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Abstract

In a polar space, embeddable into a projective space, we fix a subspace, that is contained
in some hyperplane. The complement of that subspace resembles a slit space or a semiaffine
space. We prove that under some assumptions the ambient polar space can be recovered in
this complement.
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1 Introduction
Cohen and Shult coined the term affine polar space in [4] as a polar space with some
hyperplane removed. They prove that from such an affine reduct the ambient polar space
can be recovered. In [9] we prove something similar for the complement of a subset in a
projective space. Looking at the results of these two papers it is seen that an interesting
case has been set aside: the complement of a subspace in a polar space. We are trying to fill
this this gap here, although under several specific assumptions: we consider classical polar
spaces, i.e. embeddable into projective spaces (cf. [2]), and our subspace is contained in a
hyperplane.

A projective space with some subspace removed is called a slit space (cf. [5, 6, 8])
so, our complement can be seen as a generalized slit space. Singular subspaces in a polar
space are projective spaces, in an affine polar space they are affine spaces (cf. [4]), while
in our complement they are semiaffine or projective spaces. Adopting the terminology
of [7], where the class of semiaffine spaces includes affine spaces, projective spaces and
everything in between, we could say that singular subspaces of our complement are simply
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semiaffine spaces. This let us call our complement a semiaffine polar space. Anyway, it is
clear that the complement we examine is affine in spirit. A natural parallelism is there and
the subspace we remove can be viewed as the horizon.

As this paper is closely related to [4] and [9], it borrows some concepts, notations
and reasonings from these two works. There are however new difficulties in this case. In
contrast to [4], the horizon is not a hyperplane and thus, it induces a partial parallelism
(cf. [8]). There are lines disjoint with the horizon in the ambient space and those lines,
called non-affine, cannot be parallel to any line in the complement. If we had applied the
definition of parallelism from [4] as it is, we would end up with non-affine lines in its
equivalence classes. Therefore we use the Veblen condition to express parallelism in terms
of incidence in the complement. This method unfortunately is viable only if we have at
least 4 points per line in the polar space.

Roughly speaking, the points of the horizon are identified with equivalence classes
of parallelism, or, in other words, with directions of lines. On the horizon of an affine
polar space a deep point emerges as the point which could be reached by no line of the
complement. If the removed subspace is not a hyperplane then there is no deep point but
a new problem arises. Some lines on the horizon are recoverable in a standard way, as
directions of planes. For the others there are no planes in the complement that would reach
them. An analogy to a deep point is clear, so we call them deep lines. To overcome the
problem we introduce the following relation: a line K is anti-euclidean to a line L iff there
is no line intersecting K that is parallel to L. Based on this relation is a ternary collinearity
of points on deep lines.

We do not know whether every subspace of a polar space is contained in a hyperplane.
Any subspace can be extended to a maximal one, but does it have to be a hyperplane? If
that is the case our assumptions could be weakened significantly.

2 Generalities
A point-line structure M = 〈S,L〉, where the elements of S are called points, the elements
of L are called lines, and where L ⊂ 2S , is said to be a partial linear space, or a point-line
space, if two distinct lines share at most one point and every line is of size (cardinality) at
least 2 (cf. [3]). A line of size 3 or more will be called thick. If all lines in M are thick
then M is thick. M is said to be nondegenerate if no point is collinear with all others,
and it is called singular if any two of its points are collinear. It is called Veblenian iff
for any two distinct lines L1, L2 through a point p and any two distinct lines K1,K2 not
through the point p whenever each of L1, L2 intersects both of K1,K2, then K1 intersects
K2. A subspace of M is a subset X ⊆ S that contains every line, which meets X in at
least two points. A proper subspace of M that shares a point with every line is said to be
a hyperplane. If M satisfies exchange axiom, then a plane of M is a singular subspace of
dimension 2. A partial linear space satisfying one-or-all axiom, that is

for every line L and a point a /∈ L, a is collinear with one or all points on L,

will be called a polar space. The rank of a polar space is the maximal number n for which
there is a chain of singular subspaces ∅ 6= X1 ⊂ X2 ⊂ · · · ⊂ Xn (n = −1 if this chain is
reduced to the empty set). For a ∈ S by a⊥ we denote the set of all points collinear with
a, and for X ⊆ S we put

X⊥ =
⋂
{a⊥ : a ∈ X}, radX = X ∩X⊥.
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As an immediate consequence of one-or-all axiom we get (cf. [4]):

Fact 2.1. For any point a ∈ S the set a⊥ is a hyperplane of P.

