ i, j ≤ 3n−2 because [∆i] and [∆′j ] have no edges (Γ is bipartite). It follows that
σg ∈ Aut(Γ). Thus, L := {σg | g ∈ S9} ≤ Aut(Γ) and L ∼= S9.

Clearly, L ≤ A∗. If L 6≤ B, there exists x ∈ L such that T x1 6= T1, and hence
N ∼= T1 × T2 with k = 2 and T x1 = T2, which implies that T1 and T2 have the same
orbits because x fixes each orbit of T1, contradicting that Sylow p-subgroups of N are
semiregular. Thus L ≤ B. Recall that K is the kernel of B acting on V (ΓT1) and 32 =
pm ‖ |K|. Since L fixes each orbit of T1 and 33

∣∣ |L|, we have L ≤ K and 33
∣∣ |K|, a

contradiction.

Case 2. p - |Out(T1)|.

Since B/T1CB(T1) . Out(T1), we have pn ‖ |T1CB(T1)|. Since T1 is non-abelian
simple, T1 ∩ CB(T1) = 1 and hence T1CB(T1) = T1 × CB(T1). If p

∣∣ |CB(T1)|, then
G is conjugate to Q1 × Q2, where Q1 ∈ Sylp(T1) and Q2 ∈ Sylp(CB(T1)). Since G is
metacyclic, G can be generated by two elements, and since G is a p-group, any minimal
generating set of G has cardinality 2. It follows that both Q1 and Q2 are cyclic, and so
G is abelian, a contradiction. Thus, p - |CB(T1)| and hence pn ‖ |T1|, forcing s = 1.
Furthermore, W0 = ∆1, W1 = ∆′1 and T1 is 2-transitive on both W0 and W1. Note
that (T1)u is proper subgroup of T1 of index pn. Since G is a Sylow p-subgroup of A of
order pn, all Sylow p-subgroups of T1 are also Sylow p-subgroups of A, and so they are
isomorphic to G. Without loss of generality, we may assume G ≤ T1. By Proposition 2.4,
T1 = PSL(2, 11), M11, M23, PSU(4, 2), Apn , or PSL(d, q) with qd−1

q−1 = pn and d a
prime.

Suppose T1 = PSL(2, 11), M11 or M23. By Proposition 2.4, |W0| = |W1| = 11, 11 or
23 respectively, and hence |G| = 11, 11 or 23, contradicting that G is non-abelian.

Suppose T1 = PSU(4, 2) or Apn . For the former, T1 has one conjugate class of sub-
groups of index 27 by Atlas [12], and for the latter, T1 has one conjugate class of subgroups
of index pn. By Proposition 2.11, T1 acts equivalently on W0 and W1, and since Γ is con-
nected, the 2-transitivity of T1 on W0 and W1 implies that Γ ∼= Kpn,pn or Kpn,pn − pnK2.
Then A = Spn o S2 or Spn × Z2 respectively. Since G is non-abelian, we have n ≥ 3, and
so pn+1

∣∣ |A|, a contradiction.

Suppose T1 = PSL(d, q) with qd−1
q−1 = pn and d a prime. By Proposition 2.6, T1

has a cyclic subgroup of order qd−1
(q−1)(q−1,d) . Since d is a prime, either (q − 1, d) = 1 or

(q − 1, d) = d. Note that (q − 1, d)
∣∣ qd−1
q−1 . If (q − 1, d) = d then d = p and p | (q − 1).

Since p ≥ 3 and p2 | (q2 − 1)(q − 1), we have pn+1
∣∣ (qp−1)(qp−q)···(qp−qp−1)

(q−1)(q,d) , that is,
pn+1

∣∣ |T1|, a contradiction. If (q − 1, d) = 1 then T1 has a cyclic subgroup of order
qd−1
q−1 = pn, contradicting that G is non-abelian. This completes the proof of Claim 1.

Claim 2. CA∗(Op(A
∗)) ≤ Op(A

∗).
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Suppose that D is a component of A∗, that is, a subnormal quasisimple subgroup of
A∗. Then D = D′ and D/Z(D) ∼= T , a non-abelian simple group. By Proposition 2.5,
D has a proper subgroup C of p-power index and Z(D) is a p-group. Since |D : C| =
|D : CZ(D)| · |CZ(D) : C|, we have that |D : CZ(D)| is a p-power. If D = CZ(D)
then D = D′ = C ′, contradicting that C is a proper subgroup of D. Thus, CZ(D) 6= D.
Since |D/Z(D) : CZ(D)/Z(D)| = |D : CZ(D)|, we have that D/Z(D) has a proper
subgroup CZ(D)/Z(D) of p-power index. By Proposition 2.7(1), p - |M(D/Z(D))| and
hence p - |Z(D)|. Since Z(D) is a p-group, we have Z(D) = 1 and so D ∼= T . Recall
that E(A∗) is the product of all components of A∗. Then D ≤ E(A∗) and since D ∼= T ,
D is a direct factor of E(A∗). Clearly, Da is also a direct factor of E(A∗) for any a ∈ A∗.
It follows that A∗ contains a minimal normal subgroup which is isomorphic to T ε with
ε ≥ 1, contradicting Claim 1. Thus, A∗ has no component and E(A∗) = 1. It follows that
the generalized Fitting subgroup F ∗(A∗) = F (A∗). By Proposition 2.5, Op′(A

∗) = 1 and
hence F ∗(A∗) = Op(A

∗). By Proposition 2.9, CA∗(Op(A
∗)) ≤ Op(A

∗), as claimed.

Now we are ready to finish the proof. Since |A : A∗| ≤ 2 and G has no subgroups of
index 2, we only need to show GEA∗.

Let H = Op(A
∗). By Claim 1, H 6= 1. Write H = H/Φ(H) and A∗ = A∗/Φ(H).

Then Op(A
∗/H) = 1 and H ≤ G as G ∈ Sylp(A

∗). By Claim 2 and Proposition 2.10,
A∗/H ≤ Aut(H). Since G is metacyclic, H = Zp or Zp × Zp.

Assume H = Zp. Then A∗/H ≤ Zp−1, and G = H EA∗, as required.
Assume H = Zp × Zp. Then A∗/H ≤ GL(2, p). If p - |A∗/H| then G = H EA∗, as

required. To finish the proof, we suppose p
∣∣ |A∗/H| and will obtain a contradiction.

Since p ‖ |GL(2, p)|, we have p ‖ |A∗/H|, and since Sylp(SL(2, p)) =
Sylp(GL(2, p)), we have Sylp(A

∗/H) ⊆ Sylp(SL(2, p)). Note that A∗/H · SL(2, p) ≤
GL(2, p). Then p ‖ |A∗/H ·SL(2, p)| and so p

∣∣ |(A∗/H)∩SL(2, p)|. Since Op(A
∗/H) =

1, A∗/H has at least two Sylow p-subgroups, and hence (A∗/H) ∩ SL(2, p) has at least
two Sylow p-subgroups, that is, (A∗/H)∩SL(2, p) has no normal Sylow p-subgroups. By
[44, Theorem 6.17], (A∗/H) ∩ SL(2, p) contains SL(2, p), that is, SL(2, p) ≤ A∗/H ≤
GL(2, p). In particular, the induced faithful representation of A∗/H on the linear space H
is irreducible, and hence H is a minimal normal subgroup of A∗.

