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ABSTRACT - The real time simulation for hardware or man in the loop
testing presents the cost effective . way  for design, development,
modification and testing of a complex and sophisticated weapons and
industrial systems. This simulation technology is a constant challenges for
most powerful computer systems. Therefore one short chronological review of
computer architecture for time critical real time simulation is given. For
such kind of application one homogenous single bus tlghtly coupled
multiprocessor system based on 8086/8087 single board computers has been
designed. Furthermore, this article presents one concept for parallelization
of mathematical models given by ordlnary differential equations in real time
environment. Simulator design for one splnning missile system, according to
the accepted procedure, illustrate the abilities of realized multiprocessor
simulator system.

SAZETAK - Simulacije u realnom vremenu za testiranje realnog hardvera
{11 operatora u zatvorenoj petl})l, predstavlijaju efikasan put za
projektiranje, razvoj, modifikaciju i testiranje kompleksnih sofisticiranih
vojnih i industrijskih sistema. Ovekva simulacliona tehnologija predstavlja
stalan izazov za najsnaZ?nl je radunarske sisteme. Iz tog razloga dan je jedan
kratak kronoloskl pregled radunarskih arhitektura za vremenskil kriti¢ne
simulacije u realnom vremenu. Z2a takvu vrstu primjena, u okviru ovog rada,
realiziran Je Jedan homogeni, &vrsto spregnuti multiprocesorskl sistem s
Jednom sabirnicom i nizom procesorskih ploZa baziranlh na- procesorima
8086/8087. Pored toga, izveden je i prikazan jedan koncept za paralellzaciju
matematickih modela zadanih obi&nim - diferencijalnim JednadZbama.
Projektiranjem simulatora, prema usvojenoj procedurl za Jednu rotirajucu
raketu, prikazane su moguénosti realiziranog multlprocesorskog simulatora.

1. INTRODUCTION . missile aerodynamics, flight equations and targets

) movement simulated by suitable pseudo-target generator.

The Increasing complexity and sophistication of In a this way it 1s possible to perform nondestructive
modern process control and weapon systems has testing, verification and validation of actual missile
established a category of real~time simulation which or process control subsystem in near realistic
uses hardware components iﬁtegrated in the process of environments. This preflight check and similar
simulation. This kind of simulation, so-called industrial testing in the early phase of design and
hardware-in-the-loop (HIL) simulatlon technology, has development provides effective way to analyze the
proved to be a very cost effective method in design, overall performance capability of the closed loop
development, modification, and testing of complex system and to predict a performance at minimal cost.

weapons and Industrial systems [1,2,3,4]. In HIL
simulations, for example, adequate. computer equipment

can be used to simulate the aerodynamics and flight 2. COMPUTER ARCHITECTURE FOR TIME CRITICAL
equations of the missile, whille the real hardware ) REAL TIME SIMULATIONS

subsystem such as RF sensors, IR sensors, fin

actuators, autoplilots, guidance and homing on board Hardware-in-the-loop and man-in-the-loop
computers can be embedded and used for design and simulations, which require time critical real-time
testing of a closed-loop system. In this case, HIL simulations have proved to be constant challenges for
simulation provides a reproduction of what the real the most powerful computer systems. Demands for more
hardware subsystem {missile seeker) really processes in and more fldelity and accurate simulation of dynamic

real environment, on the basis of simulation of the system characterized by ordinary differential



equations, significantly increase demands for
additional speed and power from simulation computers.
These demands have Increased at the rate at least as
fast as the rate of development and improvement In
computer technology. Thus, today, available simulation
capabilities have the same relatlonship to the
requirements as 10 years ago [3]. Furthermore the speed
requirements of the more challenging slmulation
applications, very frequently exceed the capabilitles
of even the most powerful mainframe computers. During
the 1960's hardware-in-the-loop simulation of time
critlcal processes depended on analog computers, such
as EAI 231, EAI 781. In analog computers parallel
operations of many computing elements provide very hlgh
speed of processing which is the most significant for
time critical real-time simulation. Programming of
these processors was a manual process usling the patch
boards and fixed point scaled equations. In early
1970’s hardware-in-the-loop
predominantly shifted to hybrid computations 1i.e.

simulations has

comblination of analog and digital hardware, such as EAI
PACER 100, to provide the required computational
capablilities. In the middle of 1970's with the advent
of fast mainframe digital computers the emphasis 1In
application is based exclusively on digital hardware.
But at that time the speed requirements of more
challenging simulations frequently exceeded the
capabllities of even the most powerful mainframe
computer such as IBM 360, CDC 7600, Unlivac 1108 and so
on. Today, currently available mainframe supercomputers
such as CRAY-1, CRAY X-MP-1, CRAY X-MP-2, IBM
3090/VF-200, NEC SX-1E, NEC SX-2, CDC CYBER 20S, Amdahl
1200, Hitachl S-810/20 and so on, in majority of cases
provide necessary computational power, but very often
doesn’t provide the cost effective approaches for such
applications. Therefore in the late 1970's the trend in
architecture of a dlgital computer system for time
critical real-time simulations was toward the more
specialized architectures. The first of these devices
was  peripheral array  processor  AD-10 (1879)
manufactured by Applied Dynamics Inc. It was
simulation-oriented peripheral processor intended
primarily for the simulation of systems of ordinary
differential equatlions. Performances of this system are
given 1n Table 1. They are related to estimatlion of
computer power necessary for development of hellicopter
simulator.

Impressive speed of the machine when applled to
ordinary differential equatlons results from Iits
advanced technology which provides very high processing
speeds and by the extensive pipelining and parallelling
and from specialized computing and memory units
suitable for solving nonlinear ODE-s (7]. New version
of this system AD-100, which 1is characterized by
significant Improvement in performance (Table 2) has
appeared on the market in 1984.

