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The subsea all-electric Christmas tree is key equipment in subsea production systems. If a failure occurs, the marine environment will be 
seriously polluted. Therefore, strict reliability analysis and measures to improve reliability must be performed before such equipment is 
launched, which is crucial to safe subsea production. A real-time reliability evaluation method for the all-electric Christmas tree mechanical 
system integrated with the static Bayesian network fault diagnosis stage is proposed in this paper, which realizes the identification of the fault 
type of the components and the real-time reliability evaluation of the mechanical system under different failure rates of the components. 
As a supplement to the method, by using mutual information to conduct sensitivity analysis on the reliability of the mechanical system, the 
importance of the basic events of each component on the reliability of the system is finally given. The proposed method provides significant 
theoretical support for the maintenance of the subsea all-electric Christmas tree and can be extended to the reliability evaluation of general 
subsea production systems.
Keywords: reliability analysis, Bayesian network, fault diagnosis

Highlights
•	 This article contributes a real-time reliability evaluation method integrated with the online fault diagnosis stage by using dynamic 

Bayesian networks.
•	 The proposed method identifies component fault types and the real-time reliability evaluation of the mechanical system under 

different component failure rates in a marine environment.
•	 The problem of inaccurate evaluation results caused by only considering component degradation rate or using sensor data as a 

single piece of evidence has been overcome by using this method. 
•	 The proposed method provides important theoretical support for the maintenance of the mechanical system of the all-electric 

Christmas tree and can be extended to the reliability evaluation of general subsea production systems.

0  INTRODUCTION

Process safety, risk analysis, and reliability evaluation 
have paramount significance in the modern process 
industries for preventing fatalities and loss of assets 
[1] and [2]. Even certified and tested equipment may 
experience problems during operation due to incorrect 
installation, operating environment, operator error, or 
lack of maintenance [3] and [4]. Furthermore, once 
installed, the subsea equipment must be transported 
back to the shore for maintenance and repair, which 
is time and resource consuming. The best way to 
avoid such large maintenance costs is to improve 
the reliability of subsea equipment by performing a 
reliability evaluation before launching the equipment. 
Moreover, a reliability evaluation can guide the 
maintenance of engineering staff. 

Subsea all-electric Christmas trees (XTs) are 
critical pieces of equipment in subsea production 
systems [5] and [6]. They are the only viable method 
for oil and gas development that can be utilized in 
some areas. The ecosystem is fragile, and oil spills can 
have irreversible effects; therefore, very reliable and 

safe subsea XT systems are required [7]. Indeed, safe 
and reliable subsea production systems will become 
increasingly important. The research on the reliability 
evaluation method of XT is paid increasing attention 
by scholars. In general, reliability evaluation methods 
of subsea XT can be divided into three categories: 
model-based, signal-based, and data-driven methods 
[8] to [11]. The model-based methods focus on 
building mathematical models of complex industrial 
systems, while the signal-based methods compare the 
detected signals with prior information obtained from 
normal industrial systems and use the detected signals 
to perform real-time online reliability evaluation [12]. 
However, for complex industrial and process systems, 
accurate mathematical models and signals are difficult 
to obtain, and the XT is a typical complex system. 
Data-driven methods that rely on historical data for 
reliability evaluation are particularly suitable for 
complex industrial systems. 

Data-driven methods (e.g., Bayesian Network) 
have been shown to solve problems in complex 
systems, which has been used for reliability or risk 
analyses of XT systems or other subsea equipment 
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[13]. For example, Wang et al. quantitatively analysed 
the reliability and availability of a subsea tree 
system with different repair states using the dynamic 
Bayesian network (DBN). In addition, the influence of 
failure rates and degradation probability on reliability 
and availability has been analysed [14]. Li et al. [15] 
presented a risk-based accident model to conduct 
quantitative risk analysis (QRA) for leakage failure of 
submarine pipeline by using a Bayesian network. The 
model can provide a more case-specific and realistic 
analysis consequence compared to the bow-tie method, 
since it could consider the common cause failures 
and conditional dependency in the accident evolution 
process of pipeline leakage. Wang et al. presented 
an advanced two-step approach using Bayesian 
networks to analyse the failure probabilities of an 
urban buried gas pipeline. This novel approach could 
better reveal the relationships among failure causal 
factors and could also update the failure probabilities 
as operational and environmental conditions evolve 
[16]. Cai and Liu et al. [17] proposed a reliability 
and resilience evaluation method by combining the 
Markov model with a Bayesian network and used 
this method to conduct a risk analysis and reliability 
evaluation of the subsea oil and gas pipelines. Li et 
al. [18] proposed a method of quantitative assessment 
of the risk of gas explosion in an underground 
coal mine using a Bayesian network. This method 
overcomes the shortcomings of traditional methods in 
quantitative evaluation, dynamic control, and dealing 
with uncertainty. Lyu et al. proposed a Bayesian 
network model for series, parallel, and voting systems 
by considering common cause failure (CCF) and 
coverage factors. The model was used to evaluate the 
reliability of the subsea XT control system at any time, 
and the difference between posterior probability and 
prior probability of each component in the event of 
system failure was obtained. The effects of CCF and 
single-component failure rate on system reliability 
were studied [19]. Zhang et al. [20] used Bayesian 
networks to quantitatively evaluate the reliability of 
subsea production systems, including the subsea XT, 
in the early design stages. 