Recall that A∗ E A and H = Op(A
∗), which is characteristic in A∗. Then H E A,

and since Φ(H) is characteristic in H , we have Φ(H) E A. Let ΓΦ(H) be the quotient
digraph of Γ relative to Φ(H), and let L be the kernel of A acting on V (ΓΦ(H)). Clearly,
ΓΦ(H) is bipartite. Furthermore, L E A, L ≤ A∗, Φ(H) ≤ L and L = Φ(H)Lu for
any u ∈ V (Γ) because both Φ(H) and L are transitive on the orbit of Φ(H) containing
u. Since Φ(H) ≤ G, Φ(H) is semiregular on V (Γ), and hence Φ(H) ∩ Lu = 1. Since
p - |Au|, Lu is a Hall p′-subgroup of L. Since Φ(H)EL and Φ(H) ∈ Sylp(L), the Schur-
Zassenhaus Theorem implies that all Hall p′-subgroup of L are conjugate. By Frattini
argument [30, Kapitel I, 7.8 Satz], A = LNA(Lu) = Φ(H)LuNA(Lu) = Φ(H)NA(Lu)
and H = H ∩A = H ∩ (Φ(H)NA(Lu)) = Φ(H)(H ∩NA(Lu)). Since Frattini subgroup
is generated by nongenerators (see [30, Kapitel III, 3.2 Satz]), H = Φ(H)(H ∩NA(Lu))
if and only if H = H ∩ NA(Lu), that is, H ≤ NA(Lu). It follows that A = NA(Lu),
that is, Lu E A. By taking u ∈ W0, we have Lu = Lv for any v ∈ W0 because A is
transitive on W0, and since A∗ acts faithfully on W0, we have Lu = 1. It follows that
L = Φ(H), that is, the kernel of A acting on V (ΓΦ(H)) is Φ(H). Thus A = A/Φ(H)

is faithful on V (ΓΦ(H)), and then A∗ is faithful on each of the parts of V (ΓΦ(H)), that is,
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A∗ is a transitive permutation group with p-power degree (the cardinality of each part of
V (ΓΦ(H))).

Since A∗
/
H ∼= A∗/H , we have SL(2, p) ≤ A∗/H ≤ GL(2, p). Write R/H =

Z(A∗
/
H). Then R E A∗ and 1 6= R/H is a p′-group. Since H E R and H ∈ Sylp(R),

the Schur-Zassenhaus Theorem [44, Theorem 8.10] implies that there is a p′-group V ≤ R
such that R = HV and all Hall p′-subgroup of R are conjugate. Note that V 6= 1. By
Frattini argument [30, Kapitel I, 7.8 Satz], A∗ = RNA∗(V ) = HNA∗(V ). Since H is
abelian, H ∩NA∗(V ) E A∗, and by the minimality of H , we have H ∩NA∗(V ) = H or
1. If H ∩ NA∗(V ) = H then H ≤ NA∗(V ) and A∗ = HNA∗(V ) = NA∗(V ), that is,
V EA∗. This implies that Op′(A∗) 6= 1, contradicting Proposition 2.5. IfH∩NA∗(V ) = 1
then A∗ = HNA∗(V ) implies ASL(2, p) ≤ A∗ ≤ AGL(2, p) as SL(2, p) ≤ A∗/H ≤
GL(2, p). It follows that a Sylow p-subgroup of A∗ is not metacyclic. On the other hand,
since both normal subgroups and quotient groups of a metacyclic group are metacyclic, any
Sylow p-subgroup ofA∗ is metacyclic because each Sylow p-subgroup ofA∗ is metacyclic,
a contradiction. This completes the proof.

4 Edge-transitive bipartite bi-p-metacirculants

A connected edge-transitive graph should be semisymmetric, arc-transitive or half-arc-
transitive. In this section, as an application of Theorem 1.1, we prove that there are no con-
nected arc-transitive or semisymmetric bipartite bi-p-metacirculants with valency less than
p. Furthermore, we classify the connected half-arc-transitive bipartite bi-p-metacirculants
with valency less than 2p.

Let G be a group and let R, L and S be subsets of G such that R = R−1, L = L−1,
1 6∈ R ∪ L and 1 ∈ S, where 1 is the identity of G. Let BiCay(G,R,L, S) be the
graph having vertex set the union of the right part W0 = {g0 | g ∈ G} and the left part
W1 = {g1 | g ∈ G}, and edge set the union of the right edges {{h0, g0} | gh−1 ∈ R},
the left edges {{h1, g1} | gh−1 ∈ L} and the spokes {{h0, g1} | gh−1 ∈ S}. For g ∈ G,
define a permutation ĝ on V (Γ) = W0 ∪W1 by the rule

hĝi = (hg)i, ∀i ∈ Z2, h, g ∈ G.

It is easy to check that ĝ is an automorphism of BiCay(G,R,L, S) and Ĝ = {ĝ | g ∈ G}
is a semiregular group of automorphisms of BiCay(G,R,L, S) with two orbits W0 and
W1. Thus, BiCay(G,R,L, S) is a bi-Cayley graph over Ĝ, and BiCay(G,R,L, S) is also
called a bi-Cayley graph over G relative to R, L and S. Furthermore, BiCay(G,R,L, S)
is connected if and only if G = 〈R ∪ L ∪ S〉, and BiCay(G,R,L, S) ∼= BiCay(G,Rθ,
Lθ, Sθ) for any θ ∈ Aut(G).

On the other hand, if Γ is a Bi-Cayley graph over G then Γ ∼= BiCay(G,R,L, S) for
some subsets R, L and S of G satisfying R = R−1, L = L−1, 1 6∈ R ∪ L and 1 ∈ S.

For θ ∈ Aut(G) and x, y, g ∈ G, define two permutations on V (BiCay(G,R,L, S)) =
W0 ∪W1 as following:

δθ,x,y : h0 7→ (xhθ)1, h1 7→ (yhθ)0, ∀h ∈ G,
σθ,g : h0 7→ (hθ)0, h1 7→ (ghθ)1, ∀h ∈ G.
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Set

I := {δθ,x,y | θ ∈ Aut(G) s.t. Rθ = x−1Lx, Lθ = y−1Ry, Sθ = y−1S−1x},
F := {σθ,g | θ ∈ Aut(G) s.t. Rθ = R, Lθ = g−1Lg, Sθ = g−1S}.

The following proposition characterizes the normalizer of Ĝ in Aut(Γ).

Proposition 4.1 ([55, Theorem 1.1]). Let Γ = BiCay(G,R,L, S) be a connected bi-
Cayley graph over a groupG, whereR, L and S are subsets ofGwithR = R−1, L = L−1,
1 6∈ R ∪ L and 1 ∈ S. If I = ∅ then NAut(Γ)(Ĝ) = Ĝ o F , and if I 6= ∅, then
NAut(Γ)(Ĝ) = Ĝ〈F, δθ,x,y〉 for some δθ,x,y ∈ I .