TABLE 1
HELICOPTER SIMULATORS [5]
computer and achieved frame times
CYBER 175 45 ms FPS AP-120B 4.5 ms
CDC 7600 15 ms AD-10 0.8 ms
TABLE 2
MODEL OF A WHIRLING FLEXIBLE BEAM [6]
computer and AD-100 advantage
ADI AD-100 1.00 IBM 3033 7.45
CRAY 1-S 3.35 FPS 164 17.85
IBM 3081 5.40 HEP H-1000 36.6S5

But very often hardware-in-the-loop real-time
simulation requires simulator systems that are more
cost effective and portable. The first cost effective
way for attalning analog computer speed leads to
parallel operation of multiple digital microprocessors.
However, the price/performance ratlo of
multimicroprocessor system was very attractive and
therefore a number of attempts to interconnect
relatively lnexpensive general-purpose microcomputers
have been made over the past years for designing a
complex simulator systems. With the Increasing
availability of very fast and very economlcal single
board computers, it becomes feasible to design the
construction of network of microprocessors which will
form special-purpose simulator. This approach was very
attractive and more favorable in speed/cost ratios in
relation to other solution. Therefore a number of
microprocessor networks were developed for real-time
throughout 1980. The
multiprocessor simulator (RTMPS) project at the NASA

simulation real-time
Lewis Research Center for the simulation of jet engines
(1984) was one of the first and most significant [B].
The recent introduction of powerful multiprocessor
systems by a large number of vendors (1985-1987), such
as Ametek Computer Research Dlvision, Alliant, BBN
Advanced Computers, Elxsi, Encore Computer, Flexible
Computer, Intel Sclentiflic Computers, Ncube, Thinking
Machlnes and so on, has increased the interest of
englneers and sclentlists in this approach to high speed
real-time sclientific computations. But it 1s necessary
to maintain that thls approach is not cost effectlve
and quite attractive for the majority of customers and
simulator vendors. Today, very cost effective approach
to parallel digital real-time simulatiorf is based also
on the network of transputers [9,10]. The TB800
Transputer contains a 10 MIPS 32-bit processor, on chip
RAM, timer and I/0 interfaces which are based on serial
communication channels. T800 have four links per chip
and they use a clock rate of 20 MHz on the serial link,
so that the communication channel between two
Transputers requires only the connection of two wires
for the link. Two T800 Transputers with fleating point
hardware with a speed of 1-2 MFLOPS, in the simulation
of 2-nd order system by the RK 4 Iintegrators 1is




approgimately twelve times faster than the Intel
BO386/80287 and six times faster than the Motorola
68020,/68881 [10]. Further evolution of transputer
networks by Inmos Inc. and Micro Way provides abilltles
to design and bulld arbitrarily large parallel
processing machines. The 32-transputer array has been
used in simulator deslgn for modelling the flow through
a jet engine’s turblne-blade cascade by the Rolls-Royce
at Derby [11]. This model has required ten minutes to
run on a 32-transputer array and two minutes on a Cray
XMP-48. Since the Cray cost over 125 times as much as
32-transputer array, the price performance ratio |is
25:1 in favor of the transputer network.

But parallel operation and parallelism doesn't
guarantee performance, and may, 1n fact, limit Iit.
Example for this 1s successful replacement of
B4-processor system Illiac IV with higher performance
serial proéessor Cray I. The number of processors,
interprocessor communications, memory organizatlon and
numerous other factors interact to.limit or to enhance
processor performance. The effective utllization of a
network of processing elements or microcomputers poses
difficult scheduling and allocation problems. This
means that the major difficulty lp using parallel
processor 1s the effective software support, so that
the total performance Improvement In relation to the
serial processing 1s dependent in the same time on the
numerical procedures which are used 1l.e. techniques of
discretizatlion, techniques‘for decomposition and then,

on the power of hardware for simulation.

3. ARCHITECTURE OF THE REAL-TIME
MPS-AMS MULTIPROCESSOR SIMULATOR

The real-time Multiprocessor Simulator - MPS
organized on a shared single bus -AMS, shared dual-port
memories 1l.e. on tightly coupled multiprocessor
topologies [12]) is shown in Figure 1. Modular design of
thls system provides a number of benefits which are
related with its flexibility in modification,
reconfigurration and maintenance [13}. Four Siemens
8086/87 based single board computers (SBC) AMS-M5-A8
are uéed to realize simulator hardware on principles of
master/slave relationship. SBC's boards are connected
through the 16-blts data bus AMS-M (European
realization of the IEEE 796 Multibus I) which supports

the real-time processing features. Access to the analog

I/0 world has been provided by the 16/32 channels’

analog to digital input board 12-blts AMS-230-Al, and
by the four digital to =analog channels 12 bits,
realized on AMS-M596 standard bus interface board. Such
system ls characterized by low functional complexity,
physical compactness, and relatively low-cost.
Communication among the processors is performed via
message passing in “"mallboxes" that reside 1In

distributed dual port memory. Access to this memory

occurs via a single time shared bus.

In the phase of the configuration of real-time
multiprocessor simulator, development of the simulation
real-time software requires selection of the modules,
their editing, compiling and linklng on the host PC Xf
system. The following step in the procedure 3is related
to the =assembling modules according to the block
diagram of simulated process or system and their
testing, evaluation and validation. After that the
tested modules are downloaded onto the master processor
board and finally, created moduleé are mdpped from the
master boards to the slaves boards of MPS according to
the accepted decomposition schemes (14].