Following [10], a subset X of S is called

• spiky when every point a ∈ X is collinear with some point b /∈ X ,

• flappy when for every line L ⊆ X there is a point a /∈ X such that L ⊆ a⊥.

2.1 Complement

Let M = 〈S,L〉 be a thick partial linear space and letW be a proper subspace of M. By
the complement of W in M we mean the structure

DM(W) := 〈SW ,LW〉,

where
SW := S \W and LW := {k ∩ SW : k ∈ L ∧ k *W}.

The subspaceW will be called the horizon of DM(W). Note that the complement DM(W)
is a partial linear space. Following a standard convention we call the points and lines of the
complement DM(W) proper, and points and lines ofW are said to be improper. Given a
subspace X of DM(W) its closure X is a subspace of M with X ⊆ X . We say that two
lines K,L ∈ LW are parallel, and we write

K ‖W L iff K ∩ L ∩W 6= ∅. (2.1)

This is always an equivalence relation. Its domain is LW only in caseW is a hyperplane, or
in other words, a line L ∈ LW with L = L cannot be parallel to any line. A line L ∈ LW
with the property that L ‖W L will be called an affine line. The set of all affine lines, the
domain of ‖W , will be denoted by L∗. For affine line L we write L∞ for the point of L
inW , i.e. the point at infinity. A point a ∈ W is said to be a deep point if there is no line
L ∈ LW such that a = L∞. A plane of DM(W) containing an affine line is said to be a
semiaffine plane. By Π∞ we denote the set of points at infinity of a semiaffine plane Π, i.e.
Π∞ = {M∞ : M ∈ L∗ and M ⊆ Π}. Note that Π∞ is a line iff Π is an affine plane. A
line L ⊆ W is said to be a deep line if there is no plane in DP(W) with L = Π∞.

3 Complement in a polar space
Let P = 〈S,L〉 be a thick, nondegenerate polar space of rank at least 3. In the remainder
of the paper we deal with DP(W), where W is a proper subspace contained in some
hyperplane of P. Let us emphasize, that we do not mean one particular hyperplane and it
is not fixed in our reasonings in any way. If there was a unique hyperplaneH containingW
we would be able to recover the ambient space applying Proposition 2.7 from [4], which
says that every automorphism of the complement DP(H) can be uniquely extended to
an automorphism of P. It is not however doable as there could be many hyperplanes
containingW and none of them can be distinguished in terms of the complement.

In polar spaces deep points appear only on hyperplanes and there could be at most one
deep point on a hyperplane.
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Lemma 3.1.
(i) If W is a hyperplane, then there is at most one deep point onW and it is in radW .

(ii) If W is not a hyperplane, then there are no deep points onW , that isW is spiky.

Proof. (i): By Corollary 1.3 (ii) in [4].
(ii): Assume that a is a deep point inW . Then a⊥ ⊆ W , and by Fact 2.1 we get thatW

contains a hyperplane. A contradiction, as a hyperplane in P is a maximal proper subspace
(cf. [4, Lemma 1.1]).

Lemma 3.2. Let P be an embeddable polar space and K,L ∈ LW be two distinct lines
such that K ‖W L. The subspaceW can be extended to a hyperplane of P not containing
K and L.

Proof. IfW is a hyperplane of P thenW itself is the required hyperplane.
Assume that W is not a hyperplane. Let H be a hyperplane containing W , N be a

projective space embracing P, and f be an embedding of P into N. Consider the projective
subspace G spanned by f(H). By Proposition 5.2 from [4] G is a hyperplane of N. If
f(K), f(L) * G then the hyperplane H = f−1(G ∩ f(S)) is the required one. Let H be
the family of all hyperplanes in G containing f(W).