Write N = NAut(Γ)(Ĝ). By Proposition 4.1, N10
= F and N1011

= {σθ,1 | θ ∈
Aut(G) s.t. Rθ = R, Lθ = L, Sθ = S}. In particular, F is a group. For the special case
R = L = ∅, it is easy to see that F = {σθ,s | θ ∈ Aut(G), s ∈ S, Sθ = s−1S} as 1 ∈ S.

Lemma 4.2. Let Γ = BiCay(G, ∅, ∅, S) be a connected bipartite bi-Cayley graph over G
relative to S with 1 ∈ S. Then F = {σθ,s | θ ∈ Aut(G), s ∈ S, Sθ = s−1S} is faithful on
S1 = {s1 | s ∈ S}. If G is a p-group and F is a p′-group, then F ∼= {θ | σθ,s ∈ F}.

Proof. Set L = {θ | σθ,s}. Since Γ is connected, G = 〈S〉, and since F11 = {σθ,1 | θ ∈
Aut(G) s.t. Sθ = S}, F is faithful on S1. The group F has operation σθ,xσδ,y = σθδ,yxδ
for any σθ,x, σδ,y ∈ F , and so the map ϕ : σθ,s 7→ θ is an epimorphism from F to L. Let
K be the kernel of ϕ. Then σθ,s ∈ K if and only if θ = 1.

Let G be a p-group and F a p′-group. If σ1,s ∈ K for some 1 6= s ∈ S, then s〈σ1,s〉
1 =

{s1, s
2
1, . . . , s

o(s)−1, 11} because 1
σ1,s

1 = s1 and (sl−1
1 )σ1,s = sl1 for any positive integer l.

Since G is a p-group, o(s) is a p-power and hence p | o(σ1,s), which is impossible because
F is a p′-group. Thus, s = 1 and hence K = 1. Since ϕ is an epimorphism from F to L,
we have F ∼= L.

By Equation (2.1), Gα,β,γ = 〈a, b | apα = 1, bp
β

= 1, b−1ab = a1+pγ 〉 with
0 < γ < α ≤ β + γ.

Lemma 4.3. In Gα,β,γ , the following properties hold:

(1) For any non-negative integers i, j, we have aibj = bjai(1+pγ)j ;

(2) Let θ ∈ Aut(Gα,β,γ) such that aθ = bman with (m, p) = 1. Then β < α.

Proof. From b−1ab = a1+pγ , we have b−1aib = ai(1+pγ) and hence b−jaibj = ai(1+pγ)j .
Part (1) follows. Since aθ = bman, we have o(bman) = o(a) = pα, and since 〈a〉EGα,β,γ ,
we have 〈bman〉 E Gα,β,γ . Then (p,m) = 1 implies Gα,β,γ = 〈a, bman〉 = 〈a〉〈bman〉,
and hence

pα+β = |Gα,β,γ | =
|〈a〉| · |〈bman〉|
|〈a〉 ∩ 〈bman〉|

=
pα · pα

|〈a〉 ∩ 〈bman〉|
≤ pα · pα,

that is, β ≤ α. If β = α, then |〈a〉 ∩ 〈bman〉| = 1 and hence Gα,β,γ = 〈a〉 × 〈bman〉,
contradicting that Gα,β,γ is non-abelian. Thus, β < α and part (2) follows.
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A graph Γ is called locally-transitive if the stabilizer Aut(Γ)u, for any u ∈ V (Γ), is
transitive on the neighborhood of u in V (Γ).

Theorem 4.4. There are no connected locally-transitive bipartite bi-p-metacirculants of
valency less than p for any odd prime p.

Proof. Suppose to the contrary that Γ is a connected locally-transitive bipartite bi-Cayley
graph of valency less than p over a non-abelian metacirculant p-groupG. Since p is odd, the
two orbits of G are exactly the parts of Γ, and we may assume that Γ = BiCay(G, ∅, ∅, S),
where 1 ∈ S, |S| < p andG = 〈S〉. LetA = Aut(Γ). Since Γ has valency less than p,A10

is a p′-group, and by Theorem 1.1, ĜE A. Write F = {σθ,g | θ ∈ Aut(G), Sθ = g−1S}
and L = {θ | σθ,s ∈ F}. By Proposition 4.1, A10 = F , and by Lemma 4.2, F ∼= L.

Assume that G is non-split. By Lindenberg [36], the automorphism group of G is a
p-group. Thus, p

∣∣ |L| and hence p
∣∣ |A10

|, a contradiction.
Assume that G is split. Then G = Gα,β,γ , as defined in Equation (2.1). Since F is

a p′-group and F ∼= L, Proposition 2.1 implies that F is cyclic and |F |
∣∣ (p − 1). Let

|S1| = k and F = 〈σθ,s〉, where θ ∈ Aut(G), s ∈ S and Sθ = s−1S. Since F is
transitive on S1, σθ,s permutes all elements in S1 cyclically, and so σkθ,s fixes all elements
in S1. By Proposition 4.1, F is faithful on S1, implying that σkθ,s = 1. It follows that
σθ,s has order k and is regular on S1. Since F ∼= L, θ also has order k. Furthermore,
S1 = 1

〈σθ,s〉
1 = {11, s1, (ss

θ)1, . . . , (ss
θ · · · sθk−2

)1} and 11 = (ssθ · · · sθk−1

)1, that is,
S = {1, s, ssθ, . . . , ssθ · · · sθk−2} and

ssθ · · · sθ
k−1

= 1. (4.1)

Note that for any τ ∈ Aut(G), we have Γ = BiCay(G, ∅, ∅, S) ∼= BiCay(G, ∅, ∅, Sτ ),
where Sτ = {1, t, ttθτ , . . . , ttθτ · · · t(θτ )k−2} and ttθ

τ · · · t(θτ )k−1

= 1 with t = sτ . By
Proposition 2.1, all cyclic groups of order k in Aut(G) are conjugate, and so we may
assume that θ is the automorphism induced by a 7→ ae, b 7→ b, where e ∈ Z∗pα has order k.

Let s = biaj ∈ Gα,β,γ . By Lemma 4.3, aibj = bjai(1+pγ)j , and since aθ = ae and
bθ = b, we have ssθ · · · sθk−1

= bkiaε for some ε ∈ Zpα . By Equation (4.1), bki = 1, that
is, ki ≡ 0 (mod pβ). Since k < p, we have i ≡ 0 (mod pβ), and hence G = 〈S〉 =

〈1, aj , ajaje, . . . , ajaje · · · ajek−2〉 ≤ 〈a〉, a contradiction. This completes the proof.

Theorem 1.2 is a direct corollary of Theorem 4.4.
To prove Theorem 1.3, we need two technical lemmas on integer numbers.