Furthermore the host system provides the overall
control of the simulation activities through the
suitable graphic language. With additional multiuser
microprocessor development system Tektronix 8560 1.e.
through different integration station Tektronix 8540,
this system enables efficlent development of custom
design hardware and software modules [15]. Two
processors, host and master, communicate using
interrupt system via a PC bus window, through the high
speed SMP - PC interbus SMP-ES70-Al. This technlque is
selected as the fastest avallable communication between
the two processcrs, which allows one system to access
the address on a companion system’s bus as through the
address on its own bus. To prevent conflicts in sending
and receiving data between PC-XT and AMS system through
PC memory, the synchronization mechanism uses the flag

test-and-set procedure (semaphore) [16].
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Figure 1. Multiprocessor architecture for
Hardware-in-the-loop testing

"AMS-M bus protocol deflnes master-slave
communication and multiprocessor arbitration which is
strongly problem dependent. A real-time monitoring
SMP-M bus is 8/16 bits data bus architecture with its
own bus interface on SBC board but without

multiprocessor arbitration. The local bus on the AMS




boards connects the processors to all on‘ board
input/output devices (24 lines PIO 8255, RS 232 SIO
8251), local memory (EPROM 2764, SRAM 6116) and
communication memory (dual port- memory SRAM 6116), as
shown in Figure 2. This bus permits independent

execution of onboard activities.
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Figure 2. Single board computer AMS-MB-A8S

) A backplane provides the physical connections of

' AMS-M and SMP-M bus signals and prlority resolver lines
to set the priorities. Each board has a fixed priority
which can be changed through jumpers on the backplane.
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Figure 3. Multiprocessor memory organization

In thils tightly coupled multiprocessor
configuration, the processors communicate over the
parallel bus, AMS-M, through a common i.e. shared
memory. Generally spesklng the common memory can be
distributed. In the

configuration, common memory 1is partitioned on each

concentrated or accepted
processor board as dual-port memory {(DPM) to reduce bus
occupation. Additionally, each processor board has a
local memory which is especially interesting in loosely
coupied decomposition algorithm which frequently use
only local memory  and seldom common  memory.
Furthermore, at the same time, this type of memory
organization allows parallel access to shared memory
without using the AMS-M real-time bus through the local

bus. In addressing DPM all read accesses are local and

do not use common bus. All write accesses use two
different addresses. Onboard addresses are used to
address 1ts local memory and local dual-port RAM.
Addressing DPM on the other boards are provided through
AMS bus controller in memory space O0x000-OxFFF
depending on the selected boards. The memory
organization of this system is shown in Figure 3. To
access the shared memory, it is necessary to gain the
AMS~M bus, which then is locked-on through standard

protocol.
The most

interconnection topology used in this MPS is the bus

important aspect of the bus

arbitration technique. The priority level is determined
by user through wrapping technic on backplane
according to the Figure 4.
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Figure 4. AMS-M bus arbitration

Each SBC has two arbitration lines, bus request
(BREQ) and bus priority in (BRPN), which are used to
gain access to the AMS bus. BREQ line comes from a SBC
to prlority resolver and indicates a request for
control of the AMS bus. BPRN signal comes from priority
resolver to a SBC and indicates that the processor may
go ahead and use the bus since there is no other higher
priority request for the AMS bus.
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To optimize the communications efficiéncy and to
provide real-time processing of the real-time clock
request, MPS system is predominately interrupt driven.
The interprocessor communication begins by passing an
interrupt request signal from one processor to another.
The priority assignment in the interrupt system 1s
problem' dependent and is shown 1in Flgufe 5. for one
typlcal closed loop gulded missile systen.

The interconnection strategy is adapted to this

structure, so that request for each processor Is
wrapped to the corresponding interrupt level.
’ AMS system bus uses the non-bus-vectored mode for
interrupts. When an interrupt request line is activated
the interrupt controller generates an interrupt vector
address and transfers it to the processor over the
local bus [17].

4. ONE CONCEPT FOR PARALLELIZATION OF
MATHEMATICAL MODELS GIVEN BY ODEs
IN DIGITAL REAL TIME SIMULATION

4.0. Real time simulation in

multiprocessor environment

The ablilities of parallel real time simulation
predominantly depend on the ., performance and
architecture of pa.ré.llel nmultiprocessor system, types
of Interaction between parallel processors, on the
problem under conslderatlon 1.e. its inherent level of
parallelism, on numerléal methods for numerical
integration, strategy of task allocation and finally
the cooperation between parallel architecture and
parallel discrete time model of a original contlnuous
system. But 1t 1s important to note that the main
contribution to the improvement of efficliency in
multiprocessor real time simulation depends on
decomposition of model, on a process of discretizatlion
and on mapping of glven problem onto parallel
multiprocessor architecture. This process usually
involves several phases that start with decomposition
of mathematical model given by algebralc equations
(AEs) and ordinary differentlal equations (ODEs) or by
partial differential equations (PDEs). Since these
equations are deflned over continuous time domain in
the second step some kind of discretization or
numerical approximations must be employed in order to
enable digital implementation. Finally, it 1s necessary
to perform suitable partitioning of dérived discrete
time model onto multiprocessor environment. Mapping of
decomposed and discretized model onto parallel
architectures can be performed in a different way.

In dynamic load balancing, discrete tlme models
are allocated to microprocessors at run ‘time. Discrete

models automatically migrate from heavily loaded

microprocessor to lightly loaded ones. By attaining a-

well-balanced load, better processor utlilization can be

achleved and thus higher performance of conplete
system. ' - ’

In a statlc load:balancing method, models are
allocated to mlcroprocessors after complile time f.e.
before start ii}) run time. Such statlc techniques
require falrly accurate predictions of the resource
utilization for each model.