Now, assume that f(K) ⊆ G and f(L) * G. Take aK ∈ f(K) \ f(W) and aL ∈
f(L) \ f(W) and choose a hyperplane G0 ∈ H with aK /∈ G0. Note that aK , aL meets G
in aK . Take b ∈ aK , aL distinct from aK and aL. Assume that there is a line through b that
intersects f(L) \ f(W) in some point c and meets G0 in a point d. Note that d /∈ f(K)
as otherwise we would have aK ∈ G0. Lines aL, d and f(K) are on a plane spanned
by the triangle aL, b, c. Therefore the line aL, d intersects f(K) in some point e distinct
from d. Then d, e ⊆ G, and thus aL ∈ G, a contradiction. Hence, G′ = 〈G0, b〉 is a
hyperplane of N such that f(L) * G′. We have also aK , b ∩ G0 = ∅ since aK , b * G.
Thus f(K) * G′. Finally, H ′ := f−1(G′ ∩ f(S)) is the hyperplane we are looking for.
The case with f(K) * G and f(L) ⊆ G goes the same way.

Now, let f(K) ⊆ G and f(L) ⊆ G. As in the previous case we take aK ∈ f(K) \
f(W), aL ∈ f(L) \ f(W), but this time choose a hyperplane G0 ∈ H with aK , aL /∈ G0.
Let b /∈ G. Note that ai, b∩G0 = ∅ for i = K,L. So, if we set G′ = 〈G0, b〉 then f(K) *
G′ and f(L) * G′. Moreover, G′ is a hyperplane of N. Again, H ′ := f−1(G′ ∩ f(S)) is
the required hyperplane.

Lemma 3.3. Let K,L ∈ LW be two distinct lines such that K ‖W L. There is a sequence
Π1, . . . ,Πn of planes in DP(W) such that K∞ = L∞ ∈ Πi for i = 1, . . . , n and K ⊆
Π1, L ⊆ Πn, and Πj ,Πj+1 share a line for j = 1, . . . , n− 1.

Proof. By Lemma 3.2 we can extend W to a hyperplane H of P such that K,L * H .
Take the point a = K∞. By (2.1) we have a = L∞. Now, take in P the bundle of all the
lines together with all the planes through a. This structure is actually the quotient space
a⊥/a, and it is, up to an isomorphism, a polar space (cf. [1, Lemma 2.1]), that we denote
by P′. The set H ′, consisting of all the lines through a contained in H , is a hyperplane
in P′ induced by H . Then DP′(H ′) is an affine polar space, that in itself is connected
(cf. [4]). So there is in DP′(H ′) a sequence of intersecting lines joining K and L as points
of DP′(H ′). However, lines of DP′(H ′) are planes of DP(H). AsW ⊆ H these planes
are also planes of DP(W).
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3.1 Parallelism

Let K1,K2 ∈ LW . Then

K1 ‖∗ K2 iff K1 ∩K2 = ∅ and there are two distinct lines
L1, L2 ∈ LW crossing both of K1,K2, such that
L1 ∩ L2 6= ∅ and L1 ∩ L2 ∩Ki = ∅ for i = 1, 2.

(3.1)

In case there are are exactly 3 points per line in our polar space P, no two lines K1,K2 on
an affine plane in DP(W) such that K1 ‖W K2 satisfy the right hand side of (3.1), as the
required lines L1, L2 had to be of size 4. This is why from now on we assume that

there are at least 4 points on every line of P.

Let ‖ be the transitive closure of ‖∗. It is clearly seen that ‖ ⊆ L∗ × L∗.

Lemma 3.4. The relation ‖ is reflexive on L∗.

Proof. Given a line K1 ∈ LW , considering that the rank of P is at least 3, take a plane π
containing K1 in a maximal singular subspace through K1. There are lines K2, L1, L2 on
π such that K1 ∩K2 = ∅ (that is K∞1 = K∞2 ), L1 6= L2, L1 ∩ L2 6= ∅, and Ki ∩ Lj 6= ∅
for i, j = 1, 2. Thus K1 ‖∗ K2 by (3.1). This means that K1 ‖ K2 and K2 ‖ K1, which
by transitivity implies that K1 ‖ K1.

Proposition 3.5. Let W be a subspace of P. The relation ‖W defined in (2.1) and the
relation ‖ coincide on the set of lines of DP(W).

Proof. Let K1,K2 ∈ LW . If K1 = K2, then K1 ‖W K2 and K1 ‖ K2. So, assume that
K1 6= K2.