Lemma 4.5. Let p be an odd prime and α a positive integer. Let e be an element of
order k (k ≥ 2) in Z∗pα with k | (p − 1). Then ei − 1 ∈ Z∗pα for any 1 ≤ i < k, and
1 + e+ · · ·+ ek−1 ≡ 0 (mod pα).

For i ∈ Zk, let ti = (e− 1)−1(ei − 1) and T = {ti | i ∈ Zk}, where (e− 1)−1 is the
inverse of e− 1 in Z∗pα . For x, y ∈ Zpα , let Tx+ y = {tx+ y | t ∈ T}. Then Tx+ y = T

in Zpα if and only if x ≡ el (mod pα) and y ≡ (e − 1)−1(el − 1) (mod pα) for some
l ∈ Zk. In particular, Tx = T in Zpα if and only if x ≡ 1 (mod pα).

Proof. Suppose ei− 1 6∈ Z∗pα for some 1 ≤ i < k. Then p | (ei− 1), and since e has order
k, we have ei 6≡ 1 (mod pα) and (ei)k ≡ 1 (mod pα). Furthermore, p | (ei − 1) implies
that there exist l ∈ Z∗pα (p - l) and 1 ≤ s < α such that ei = 1 + lps. Note that

(ei)k − 1 = (1 + lps)k − 1 = klps + C2
k(lps)2 + · · ·+ Ck−1

k (lps)k−1 + (lps)k.
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Since (ei)k ≡ 1 (mod pα), we have p | kl, and since 2 ≤ k < p, we have p | l, a
contradiction. Thus, p - (ei−1), that is, ei−1 ∈ Z∗pα . The equation 1+e+ · · ·+ek−1 ≡ 0

(mod pα) follows from (e−1)(1+e+· · ·+ek−1) = ek−1 ≡ 0 (mod pα) and e−1 ∈ Z∗pα .
Note that T ⊆ Zpα and Tx+ y ⊆ Zpα . Since 1 + e+ · · ·+ ek−1 ≡ 0 (mod pα), we

have ∑
t∈T

t = (e− 1)−1
∑
i∈Zk

(ei − 1)

= (e− 1)−1[(e− 1) + · · ·+ (ek−1 − 1)]

= −k(e− 1)−1 ∈ Z∗pα .

Assume Tx + y = T in Zpα . Then
∑
t∈T (tx + y) =

∑
t∈T t, and hence ky =

(1− x)
∑
t∈T t = −(1− x)k(e− 1)−1 in Zpα . It follows y = (e− 1)−1(x− 1) because

k ∈ Z∗pα . Then Tx + (e − 1)−1(x − 1) = T implies x[T (e − 1) + 1] = T (e − 1) + 1.
Since T (e − 1) + 1 = {ei | i ∈ Zk} = 〈e〉, we have x〈e〉 = 〈e〉 in Z∗pα , that is, x ≡ el

(mod pα) for some l ∈ Zk. Furthermore, y ≡ (e− 1)−1(el − 1) (mod pα).
On the other hand, let x ≡ el (mod pα) and y ≡ (e − 1)−1(el − 1) (mod pα) for

some l ∈ Zk. Then in Zpα , we have

Tx+ y = {el(e− 1)−1(ei − 1) + (e− 1)−1(el − 1) | i ∈ Zk}
= (e− 1)−1{el(ei − 1) + (el − 1) | i ∈ Zk}
= (e− 1)−1{ei+l − 1 | i ∈ Zk} = {(e− 1)−1(ei − 1) | i ∈ Zk} = T.

Thus Tx + y = T in Zpα if and only if x ≡ el (mod pα) and y ≡ (e − 1)−1(el − 1)
(mod pα) for some l ∈ Zk. Applying this with y = 0, we obtain that Tx = T in Zpα if
and only if x ≡ 1 (mod pα).

Lemma 4.6. Let p be an odd prime and let α, γ be positive integers with 0 < γ < α. Let
e be an element of order k (k ≥ 2) in Z∗pα with k | (p− 1). Then for any m ∈ Z∗pα−γ and
any 0 ≤ ` ≤ k − 1, the following equation in Zpα

e`(1 + pγ)m = [(1 + pγ)m − x(1− e)]2 (4.2)

has a solution if and only if k
(k,`)

∣∣ (p−1)
2 , and in this case, there are exactly two solutions.

Proof. Since e`(1+pγ)m ∈ Z∗pα , Equation (4.2) has a solution if and only if e`(1+pγ)m is
a square in Z∗pα . Since Z∗pα ∼= Zpα−1(p−1), squares in Z∗pα consists of the unique subgroup
of order (p−1)

2 pα−1 in Z∗pα , and so Equation (4.2) has a solution if and only if the order
of e`(1 + pγ)m in Z∗pα is a divisor of (p−1)

2 pα−1. Clearly, (1 + pγ)m has order pα−γ ,
and e` has order k

(k,`) . Thus, Equation (4.2) has a solution if and only if k
(k,`)

∣∣ (p−1)
2 . If

e`(1 + pγ)m = u2 for some u ∈ Z∗pα then (1 − e)−1[(1 + pγ)m ± u] are the only two
solutions of Equation (4.2) in Zpα .

Now we construct the half-arc-transitive graphs in Theorem 1.3. Let p be an odd prime,
and let α, β, γ be positive integers such that 0 < γ < α ≤ β + γ. Let e be an element of
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order k (k ≥ 2) in Z∗pα with k | (p− 1). Choose 0 ≤ ` < k such that k
(k,`)

∣∣ (p−1)
2 . Recall

that
Gα,β,γ = 〈a, b | ap

α

= 1, bp
β

= 1, b−1ab = a1+pγ 〉.

Let

U = {at | t ∈ {(e− 1)−1(ei − 1) | i ∈ Zk}} and

V = {bmai | i ∈ {(e− 1)−1(ei − 1)(1 + pγ)m + ein | i ∈ Zk}},

where m ∈ Z∗pα−γ and n is a solution of e`(1 + pγ)m = [(1 + pγ)m − x(1− e)]2. Define

Γnm,k,` = BiCay(Gα,β,γ , ∅, ∅, U ∪ V ). (4.3)

By Lemma 4.6, there are exactly two solutions n of equation e`(1 + pγ)m =
[(1 + pγ)m − x(1 − e)]2 in Zpα , and so the notation Γnm,k,` is also written as Γ±m,k,`,
as used in Theorem 1.3. We first prove the sufficiency of Theorem 1.3.

Lemma 4.7. The graphs Γ±m,k,` are independent from the choice of element e of order k in
Z∗pα and half-arc-transitive, and Aut(Γ±m,k,`)

∼= (Gα,β,γ o Zk).Z2.

Proof. Write Γ = Γnm,k,` and A = Aut(Γ). Let T = {(e − 1)−1(ei − 1) | i ∈ Zk}
and T ′ = {(e − 1)−1(ei − 1)(1 + pγ)m + ein | i ∈ Zk}. Then U = {aη | η ∈ T}
and V = {bmaη | η ∈ T ′}. Furthermore, Γ = BiCay(G, ∅, ∅, S) with G = Gα,β,γ and
S = U ∪ V . Clearly, 1 ∈ U and Gα,β,γ = 〈S〉, implying that Γ is connected. Note that
T ′ = T [(1 + pγ)m + n(e− 1)] + n.