For programs with unpredictable run-time resource
utilizatlon, dynamic load bala.nclng 1s more desirable
because it allows the system to continuously adapt to
rapidly changing run time conditions. As a popular
measure of load balancing it is possible to use CPU
time utilization, communication time, the number of
concurrent microprocessors in active operation, the
number of concurrent mdeis etc.. ’

In real time simulation correct prediction of the
computational requirements and resource demands for

each software module l.e. for each program must be

known in advance to enable real time implementation.
This estimation can be derived after the process of
discretization. On the basis of this information,
algorithm for task allocation provides well load
balance and real time execution. Therefore the concept
of static load balancing in the real time simulation is
a natural one. In simulator design, what is primary
interest of our research, the obJjective function must
provide real time simulation of related problem with
desired accuracy and with minimal number  of
microprocessors. The system.which enables developments
of the simulator in this way can be considered as
development system for sinulator design and
realization. The accepted objective function is natural
in designing and realization of digital simulator for
operators training or hardware in the loop testing.
Real time simulator described 1n this article
hosted on IBM PC/AT has been realized in order to
provide the user with such abilitles and furthermore to
allow generation of real time machine code for térget
processor based on Intel microprocessor 8086 and
arithmetic coprocessor 8087. Through attached
peripheral homogenous tightly coupled multlprocessor
system based on single board computers, such simulator
system provides wuser with different experimental
ablilities in operator training or control system design
and testing. The software support of such simulator
development system provides the abilities of extensive
non real time simulation which leads to such
decomposition technique, numerical integration and task
allocatlion strategy which guarantees the minimal number
of parallel processing units i.e.: minimal hardware
complexity necessary-for reallization of a different
kind of simulator system. This hardware complexity
strongly depends on desired level of accuracy in
process of simulation, so. that with increasing level .
of approximation the number of microprocessor can be

significantly increased. The substantial influence on



this facts have choices of decomposition techniques and
procedures for numerical integration. Therefore special
attention will be dedicated to the relationship between
hardware complexity on one side and decomposition
techniques, numerical methods for discretizations and
algorithm for task allocation on the other side.

Now we cen define the procedure for real time
slmulation in multiprocessor environment with following
steps:

Step 1. Structural. and dynamics decomposition of
system corresponds to physical partitioning of problens
into a sequence of modules with lower level of
complexity.

Step 2. Tuning between numerical methods and
sample rates for discretization and mathematical
modules according to its nature; linear or nonlinear,
time variant or time invariant, stiff or nonstiff, with
or without discontinuities, spectral characteristics of
input signals and so on.

Step 3. Task allocation process follows physical
arrangement of system and In cooperation with numerical
methods for discretizatlion determines desired level of
granularity !n order to achieve equal load balancing
between processors, minimal hardware requirements and
real time execution.

Presented procedure is not stralghtforward, it may
be iterative one and all these steps must be taken
into account very briefly in order to achleve optimal
real time simulation of given problem in accordance

with the accepted objective function.

4.1. System decomposition

The first step in the above procedure requires
decomposition of a mathematical model of complex
dynamic system into a number of hierarchical functional
modules or blocks of different complexity. With such a
modular or block approach a realistic complex problem
can be subdivided into a sequence of smaller modules or
blocks. By applying this formalism, complex
mathematical models can be easily transformed into one
block level distributed structure which enables
isolatlon of standard mathematical models and thelr
further efficlent processing. Decomposition scheme,
which we shall prefer, is heuristic one and is malnly
based on physical partitioning of complex system. Now
we shell define the parallelism degree of model on
level of block diagram,as the maximum number of
functional blocks that can be executed at the same time
on different processors Iif necessary in real tlme
execution. For very fast system i.e. for time critlcal
real time simulation, inherent parallelism degree can
be further increased by partitioning from block level
to an equation level or even an arithmetic operatlion
level. If 1t is necessary, it is possible to determine

computation of the longest execution time i.e. critical

data flow trajectory in running through the block
diagram. The efficlency of modular partitioning is
problem dependent, but only with such an approach it is
possible to perfora the optimal adaptation of numerical
methods of discretization to each module of distributed
system. Such decomposition of a complex system Iinto
nultiple low level computational modules which enables
adaptation of numerical method and period of
discretization to each module is most important for
digital real time simulation. After structural
decomposition which corresponds to physical topology of
the system, sultable dynamic decomposition is necessary
in order to adapt periods of discretization or
integration to each module. The concept of multirate
sampling enables different sampling rates in different
modules or in different loops, and leads to the
significant reduction of computational load i.e. CPU
time savings and to improving the numerical
condltioning. Such structural and dynamic decomposition
detects the level of parallelism which is very often
inherent in complex original continuous system.
Separation of differentfal equations according to their
type, particularly linear differential equations from
nonlinear e.g. nominal trajectory from perturbated,

"separation according to the spectral characteristic

i.e. separation of fast portions from slow ones and
separation according to the frequency contents of input
signal are substantial for the achievement of high
efficlent digital real time simulation. ’

A heuristic method for system decomposition used

in this concept is based on the fact that the modules

that follow from partitioning of the overall system are
very similar to the physical topology of the systenm.
The maln advantage of this approach 1s that the
processing blocks are assoclated with physical
sections, and model implementation and verification can
be easily done. In addition, variables used 1in the
interprocessor communication have physical meaning,
which can ald in the understanding and interpretation
of the model. Furthermore by exchanging only the output
variables between blocks it 1is possible to reduce
significantly communication requirements between
processors.

Because decomposed system 1s similar to the
physical system, this method 1s problem dependent.
However, the advantages of the method far outweigh this
disadvantage. The main advantages of this method are:

- Decomposition 18 easy to make, since it follows

the physical arrangement of the system.