Consider the case where K1 ‖W K2. By (2.1) it means that K ∩ L ∩W 6= ∅, and
consequently K∞1 = K∞2 = a for some a ∈ W . This implies that K1 ∩K2 = ∅. Assume
that K1 and K2 are coplanar, and Π is the plane of DP(W) containing both of K1,K2.
The plane Π is, up to an isomorphism, a projective plane, so it is Veblenian. Thus, by (3.1),
K1 ‖∗ K2. IfK1 andK2 are not coplanar, then by Lemma 3.3 there is a sequence of planes
Π1, . . . ,Πn such that K1 ⊆ Π1, K2 ⊆ Πn, a ∈ Πi for i = 1, . . . , n, and Πj ,Πj+1 share
a line for j = 1, . . . , n − 1. Let Πj ∩ Πj+1 = Mj . Note that a ∈ M1, . . . ,Mn−1 and
Mj ,Mj+1 are coplanar. Therefore Mj ‖∗ Mj+1. Moreover, K1 ‖∗ M1 and Mn−1 ‖∗ K2

by the same reasons. So finally we get K1 ‖ K2.
Now, assume that K1 ‖∗ K2. Then K1,K2 are disjoint and coplanar. Thus K1,K2

meet in the closure of some plane, this means that they meet in W . By (2.1) it gives
K1 ‖W K2. If K1 ‖ K2 then there is a sequence of proper lines L1, . . . , Ln such that
K1 ‖∗ L1 ‖∗ · · · ‖∗ Ln ‖∗ K2. So, from the previous reasoning we get K1 ‖W L1 ‖W
· · · ‖W Ln ‖W K2. As the relation ‖W is transitive we have K1 ‖W K2.

As an immediate consequence of Proposition 3.5 we get

Corollary 3.6. Affine lines can be distinguished in the set LW as those parallel to them-
selves.
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3.2 Recovering

IfW is a hyperplane it follows by [4, Proposition 2.7] that:

Proposition 3.7. Let P be a thick nondegenerate polar space of rank at least 2 and let H
be its hyperplane. The polar space P can be recovered in the complement DP(H).

So, from now on we additionally assume thatW is not a hyperplane. By Proposition 3.5
the relation ‖W can be expressed purely in terms of DP(W). Recall that our parallelism
is partial: it is defined only on affine lines. However it is not a problem in view of Corol-
lary 3.6. From Lemma 3.1(ii) there is a bijection between the setsW = {L∞ : L ∈ L∗}
and {[L]‖ : L ∈ L∗}. Thus we can recoverW pointwise in a standard way:

points of the horizonW are identified with equivalence classes of parallelism
i.e. directions of affine lines of the complement DP(W).

Let us introduce a relation ∼ ⊆ L∗ × L∗ defined by the following condition:

K1 ∼ K2 iff for all M ∈ L∗ if M ∩K1 6= ∅ then M ∦ K2. (3.2)

In the sense of Euclid’s Fifth Postulate it could be read as anti-euclidean parallelism. A lot
more useful for us is its derivative ≡ ⊆ L∗/‖ × L∗/‖ defined as follows:

[K1]‖ ≡ [K2]‖ iff for all M ∈ [K1]‖, N ∈ [K2]‖ : M ∼ N and N ∼M. (3.3)

Lemma 3.8. Let M , N be two nonparallel affine lines. The following conditions are
equivalent:

(i) [M ]‖ ≡ [N ]‖,

(ii) there is a deep line L ⊆ W , such that M∞, N∞ ∈ L.

Proof. (i)⇒ (ii): From one-or-all axiom, M∞ must be collinear with at least one point of
the line N . Moreover, M∞ cannot be collinear with a proper point of N , as [M ]‖ ≡ [N ]‖.
Thus M∞ is collinear with the unique improper point of N , which is N∞.

Let L be the line through M∞, N∞. Assume, that Π is a semiaffine plane with L =
Π∞. Then, there are some affine lines M1, N1 ⊆ Π with M∞ = M∞1 and N∞ = N∞1 .
So, either M1 ‖ N1 or M1 and N1 share a proper point. In view of (3.3), in both cases we
get [M ]‖ 6≡ [N ]‖.