Since e ∈ Z∗pα , any element of order k in Z∗pα can be written as eq with (q, k) = 1 and
hence {ei | i ∈ Zk} = 〈e〉 = 〈eq〉 = {(eq)i | i ∈ Zk}. By Lemma 4.5, e − 1 ∈ Z∗pα and
eq − 1 ∈ Z∗pα . Let

T = {(eq − 1)−1((eq)i − 1) | i ∈ Zk},
T ′ = {(eq − 1)−1((eq)i − 1)(1 + pγ)m + (eq)in | i ∈ Zk},
U = {aη | η ∈ T} and

V = {bmaη | η ∈ T ′}.

It is easy to see that a 7→ a(e−1)(eq−1)−1

and b 7→ b induce an automorphism of G, say ρ.
Then

Uρ = {a(e−1)(eq−1)−1(e−1)−1(ei−1) | i ∈ Zk}

= {a(eq−1)−1((eq)i−1) | i ∈ Zk} = {aη | η ∈ T} = U,

and similarly, V ρ = V . Thus, BiCay(G, ∅, ∅, U ∪ V ) ∼= BiCay(G, ∅, ∅, U ∪ V ), that is,
Γ is independent from the choice of element e of order k in Z∗pα . To finish the proof, it
suffices to prove that Γ is half-arc-transitive with Aut(Γ) ∼= (Gα,β,γ o Zk).Z2.

Claim 1. p - |A10
|.
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We argue by contradiction and we suppose p
∣∣ |A10 |. Let P is a Sylow p-subgroup of

A containing Ĝ and let X = NA(Ĝ). Then Ĝ < P , and hence Ĝ < NP (Ĝ) ≤ X . In
particular, p

∣∣ |X : Ĝ|, and so p
∣∣ |X10

|. Let τ be the automorphism of G induced by
a 7→ ae and b 7→ b.

First we prove στ,a ∈ X10
. By Proposition 4.1, it is enough to show Sτ = a−1S.

Clearly,

Uτ = {aeη | η ∈ T} = {aη | η ∈ Te} and

a−1U = {aη−1 | η ∈ T} = {aη | η ∈ T − 1}.

By taking ` = 1 in Lemma 4.5, we have Te = T − 1 and hence Uτ = a−1U . Similarly,

V τ = {bmaeη | η ∈ T ′} = {bmaη | η ∈ T ′e} and

a−1V = {a−1bmaη | η ∈ T ′} = {bma−(1+pγ)maη | η ∈ T ′}
= {bmaη | η ∈ T ′ − (1 + pγ)m}.

By Equation (4.2), (1 + pγ)m + n(e− 1) ∈ Z∗pα , and hence Te = T − 1 implies

T [(1 + pγ)m + n(e− 1)]e+ ne = T [(1 + pγ)m + n(e− 1)] + n− (1 + pγ)m.

Since T ′ = T [(1 + pγ)m + n(e − 1)] + n, we have T ′e = T ′ − (1 + pγ)m, that is,
V τ = a−1V . It follows that Sτ = a−1S, as required.

Set U1 = {u1 | u ∈ U}, V1 = {v1 | v ∈ V } and S1 = {s1 | s ∈ S}. Then
U1 = 1

〈στ,a〉
1 and V1 = (bman)

〈στ,a〉
1 . Since στ,a ∈ X10

, either X10
has two orbits of

length k on S1, or is transitive on S1. By Lemma 4.2, X10 acts faithfully on S1, and since
p
∣∣ |X10 |, any element of order p of X10 has an orbit of length p on S1, implying that

X10 is transitive on S1 as k < p. From |X10 | = |X1011 | · |1
X10
1 | = |X1011 | · 2k, we

have p
∣∣ |X1011

|. By Proposition 4.1, X1011
= {σθ,1 | θ ∈ Aut(G) s.t. Sθ = S}. Let

σθ,1 ∈ X1011
be of order p with θ ∈ Aut(G). Then θ has order p and Sθ = S. Recall that

k ≥ 2.
Assume k > 2. Since a ∈ S, we have aθ ∈ Sθ = S = U ∪ V . If aθ ∈ V then

aθ = bmai for some i ∈ T ′. Note that a1+e ∈ S as k > 2. Since m ∈ Z∗pα−γ , we have
(m, p) = 1, and by Lemma 4.5, (p, 1 + e) = 1. Then (a1+e)θ = (bmai)1+e ∈ V , and
considering the powers of b, we have m(1 + e) ≡ m (mod pβ), that is, e ≡ 0 (mod pβ).
It follows that p | e, contradicting that e ∈ Z∗pα . Thus, aθ ∈ U , and hence, aθ = aj

for some j ∈ T . If aθ 6= a then aσθ,11 = {a1, a
θ
1, . . . , a

θp−1

1 } is an orbit of length p of
σθ,1 on S1, which is impossible because there are exactly k < p elements of type aj in
S. Thus, aθ = a and θ fixes U pointwise. Furthermore, θ also fixes V pointwise because
|V | = k < p. It follows that θ = 1 as G = 〈S〉, and so σθ,1 = 1, a contradiction.

Assume k = 2. Then e ≡ −1 (mod pα) and

S1 = {11, a1, (b
man)1, (b

ma(1+pγ)m−n)1}.

Since 1
σθ,1
1 = 11 and p ≥ 3, σθ,1 has order 3 and we may assume that aσθ,11 = (bman)1,

(bman)
σθ,1
1 = (bma(1+pγ)m−n)1 and (bma(1+pγ)m−n)

σθ,1
1 = a1 (replace σθ,1 by σ2

θ,1 if
necessary), that is, aθ = bman, (bman)θ = bma(1+pγ)m−n and (bma(1+pγ)m−n)θ = a.
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By Lemma 4.3, β < α. It follows that

a = (bma(1+pγ)m−n)θ = [(bman)a(1+pγ)m−2n]θ

= bma(1+pγ)m−n(bman)(1+pγ)m−2n,

and so 0 ≡ m + m[(1 + pγ)m − 2n] (mod pβ). Thus, p | (1 − n), which is impossible
because otherwise pα = o(aθ

2

) = o(bma(1+pγ)m−n) < pα.
Summing up, we have proved p - |A10

|, and this completes the proof of Claim 1.

By Claim 1, A10
is a p′-group, and by Theorem 1.1, Γ is normal. By Proposition 4.1,

A10
= X10

= F = {σθ,s | σ ∈ Aut(G), s ∈ S, Sθ = s−1S}, and by Lemma 4.2,
F ∼= L ≤ Aut(G), where L = {θ | σθ,s ∈ F}. By Proposition 2.1, F is cyclic, and since
στ,a ∈ A10 , F is transitive on S1 or has two orbits. By Lemma 4.2, F is faithful on S1,
and since F is cyclic, either F is regular on S1, or F = 〈στ,a〉.