- Highly modular approach 18 very flexible in the

case of structural or modules modifications.

- Interprocessor communication requirements are

minimized.

- Program design is simplified, which is a direct

consequence of modular structure.

- Program coding is straightforward. It is easier




to qode the small modules that result from the
decomposition than complex ones. )

- Checking, testing and debugging is also easler,

especially message Interchange between
mlcroprocessors during interprocessor
communications.

Thls decomposition has been applled on original
continuous models and its abilitlies are determined by
the nature of the problem. Modules or blocks that are
independent enable simul taneous or concurrent
calculation and provide parallel decomposition. Modules
or blocks that are sequential lead to the cascade
decomposition. This level of parallel or sequential
computatlon is predominately determined by the nature
of the problem, but in the following steps it will be
shown that this inherent 1level of parallel or
sequential propertlies can be significantly modifled by
the cholces of numerical methods for discretization or

integration.

4.2. Numerical integration

This step transforms original continuoué
mathematical model into equivalent discrete one, that
must guarantee desired level of approximation with
minimal arithmetic complexity normalized on some common
frame time. By this transformation using different
techniques of numerical integration it is possible to
additionally increase the degree of model parallelism
from the inherent one to some desired level which
enables real time simulation of related problems on
given multiprocessor configuration. It means that the
complete parallelism in discrete time model for
implementation depends not only on efficiency of
functional decomposition 1.e. topology of system, but
also on numerical method for discretization. The level
* of parallelization which will be added or extended with
the cholces of numerical methods determines the final
level of granularity of discrete time model for
implementation. The level of granularity in equivalent
discrete time model can vary in a range from
Instructions and statement level to program or a group
of programs level. This depends on the complexity of
mathematical model and 1ts dynamic characteristics 1i.e.
real time constraints’ and architecture of
multiprocessor system that would be used for
implementation. For example, if a model of some
problem is represented by a sequence of sequential
modules or blocks which require sequentiel computation,
by using any of explicit numerical methods for
integration, they can be easlly transformed to
parallel procedures until the desired level of
granularity 1is reached. Assignment of the suitable
integration or discretization method to each module or
block, and sultable period of discretization require

extensive non real time analysis, checking, testing and

verification. In the following part of this article we
shall focus our attention on numerical methods that can
be considered as suitable for digital real time
integration of ordinary differential equations and on
dependance analysis between the parallelism of
simulation models and numerical methods used for
discretization or numerical integration.

For a linear or linearized problen given by

x(t) = A x(t) + Bult) , x(0) = Xq (n
some modification of standard discretization methods
can be considered as optimal one.

Modification of standard step invariant method
[20,21) 1s given by the followlng equations

%= S(AT.H) % + FABAZTW u ()
where the state vector, and system matrices are

determined by

. -t
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State space version of T-integrator is. given by (22]

* . [ ] L]
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A= (1 - LTrA)" M1 « LT(I - DDAl (s)

B;= {1 - LTrA)"} LTrB

B,= I - Ltral”! LT - MB

For general nonlinear problem given by
x(t) = £(x(t),t,ult)) ' x(0) = x, ()
following numerical integration algorithms can be
considered as sultable for real time digital simulation
[23];
* Single-pass integfatlon algorithm
~ Euler explicit

K= ¥p * T f(xn,tn.un) (7)
- AB ~ 2

Xney= xn+T/2[3f(xn,tn.un)-f(xn_l.tn_l.gn_l)] (8)
- AB -3

Xpey™ XptT/12023F0x b 0 )-168(x _ .t _,u )]+

+ S8f(x 2)] (9)

n-2' tn-2' Un-
* Real time Runge-Kutta version
-RK -2

P
Korryo™ Xo * T72 f(xn,tn.uh) (10)

- P
Xne1™ ¥n * T Ty o ther a0 Ynet 2

-RK -3

& =
n+1/3"

)

x + T/3 f(x_,t_,u)
n n n n

- p
Xre2s3= ¥n Y 23 00 et 30 Ve s

P
n+2/3' tneasar Yns2sa
* Adams-Moulton serial predictor-corrector
- AM -2
P

X4 xn+T/2[3f(xn,tn.un)-f(x
Pt

Xnar™ Xpt T20000 b

) an

)]

X1 xn+T/4[f(xn,tn.un)+3f(x

-1 tn-17Yp-1 1 (12)

) + f(xn.tn.unJl



-AM - 3
P

LI xn#T/12(23f(xn,tn.un) S1Bf (%, ato ey )
* BE(x ot oou )] (13)
= P -

Xoe1™ Xt T/12[5f(xn+1,tn+1.un+1) + 8f(xn,t“,un)

- fx )]

n-1’tn-1'un—1

For complex nonlinear modules or blocks, which
unable further physical decomposition and single
processor real time implementation, 1t is necessary to
use some technique for equation segmentatlon or
numerical methods for parallel Iintegration. Standard

approach for solving such problem [24) requires
partitioning the set of n equations and then allocation
of a certaln number of the n equations to each of the
microprocessors to achleve the speed needed for real
time simulation. Each microprocessor would be
responsible for performing the function evaluatlons and
integrations associated with its assigned equations.
Such subset of equations can operate in parallel, only
the values which are necessary in the other equations
would be transferred periodically between
microprocessors. Since the function evaluations {.e.
the computation of derivative would be done 1In
parallel, a good deal of time can be reduced 1in
comparison with a single microprocessor implementation.
Just how much time is saved depends on;

- How closely coupled is the system of equations;

- Hoﬁ the equations are allocated to the

microprocessors;
- What integration algorithm 1s wused for
discretization of each subset of equations;

- What types of communication channels and

. protocols are aQailable between microprocessors.