(ii) ⇒ (i): Assume that [M ]‖ 6≡ [N ]‖. Due to (3.2) and (3.3) there is a proper point
a ∈ M and an affine line K such that a ∈ K ‖ N (or the symmetrical case holds). This
means that a and N∞ are collinear in P. The one-or-all axiom implies, that either there
are no other points on M that are collinear with N∞, or N∞ is collinear with all points
on M . In the first case N∞ is not collinear with M∞, in the latter 〈N∞,M〉 * W is the
plane containing the line M∞, N∞.

One can note, that the relation ≡ defined by (3.3) and the relation ≡ introduced in [4]
coincide, though their definitions are expressed differently. Besides, our relation is not tran-
sitive, but the reflexive closure of its analogue in [4] is an equivalence relation. This benefit
is the result of some hyperplane properties (see Lemma 3.1(i)). Nevertheless, we can over-
come this inconvenience and define ternary relation of collinearity on the horizonW .
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Lemma 3.9. If K1, K2, K3 are pairwise nonparallel affine lines such that [Ki]‖ ≡
[K(i+1) mod 3]‖ for i = 1, 2, 3, then points K∞1 , K∞2 , K∞3 are on a line.

Proof. Let a = K∞1 , b = K∞2 , c = K∞3 . By Lemma 3.8 there are improper lines L = a, b,
M = b, c, N = c, a. Let H be a hyperplane containingW . If in DP(H) there is a plane,
which closure contains one of the lines L, M or N , then we also have such a plane in
DP(W), that contradicts Lemma 3.8. Thus, L,M,N ⊆ H are deep lines in relation to
DP(H). By Lemma 2.3 of [4] this means that each of L, M and N contains a point of
radH . Let d ∈ radH . Then, by Corollary 1.3 of [4], H = d⊥, {d} = radH , and d is the
unique deep point of H . As we have d ∈ L,M,N , it must be L = M = N .

Lemma 3.10. Let K1, K2, K3 be pairwise nonparallel affine lines. Points K∞1 , K∞2 , K∞3
are on a line iff one of the following holds:

(i) there are affine lines M1 ‖ K1, M2 ‖ K2, M3 ‖ K3 such that M1,M2,M3 form a
triangle in DP(W),

(ii) [K1]‖ ≡ [K2]‖, [K2]‖ ≡ [K3]‖, and [K3]‖ ≡ [K1]‖.

Proof. Assume that K∞1 , K∞2 , K∞3 are on a line L. If (i) does not hold, then there is no
plane Π in DP(W) with L = Π∞. This means that L is a deep line and by Lemma 3.8 we
get (ii).

Now, assume that (i) is the case. Take a plane Π spanned by the triangle M1,M2,M3.
Then K1,K2,K3 ⊆ Π and K∞1 , K∞2 , K∞3 are on a line Π∞. If (ii) is fulfilled then K∞1 ,
K∞2 , K∞3 are on a line directly by Lemma 3.9.

The meaning of Lemma 3.10 is that we are able to recover improper lines regardless of
whetherW is flappy or not. Let

[
[K]‖, [L]‖

]
≡ :=

{
[M ]‖ : [M ]‖ ≡ [K]‖, [L]‖

}
. Then new

lines can be grouped into two sets:

L′ :=
{[

[K]‖, [L]‖
]
≡ : [K]‖ ≡ [L]‖ and K ∦ L

}
,

L′′ :=
{

Π∞ : Π is a semiaffine plane of DP(W)
}
.

All our efforts in this paper essentially amount to the following isomorphism

P ∼=
〈
SW ∪ L∗/‖, LW ∪ L′ ∪ L′′,

〉
.

A new point [K]‖ is incident to a line L ∈ LW iff K ‖ L. It is incident to a line L ∈ L′ iff
there is M ∈ LW such that

[
[K]‖, [M ]‖

]
≡ = L. Eventually, it is incident to a line L ∈ L′′

iff K ⊆ Π and L = Π∞.

Theorem 3.11. Let P be a nondegenerate, embeddable polar space of rank at least 3, with
at least 4 points per line, and W be its subspace, that is contained in a hyperplane. The
polar space P can be recovered in the complement DP(W).
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