We suppose that F is regular on S1 and will obtain a contradiction. Note that F ∼= Z2k

and |F : 〈στ,a〉| = 2. Then 〈στ,a〉 E F , and the two orbits U1 and V1 of 〈στ,a〉 consist of
an imprimitive block system of F on S1. By the regularity of F , there exists σθ,s ∈ F such
that 1

σθ,s
1 = (bman)1, implying that s = bman and Sθ = s−1S = (bman)−1S, and hence

U
σθ,s
1 = V1 because 11 ∈ U1 and (bman)1 ∈ V1. It follows that aθ ∈ (bman)−1V . It is

easy to see that
(bman)−1S = (bman)−1U ∪ (bman)−1V,

where

(bman)−1U = {(bman)−1aη | η ∈ T} = {b−ma−n(1+pγ)−m+η | η ∈ T}
= {b−maη | η ∈ T − n(1 + pγ)−m} and

(bman)−1V = {(bman)−1bmaη | η ∈ T ′}
= {a−n+η | η ∈ T ′} = {aη | η ∈ T ′ − n}.

Since T ′ = T [(1 + pγ)m + n(e− 1)] + n, we have

(bman)−1V = {aη | η ∈ T [(1 + pγ)m + n(e− 1)]}.

Let aθ = ar ∈ (bman)−1V for some r ∈ T [(1 + pγ)m + n(e − 1)]. Since pα =
o(aθ) = o(ar), we have r ∈ Z∗pα . Note that

Uθ = {aηr | η ∈ T} = {aη | η ∈ Tr} ⊆ (bman)−1V.

Then
Uθ = (bman)−1V = {aη | η ∈ T [(1 + pγ)m + n(e− 1)]},

and so Tr = T [(1 + pγ)m +n(e− 1)] in Zpα . By Lemma 4.5, r = (1 + pγ)m +n(e− 1).
Since Sθ = (bman)−1S = (bman)−1U ∪ (bman)−1V , we have V θ = (bman)−1U .

In particular, (bman)θ = b−mat for some t ∈ T − n(1 + pγ)−m. For η ∈ T ′, since

(bmaη)θ = [(bman)aη−n]θ = b−matar(η−n) = b−marη−rn+t,
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we have

{b−maη | η ∈ T − n(1 + pγ)−m}
= (bman)−1U = V θ = {(bmaη)θ | η ∈ T ′}
= {b−marη−rn+t | η ∈ T ′} = {b−maη | η ∈ T ′r − rn+ t}.

This implies that

T − n(1 + pγ)−m

= T ′r − rn+ t = Tr[(1 + pγ)m + n(e− 1)] + rn− rn+ t

= Tr[(1 + pγ)m + n(e− 1)] + t = T [(1 + pγ)m + n(e− 1)]2 + t

in Zpα . By Equation (4.2), e`(1 + pγ)m = [(1 + pγ)m + n(e− 1)]2. It follows that

T − n(1 + pγ)−m = Te`(1 + pγ)m + t,

and hence
T = Te`(1 + pγ)m + t+ n(1 + pγ)−m.

By Lemma 4.5, there exists `′ ∈ Zk such that e`
′ ≡ e`(1 + pγ)m (mod pα), that is,

e`
′−` = (1 + pγ)m (mod pα). Since e is an element of order k, we have (1 + pγ)mk ≡ 1

(mod pα) and since (mk, p) = 1, we have pγ ≡ 0 (mod pα), implying that γ ≥ α, which
is impossible because 0 < γ < α.

Thus, A10 = F = 〈στ,a〉 ∼= Zk. Since A10 has two orbits on S1, that is U1 and V1, Γ
is not arc-transitive. To prove the half-arc-transitivity of Γ, we only need to show that A is
transitive on V (Γ) and E(Γ). Note that 11 ∈ U1 and (bman)1 ∈ V1. By Proposition 4.1, it
suffices to construct a λ ∈ Aut(G) such that

δλ,bman,1 ∈ I = {δλ,x,y | λ ∈ Aut(G), Sλ = y−1S−1x},

that is Sλ = S−1bman, because (10, 11)δλ,bman,1 = ((bman)1, 10).
Let µ = −(1 + pγ)m − n(e − 1) and ν = −(e − 1)−1µ2 − (e − 1)−1µ. Then

µ+ 1 + n(e− 1) ≡ 0 (mod pγ) and hence

ν − µn = −(e− 1)−1µ2 − (e− 1)−1µ− µn
≡ −(e− 1)−1µ[µ+ 1 + n(e− 1)] ≡ 0 (mod pγ).

By Proposition 2.2, o(bmaν−µn) = pβ . Denote by m−1 the inverse of m in Zpβ . Then
(bmaν−µn)m

−1

= baε for some ε in Zpα , and it is easy to check that aµ and (bmaν−µn)m
−1

have the same relations as do a and b. Define λ as the automorphism of G induced by
a 7→ aµ, b 7→ (bmaν−µn)m

−1

. Clearly, (bm)λ = bmaν−µn.
Note that S = U ∪ V . First we have

Uλ = {aηµ | η ∈ T} = {aη | η ∈ Tµ} and

V −1bman = {(bmaη)−1bman | η ∈ T ′}
= {a−η+n | η ∈ T ′} = {aη | η ∈ −T ′ + n}.
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Recall that T ′ = T [(1 + pγ)m + n(e− 1)] + n = −Tµ+ n. Then

−T ′ + n = Tµ− n+ n = Tµ,

and so Uλ = V −1bman.
On the other hand,

V λ = {(bmaη)λ | η ∈ T ′} = {bmaν−µnaηµ | η ∈ T ′}
= {bmaη | η ∈ T ′µ− µn+ ν} and

U−1bman = {(aη)−1bman | η ∈ T} = {bma−η(1+pγ)m+n | η ∈ T}
= {bmaη | η ∈ −T (1 + pγ)m + n}.

To prove V λ = U−1bman, we only need to show T ′µ − µn + ν ≡ −T (1 + pγ)m + n in
Zpα , which is equivalent to show that T (1+pγ)m = Tµ2−ν+n because T ′ = −Tµ+n.
By Equation (4.2),

e`(1 + pγ)m = [(1 + pγ)m − n(1− e)]2 = µ2,

and by Lemma 4.5, T = Te` + (e− 1)−1(e` − 1). It follows

T (1 + pγ)m = Te`(1 + pγ)m + (e− 1)−1(e` − 1)(1 + pγ)m

= Tµ2 + (e− 1)−1[µ2 − (1 + pγ)m].

Note that

−ν + n = (e− 1)−1µ2 + (e− 1)−1µ+ n

= (e− 1)−1[µ2 + µ+ n(e− 1)] = (e− 1)−1[µ2 − (1 + pγ)m].