Alternative solution to the above standard
approach 1s concerned with utilization of parallel
predictor-corrector methods. In this case partitioning
is performed in the sense of the algorithm i.e.
numerical method but not in the sense of the system of
equation as in previous approach. One possible parallel
predictor-corrector method has been presented by

Miranker and Liniger (24] for system ¥ = f(x,y) and s

given by
P _ C P C C Cc
Yis1® Yiaq? h/3(8f1— 5f1_1+ 4f&-2 fl-a)
C (o] P C C o} (14)
A h/24(9f1+ 19f1_1- 5f1_2+ f1-3)

For parallel real time simulation parallel block
implicit methods can be also very useful. One version
of a fourth-order block presented by Shampine and Watts
[24] is given by:

- Predictor equations (1S)
P _ c c c c c c
Yieg™ 1730y % vy ¢ Y I*WEB(3f] - af  + 13f))
P _ C ,.C ,.C c c c
Yiep= 1730y o v * yi)+h/12(29f1_2-72f1_1+79fi)

- Corrector equations

c _.C C P _ P

Yiy= Vit h/12(5f1 + 8f1+1 f1+2)

c _.C C P P

Yiea= Yi* h/3(f1 + 4f1+1+ f1+2) (16)

The choice of the optimal discretization method
l.e. tuning the method to each separate module requires

well understanding of the character and dynamic of each

module and well understanding of numerical
characteristics of all of the above mentioned numerical
methods. But this can be done only on the basis of
separation between linear differential equations, and
nonlinear, fast portlons of the problem from slow
portions, time invarlant from time variant. It means
that the decomposition of problem has great influence
on the efficlency of the complete procedure. By such
approach we can significantly increase the solution
bandwidth of the problem, which is the most important

in real time simulatlion.

4.3. Task allocation

The last step in the presented procedure requires
distribution of derived discretized modules among
microprocessors in multiprocessor system and can be
used in iterative fashion with previous two steps. This
process of a task allocation i.e.process of assigning
software modules which constitute distributed
discretized mathematical model of original continuous
system to each processing element, requires an
understanding of data or block dependencies that exist
among problem varlables. There are two different ways
in task allocation strategy which depend on
applications.

In the first case, architecture of the
multiprocessor system 1is completely defined and
determined by the type and number of avallable
processors, their performance and way of theilr
communicatlion. The computing tasks involved in solutlon
of slmulation problenm, in this case, must be
partitioned on the avallable processors in order to
minimize idle time of each processor and to minimize
the time lost in the communlcation of program segments.
Furthermore speclal constraints and limitations on real
time processing are not supposed i.e. solution can be
generated faster than real time or slower then real
time, which depends on the problere and performance of
multiprocessor system. In such environment 1t |is
necessary to attain such load balancing which leads to
a better multiprocessor resource utilization.
Well-balanced load provides a hlghgr performance of
complete system l.e. minimal total run time. Measures
of load balance in thls case may include the CPU time
utilization for each processor, communication time in
relation to the computation time, the number of
concurrent processes or modules in simultaneous
processing and so on. The combination of these
different objectives can be expressed by the fast
improvement achieved on multiprocessor system. This
lmprovement can be characterized by factor §, which is
ratio between solution times using one processor and N
processors{27].




S = TS/TM' (17)

where lis: TS - single processor solutlon time,

TM - multiprocessor solution time.

The efflciency of complete
implementation can be defined by:

E = S/N (18)

where N denotes the number of microprocessors, and S is

multiprocessor

given by (17). Efficlency is expressed as a percentage
by multiplying the above expression by 100. The
assignment must be made so as to optimize relation (17)
and (18), 1l.e. to enable minimizatlon of execution
time. _

The second approach to the problem of task
allocation 1s related to design and development of
digital real time simulator for operator training or
hardware in the loop testing i.e. restricted on real
time simulation. Therefore in such applications it may
be assumed that the architecture of multiprocessor
system 1s not given in advance and must be determined
by this procedure. In this context, task allocation
strategy on the basis of results generated in first two
steps must provide high fidelity real time simulation

and minimlzation of hardware requirements, since for-

some kind of simulator system such computer
configuration must be duplicated in high number of
coples. As already polnted out, in this system all
program segments are known in advance as its time
required for their executlon and therefore static
allocation concept will be appropriate one. If the
execution times for each module and communication times
between processors are known, then the problem of task
allocation is to determine such distribution of modules
on parallel processors which support real time
simulation with minimal hardware requirements. The
number of software modules which form one task which
will be assigned to one microprocessor depends on
arithmetic complexity of problem modules and real time
requirements. Possible assignment can be several
modules to one microprocessor, or geveral
mlcroprocessors to one module. This relationship
depends predomlnately on the processing power of each
processing element, complexlty of discretized modules
and thelr dynamics, intensity of Interprocessor
communication and so on. At the beginning of the
procedure we start with allocation of task to first
microprocessor on the basls of block level critical
path method [28]; For some common frame time we add
modules to first microprocessor until the ‘sum of
periods of implementation of these modules is less than
or equal to this common frame time T.After that we are
going on, with assignment of a tasks to the following
microprocessors., So that for each microprocessor must

be valid

ot
Zlep (19)

where Ti:lp denotes the period of implementation module
i normalized on common frame time T and n denotes the
number of modules assigned to each microprocessor. In
this way it ls necessary to continue with the process
of task allocation for each succeeding microprocessor,
until all modules have been allocated. If equation (19)
is valid for all modules, single processor
implementation of related problems is possible. With
such an approach it is possible to reduce idle time of
each microprocessor in multiprocessor configuration.
But on the other slide this approach increases time
delay due to finite computation time. This delay may
cause the effects of Instabilitles 1n closed loop
simulation with included external hardware or in the
operator training applications.