Then T (1 + pγ)m = Tµ2 − ν + n, and hence V λ = U−1bman.
Thus, Sλ = Uλ ∪ V λ = V −1bman ∪ U−1bman = S−1bman, and so Γ is half-arc-

transitive.
Let A∗ be the subgroup of A fixing the two parts of Γ setwise. Then A = A∗.Z2. Since

A10
∼= Zk and Γ is normal, we have A∗ ∼= Go Zk and hence A ∼= (Go Zk).Z2.

Now we prove the necessity of Theorem 1.3.

Lemma 4.8. For an odd prime p, let Γ be a connected bipartite half-arc-transitive bi-p-
metacirculant of valency 2k (k < p) over G. Then k ≥ 2, k | (p − 1), G ∼= Gα,β,γ and
Γ ∼= Γ±m,k,`, where m ∈ Z∗pα−γ and 0 ≤ ` < k with k

(k,`)

∣∣ (p−1)
2 .

Proof. Clearly, the two orbits of G are exactly the two parts of Γ. Then we may assume
that Γ = BiCay(G, ∅, ∅, S), where 1 ∈ S, |S| < 2p and G = 〈S〉. Let A = Aut(Γ).

Since Γ is half-arc-transitive, Γ has valency at least 4, that is, k ≥ 2, and A10
has

exactly two orbits on S1 = {s1 | s ∈ S}, say U1 and V1 with 11 ∈ U1, where U and V
are subsets of G with 1 ∈ U . Then S = U ∪ V , |U | = |V | = k ≥ 2 and |S| = 2k.
Since k < p, the Orbit-Stabilizer theorem implies that A10

is a p′-group. By Theorem 1.1,
ĜE A, and by Proposition 4.1, A10

= F = {σθ,s | θ ∈ Aut(G), s ∈ S, Sθ = s−1S}. By
Lemma 4.2, A10

is faithful on S1, and F ∼= L := {σ | σθ,s ∈ F}.
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Suppose that G is non-split. By Lindenberg [36], the automorphism group of G is a
p-group. Thus, p

∣∣ |L| and hence p
∣∣ |A10

|, a contradiction.
Thus, G is split, namely G = Gα,β,γ , as defined in Equation (2.1). By Proposition 2.1,

F is a cyclic subgroup of Zp−1, and hence F = 〈σθ,s〉 for some θ ∈ Aut(G) and s ∈
S with Sθ = s−1S. Then σθ,s has order k and 〈σθ,s〉 is regular on both U1 and V1.
Furthermore, A10 = F = 〈σθ,s〉 ∼= Zk,

U1 = 1
〈σθ,s〉
1 = {11, s1, (ss

θ)1, . . . , (ss
θ · · · sθ

k−2

)1}, and

V1 = t
〈σθ,s〉
1 = {t1, (stθ)1, (ss

θtθ
2

)1, . . . , (ss
θ · · · sθ

k−2

tθ
k−1

)1}

with (ssθ · · · sθk−1

)1 = 11 for any t ∈ V . It follows

U = {1, s, ssθ, . . . , ssθ · · · sθ
k−2

} and

V = {t, stθ, ssθtθ
2

, . . . , ssθ · · · sθ
k−2

tθ
k−1

}.

In particular, k | (p− 1), θ has order k, and

ssθ · · · sθ
k−1

= 1. (4.4)

By Proposition 2.1, we may assume that θ is the automorphism induced by a 7→ ae,
b 7→ b, where e ∈ Z∗pα has order k.

Let s = biaj and t = bman with i,m ∈ Zpβ and j, n ∈ Zpα . Since sθ = biaej , we
have ssθ · · · sθk−1

= bkiaε for some ε ∈ Zpα . By Equation (4.4), bki = 1, that is, ki ≡ 0
(mod pβ). Since k < p, we have i ≡ 0 (mod pβ), and hence s = aj . Since

ssθ · · · sθ
i−1

= ajaje · · · aje
i−1

= aj(e−1)−1(ei−1),

we have

U = {1, aj , ajaje, . . . , ajaje · · · aje
k−2

} = {aj(e−1)−1(ei−1) | i ∈ Zk}.

By Lemma 4.3,

aj(e−1)−1(ei−1)bm = bmaj(e−1)−1(ei−1)(1+pγ)m ,

and since (bman)θ
i

= bmae
in, we have

V = {aj(e−1)−1(ei−1)(bman)θ
i

| i ∈ Zk}

= {bmaj(e−1)−1(ei−1)(1+pγ)m+ein | i ∈ Zk}.

By the connectedness of Γ,G = 〈S〉 = 〈U ∪V 〉 ≤ 〈aj , an, bm〉, forcingG = 〈aj , an, bm〉.
It follows that p - m and so m ∈ Z∗pβ .

Since Γ is half-arc-transitive, Proposition 4.1 implies that there exists δλ,x,y ∈ I such
that (10, 11)δλ,x,y = ((bman)1, 10) with λ ∈ Aut(G) and Sλ = y−1S−1x. In particular,
(bman)1 = 1

δλ,x,y
0 = x1 and 10 = 1

δλ,x,y
1 = y0. It follows that x = bman, y = 1 and

Sλ = S−1bman = U−1bman ∪ V −1bman. Furthermore,

U−1bman = {a−j(e−1)−1(ei−1)bman | i ∈ Zk}

= {bma−j(e−1)−1(ei−1)(1+pγ)m+n | i ∈ Zk},
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and since

(bmaj(e−1)−1(ei−1)(1+pγ)m+ein)−1bman = a−j(e−1)−1(ei−1)(1+pγ)m+n(1−ei),

we have
V −1bman = {a−j(e−1)−1(ei−1)(1+pγ)m+n(1−ei) | i ∈ Zk}.

Suppose p | j. Since G = 〈aj , an, bm〉, we have p - n and p - m. By Proposition 2.2,
every element in both V and U−1bman has order max{pα, pβ}. Clearly, every element in
U has order less than pα, but the element a−j(1+pγ)m+n(1−e) ∈ V −1bman has order pα

because p - (1 − e) by Lemma 4.5. This is impossible as λ ∈ Aut(G) and (U ∪ V )λ =
Sλ = S−1bman = U−1bman ∪ V −1bman. Thus, p - j.

Now, there is an automorphism ofGmapping aj to a and b to b, and so we may assume
j = 1 and s = a. It follows that

U = {aη | η ∈ T}, (4.5)

where T = {(e− 1)−1(ei − 1) | i ∈ Zk};

V = {bmaη | η ∈ T ′}, (4.6)

where T ′ = {(e− 1)−1(ei − 1)(1 + pγ)m + ein | i ∈ Zk}.
As

(e− 1)−1(ei − 1)(1 + pγ)m + ein

= [(e− 1)−1(ei − 1)][(1 + pγ)m + n(e− 1)] + n,

we have

T ′ = T [(1 + pγ)m + n(e− 1)] + n. (4.7)

Since

−(e− 1)−1(ei − 1)(1 + pγ)m + n = [(e− 1)−1(ei − 1)][−(1 + pγ)m] + n

and

− (e− 1)−1(ei − 1)(1 + pγ)m + n(1− ei)
= [(e− 1)−1(ei − 1)][−(1 + pγ)m + n(1− e)],

we have
U−1bman = {bmaη | η ∈ T1}, (4.8)

where T1 = T [−(1 + pγ)m] + n;

V −1bman = {aη | η ∈ T ′1}, (4.9)

where T ′1 = T [−(1 + pγ)m + n(1− e)].
Noting that T, T ′, T1, T

′
1 ⊆ Zpα , we have U, V, U−1bman, V −1bman ⊆ G.

Claim 1. aλ ∈ V −1bman.
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Suppose to the contrary that aλ /∈ V −1bman. Since aλ ∈ Sλ = U−1bman∪V −1bman,
we have aλ ∈ U−1bman, that is, aλ = bmaµ for µ ∈ T1. By Lemma 4.3, β < α. Recall
k ≥ 2.

Let k > 2. Then a1+e ∈ U and (a1+e)λ = (bmaµ)1+e ∈ U−1bman. Note that p - m
and by Lemma 4.5, p - (1 + e). Considering the power of b of (bmaµ)1+e and elements
in U−1bman, we have m(1 + e) ≡ m (mod pβ) and so e ≡ 0 (mod pβ), contradicting
e ∈ Z∗pα .

Let k = 2. Then T = {0, 1} and e ≡ −1 (mod pα). By Equations (4.5) and (4.6),

S = {1, a, bman, bma(1+pγ)m−n},

and by Equations (4.8) and (4.9),

S−1bman = {1, a−(1+pγ)m+2n, bman, bma−(1+pγ)m+n}.

Note that aλ ∈ U−1bman = {bman, bma−(1+pγ)m+n}.

Case 1. aλ = bman.

As Sλ = S−1bman, it is easy to see that

((bman)λ, (bma(1+pγ)m−n)λ)

= (a−(1+pγ)m+2n, bma−(1+pγ)m+n) or (bma−(1+pγ)m+n, a−(1+pγ)m+2n).

For the former,

bma−(1+pγ)m+n = (bma(1+pγ)m−n)λ = [(bman)a(1+pγ)m−2n]λ

= a−(1+pγ)m+2n(bman)(1+pγ)m−2n,

implying that m ≡ m[(1 + pγ)m − 2n] (mod pβ), and since p - m, we have p | n. This
is impossible because otherwise pα = o(aλ) = o(bman) < pα (β < α). For the latter, we
can verify that

a−(1+pγ)m+2n = (bma(1+pγ)m−n)λ = [(bman)a(1+pγ)m−2n]λ

= bma−(1+pγ)m+n(bman)(1+pγ)m−2n.

Thus, 0 ≡ m+m[(1+pγ)m−2n] (mod pβ), and hence p | (1−n), but it is also impossible
because otherwise pα = o(aλ) = o(bman) = o((bman)λ) = o(bma−(1+pγ)m+n) < pα.

Case 2. aλ = bma−(1+pγ)m+n.

In this case, we have

((bman)λ, (bma(1+pγ)m−n)λ)

= (a−(1+pγ)m+2n, bman) or (bman, a−(1+pγ)m+2n).

For the former,

bman = (bma(1+pγ)m−n)λ = [(bman)a(1+pγ)m−2n]λ

= a−(1+pγ)m+2n(bma−(1+pγ)m+n)(1+pγ)m−2n,
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implying m ≡ m[(1 + pγ)m − 2n] (mod pβ), and since p - m, we have p | n. By
Proposition 2.2,

o(bma−(1+pγ)m+n) = o(bma(1+pγ)m−n)

= max{o(a(1+pγ)m−n) = o(a−(1+pγ)m+n), o(bm)},

and it follows that

pα = o(aλ) = o(bma−(1+pγ)m+n) = o(bma(1+pγ)m−n)

= o((bma(1+pγ)m−n)λ) = o(bman) < pα,

a contradiction. For the latter,

a−(1+pγ)m+2n = (bma(1+pγ)m−n)λ = [(bman)a(1+pγ)m−2n]λ

= bman(bma−(1+pγ)m+n)(1+pγ)m−2n.

Thus, 0 ≡ m + m[(1 + pγ)m − 2n] (mod pβ), and hence p | (1 − n), but it is also
impossible because otherwise pα = o(aλ) = o(bma−(1+pγ)m+n) < pα. This completes
the proof of Claim 1.

By Claim 1, aλ = aµ ∈ V −1bman for some µ ∈ T ′1. Since pα = o(aλ) = o(aµ), we
have µ ∈ Z∗pα . By Equations (4.5) and (4.9),

Uλ = {aηµ | η ∈ T} = {aη | η ∈ Tµ} ⊆ V −1bman.

Then Uλ = V −1bman = {aη | η ∈ T ′1}, and so Tµ = T ′1 in Zpα . By Equation (4.9),
Tµ = T [−(1+pγ)m+n(1−e)]. Since p - µ, we have T = T [−(1+pγ)m+n(1−e)]µ−1.
By Lemma 4.5, µ = −(1 + pγ)m + n(1− e).

Since Sλ = S−1bman = U−1bman ∪ V −1bman, we have V λ = U−1bman. In
particular, (bman)λ = bmaν for some ν ∈ T1. For η ∈ T ′, since

(bmaη)λ = [(bman)aη−n]λ = bmaνaηµ−µn = bmaηµ−µn+ν ,

we have that

{bmaη | η ∈ T1} = U−1bman = V λ = {(bmaη)λ | η ∈ T ′}
= {bmaηµ−µn+ν | η ∈ T ′} = {bmaη | η ∈ T ′µ− µn+ ν}.

By Equations (4.7) and (4.8),

T [−(1 + pγ)m] + n = T1 = T ′µ− µn+ ν

= T [(1 + pγ)m + n(e− 1)]µ+ µn− µn+ ν

in Zpα . Thus, T [(1 + pγ)m − n(1 − e)]2(1 + pγ)−m − (ν − n)(1 + pγ)−m = T . By
Lemma 4.5, there exists ` ∈ Zk such that e` = [(1 + pγ)m − n(1− e)]2(1 + pγ)−m, that
is, n satisfies Equation (4.2).

Recall that α − γ ≤ β and m ∈ Z∗pβ . Let m = m1 + lpα−γ with m1 ∈ Z∗pα−γ . Since
(1 + pγ) has order pα−γ in Z∗pα , we have

(1 + pγ)m = (1 + pγ)m1+lpα−γ = (1 + pγ)m1 .
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This implies that replacing m by m1, Equation (4.2) has the same solutions, and

T ′ = {(e− 1)−1(ei − 1)(1 + pγ)m1 + ein | i ∈ Zk} ⊆ Zpα .

The automorphism of G induced by a 7→ a and b 7→ bm1m
−1

, maps U to U , and V =
{bmaη | η ∈ T ′} to {bm1aη | η ∈ T ′}. Thus, we may assume that m ∈ Z∗pα−γ , and
therefore, Γ ∼= Γnm,k,l.

Proof of Theorem 1.3. This is a consequence of Lemmas 4.7 and 4.8.
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