In the case of fast and complex modules it is very
often necessary to asslgn several mlcroprocessors to
one module. Using the equation segmentation methods or
some form of parallel predictor corrector algorithms or
block implicit methods it 1s _possible to achieve the
speed of real time processing. 7

The level of granularity in the process of task
allocation depénds predominantly on the architecture of
multlprocessor system, decomposition technlques,
complexity of . modules, their dynamic real time
constralnts, numerical methods used for discretization
and so on. On one side very fast modules lead to the
fine level of granularity, for example statement level
or instruction level. Masslively parallel processor in
order to achieve the high efficient utilization of

avallable processing power needs fine level of

‘granularity. On the other side relatively slow modules

lead to the high level of granularity preferred in
single bus multiprocessor configuration. Different
level of granularity leads to the different level of
intensity in interprocessor communication.
Communication time is not negligible specially in fine
level of granulations since communicatjon time 1is
comparable with computation time. In such
circumstances, task allocation optimlzed only on

maximization of parallel operatlon would not be at all

‘optimal one, when communication times are taken into

account, especially if a large amount of data is to be
a shared. Therefore parallel multiprocessor simulation
requires detall consideration and analysis in order to
reduce i.e. to minimize Iinterprocessor communication.
Walting for intermediate results and delays during
communication timg decreases throughput per processor
as the number of processors grows.

With careful decomposition schemes which follow
physical topology of problems and with cholces of
sultable methods for numerical discretization and task
allocatlion strategy, hardware requirements for real
time simulation can be significantly reduced. It |is
therefore desirable to perform extensive non real time
simulation and analysis in order to determine the best

manner of allocating program modules and to achieve the:



most cost effective solution.

4.4. Simulator design for one

spinning missile system

The above presented procedure can be illustrated

by the following example which requires simulator
design that must provide real time simulation of one
spinning missile according to the desired level of
accuracy.

After 6-DOF about

corresponding nominal trajectory and sujtable physlical

linearization of model

block dlagram form of one spinning

dynamics
[ ]

X1,Xa,X8, Xlo X1t

-————"*lcu""_""Ls('—H " I':T’

partitioning,

missile can be shown by Figure 6.

miasile

pltch channel

d Xg.Xa microprocossor no. 2 Td-Bnn'
X12,X13
dm2
czl(') L’ G23(') yow channol
Y r Ty
vy ———-—————-?o+lcz‘(n)}—joelczs(sl}hl V/'l‘2 }—j«»
. . s Xte
Figure 6. Block dlagram of spinnlng missile
in nonrotating coordinate system
Servo group mathematical model can be defined by
the following system of ordinary differential and
algebralic equations [28],
Xk, = X
o - -?/Tz X 4= 26T %, + % ol
2 2 p z
6m1 K C2 x1 + KPCl %y
Sp2 = KDp %y * KDy x5 (20)
3 4
k.= x
4
R 26T, %, * 112 U
4 p° 3 4 P Yy
6n1 = KpCl Xy + KPC2 Xy
anz = Kle Xg * KpD2 X,
or in state space form with,
ok = Aok %ok * Bpk Upk (21)
ypk = Cpk xpk

In this case state, input and output vectors correspond
to

T

xpk= [x Xy x3 x4] u X [Uz Uy] (22)

Yok = (s, anl
while system matrlces Apk' Bpk and Cpk follow directly
from (20).

Dynamics equations for pltch channel are glven by

*g = xB ) )

g = -1/T0 5 2E/T Xg + 1/'1'0 62

6mn = K Xg + KGTZ X5

% = (23)

10

X, = Xg

%9 = %10

%10® T8y X7 T 8 Xg T B3 ¥g T 8y Xjq *agld, - 8,)
q= Kq Xy qu1 xg + qu2 Xg + qua X0

*llﬂ = UT, X,y ¢ (q + 2V 8m)

=Xy

fzk= V/'l'2 ¥

State space form of equation (23) is determined by

Xg," [xs Xg K oo X
T

4z [am Gnl

X, =A +B, U

dz dz %4z dz “dz

fzk = Cdz X4z * Ddz Udz

u (24)

Dynamic of yaw channel is identical and i{s given by,
T
Xgy [x12 Xiq Xyg oo xm]

T
u ldm dnl

dy (25)

*ay = Ay *ay * Bay Yay

Tox = Cdv *ay * Ddy Vay

Non real time simulation of the above equations
has been performed on Cyber 170/850 using standard
routine for numerical integration of ODEs from IMSL
(DVERK) 1n

solution, With common perijod of integration of 1ms, and

library order to generate reference
with 6-order Runge-Kutta methods reference solutlons
have been obtained and are shown in Figure 7.
Derivation of discrete time model for real time
simulatlon requires careful choice of a method for
numerical integration and period of discretization. For
thls
meéthods for discretization is the approach given by
equation (4) and (§5).
of origlnal continuous system based on elgenvalues
inspection and their distribution, the concept of multi

rate processing has been accepted. Real time processing

linearized problem one of sultable numerical

After detalled dynamic analysis

in servo group has been performed with 1ms period. In
simulation of rigid body dynamic equatlons the perlod
of discretization is Sms. The complete discrete time
model has been tested through extensive non real time
simulation which are shown in Figure 7.
Program for testing discrete time model is based
on equations (21), (24),(25) and (4) is gliven by
for 1=1 to ....
*servo block
for J=1 to §

input upk,k

-
%ok, k™ Aok *pk, k-1 Bpk( ok, k*
L ]

= C

L

Yok, k-1)

Yok, k™ “pk *pk,k

output ypk k(am.k' sn.k)

pk k-1" pk k
pk.k-l Pkwk
next J

*dynamic of pitch and yaw channel

dz(ypk k* Yok, k-1’

)

dz.k dz dz.k-l
L]

Xay, k= Ady Xdy, k-1 dy(ypk.k Yk, k-1




-

2k, k- Cdz %az,k *
[ ]

c

1 ]
f Daz Yok, k
l
fok, ™ Cay *ay,k * Pay Ypk, k

output fzk' f

X4z, k-1" ¥dz,k
Xay, k-1~ *dy, k
Ypk,k-1" Ypk, k

next 1§

yk

Comparatlve of

shows a good tuning of discrete time model

analyslis results presented 1in
Figure 7,
that has been provided with compensation matrices L=I
and I'=1/21 (bllinear transformation) and corresponding
perlods of discretization.

Strategy of static task allocation which follows
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physical decomposition of problem and cholces of the

numerical methods for discretization must meet

requirements for real time simulation with minimal
hardware requirements. Computational load 1l.e. speed up
factor of first module-servo group is determined by
period of discretization (ims) divided by execution
time of arithmetic operatlons needed for implementation
of this discrete time model. The speed up factor
computed for thisvmodule glves xservo-i.oom. This

means that real time simulation of this module |is
possible on only one microprocessor board and that the

load balancing for this mlcroprocessor is near ideal.
The speed up factor for the following group which
dynamics of channel |is
Kdlmic=1'°0124' This means that real time simulatlon

presents pitch and yaw
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Figure 7. Time responses of continuous and equivalent discrete time models

(Tser'vd= 1ms, Tdynam= Sns,

L=1,

r

= 1/2 1)



of this module ls also, possible and that it also needs
only one microprocessor with near ideal load balancing.
From the obtalned results follows that the real time
simulation of the model given in Figure 6,
with ideal
Assignment of tasks 1s determined by
allocation of the discrete time model of servo group to

i1s possible

two near equally load balance

microprocessors.

microprocessor no.1, while pltch and yaw dynamic
equation to microprocessor no.2. The Intermediate
results computed by first microprocessor must be
-~ transferred to the second one. However second

mﬂcroprocessor must check that intermediate results or

~0.18
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§§
fmon
o

j=d
"
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0.064

-0.064

o 0.2 0.4 0.8
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sequence of computation and require synchronization
between microprocessor no. 1 and mlicroprocessor no. 2.
To insure correct synchronization and acceptance of
correct results, source microprocessor also broadcasts
its The
microprocessor i.e. the second mlcroprocessor walts for
ready flag before using the result broadcasted by the
first microprocessor. Than 1t resets the ready flag

after it detects that ready flag 1s set. Procedure

a ready flag with results. destination

executed by a source and destination microprocessor in
transferring and waiting for exchange
variables are standard in such cases.

data

and

Uz = 10
Uy=0
10

-10

25

-25

th
Uy

ton

Figure 8. Real time simulation of one spinning missile system

data have been received before using them. In this
example we have used for Integration implicit method
from accuracy and stability reason. But implicit
integration methods are not suitable for parallel

simulatlion, since they require careful conslideration to
insure correct synchronization between microprocessors.
In execution of iteration k, first microprocessor must
compute the output of servo block ypk,k and broadcast
the results to second

microprocessor as soon as

possible. The second microprocessor in corresponding
iteration for computation of 1its state vector and
output equation must wait for values y K.k from first
These

among servo block and dynamic block determine

microprocessor, exist

the

data dependencles that

Program for parallel time simulation for

real

these two microprocessors is coded in assembly language
according to the following relations.

*microprocessor no. 1 - servo block

*

®interrupt routine (real time clock - B253 - 1ims)
L]

input upk X (from a/d converter over AMS-bus)
P .
*ok, k- *pk.kx * Bpk Ypk, k
.
Yok, k= Cok *pk, k
output y {(to microprocessor no.2
pk, k
P . ° over dual port memory)
*pk, k= Aok *pk,k  * Bpk Ypk, k
idle (wait for next real time clock)

fyk

fzk_

fyk




*microprocessor no.2 -dynamic of pitch and
*yaw channel
»

*interrupt routine (real time clock - 8253 - Sms)

input y (from microprocessor no.1 over
dual port memory - walt for
semaphor synchronization)
P L ]
®az,k= Xdz.k * Baz¥pk.k
P 5
Xy, k- *dy,k ¥ “dy'pk, k
‘e .
fzk,k= cdz xdz.k * Ddz ypk.k
‘. »
fyk.k= Cdy xdy.k * Ddy ypk.k
output f , £ (to d/a converters over
p kT vk s - bus)
Xaz,k~ *dz *dz,x* Baz Ypk,k
» »
X3y, k= Ady *ay,x* Bay Ypk,k
idle (walt for next real time clock)

The obtained real time solutions that satisfy the
accepted objective function are shown 'in Figure 8 and

can be considered as near optimal ones.
8. CONCLUSION

Presented methodology enables high efficient real
time integration of complex dynamic system described by
ordinary differential
It means that in the simulator. design it is the

equations on multiprocessor
system.
most important to find the optimal combination of
decomposition technlques, dlscretizatlop algorithms and

strategy of task allocation, that leads to the minimal

number of mlcroprocessors necessary for simulator
realization 1In agreement with desired accuracy
specifications. Through the attached peripheral

homogenous single bus tightly coupled multiprocessor
system, realized digital simulator provides a user with
different abilities

design, modification and

in control
in the

experimental system

testing, operator

training.
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