Recently, there has been a growing interest in 
data-driven and model-based methods to understand 
and integrate both approaches in order to provide 
better diagnostic systems and reliability evaluation 
[21]. For example, Qian et al. [22] proposed a method 
of integrated extreme learning machine algorithm 
(data-driven algorithm) and model-based (fault 
model) for condition monitoring of the wind turbine 
gearbox. Zou et al. [23] proposed a novel data-driven 
stochastic manufacturing system model to describe 

production dynamics, and a systematic method has 
been developed to identify the causes of permanent 
production loss in both deterministic and stochastic 
scenarios. The proposed methods integrate available 
sensor data with the knowledge of production 
system physical properties. Simani et al. [24] studied 
the fault diagnosis and continuous control of wind 
turbines based on data-driven and model-based 
robust strategies. Wang et al. [25] discussed feasible 
integration approaches for the model-driven and data-
driven methods based on the existing achievements 
and proposed integrating both methods for the power 
system online frequency stability and reliability 
assessment. 

The above-mentioned research has found that 
the Bayesian method is widely used to evaluate the 
safety, risk, and reliability of complex system and 
XTs. It is worth noting that the focus of these studies 
is to explore the impact of some traditional factors on 
system reliability, especially for real-time and static 
evaluation of system reliability. The basic research 
of these methods has greatly inspired our work; 
to the best of our knowledge, during the working 
process of XT, some local faults often occur, some 
are intermittent, and some are permanent. These faults 
usually have an important impact on the real-time 
reliability of XT. Therefore, the real-time reliability 
evaluation data of the system are different under 
different fault rate states of the components. To study 
the influence of the important factor of “fault” on 
system reliability, a real-time reliability evaluation 
method integrated with online diagnosis is proposed 
by using Bayesian networks, and the subsea all-
electric XT mechanical system is used as a case study 
to verify the practicability of the method. Generally, 
methods of obtaining data include simulation, 
experimental testing, data reasoning, and expert 
data. In this paper, an XT testing system [10] is used 
to collect normal working signals and fault signals 
of the system. The abnormal signals of the pressure 
sensors are used to indicate the fault signals to obtain 
the components’ fault information. According to the 
Weibull distribution law, the reliability change trend 
of the normal degradation process of the component 
is obtained. These data ultimately provide probability 
information for the Bayesian network.

The rest of the paper is organized as follows. 
Section 1 introduces the basic principles of Bayesian 
networks. Section 2 proposes the real-time reliability 
evaluation method integrated with online diagnosis. 
Section 3 provides a case study of subsea all-electric 
XT mechanical systems to demonstrate the application 
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of the proposed approach. Section 4 summarizes the 
work.

1  BASIC THEORY BRIEF DESCRIPTION O 
F BAYESIAN NETWORK

A Bayesian network is a data-driven reasoning method, 
which is widely used in the reliability evaluation and 
fault diagnosis analysis of complex systems. It is a 
graphical network that uses probabilistic reasoning 
and includes two parts: a qualitative part and a 
quantitative part. The qualitative part is represented 
by a directed acyclic graph, including system 
variable nodes and directed arcs indicating the causal 
relationships between the nodes. The quantitative part 
is the conditional probability tables between child and 
parent nodes.

According to the conditional independence and 
the chain rule, P(U) represents the joint probability 
distribution of the variables U = {A1, A2, ..., AN}, which 
can be represented as:

 P U P A Pa Ai i
i

N

( ) ( | ( )),�
�
�

1
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where Pa(Ai) is the parent node of Ai.
If there is new evidence E, then the posterior 

probability of the variable can be calculated by the 
Bayesian formula, as follows:
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Fig. 1.  Structure of dynamic Bayesian network

A dynamic Bayesian network is the combination 
of a static Bayesian network and time information to 

form a new random model with the processing of time 
series data. Each time step in the model is called a 
time slice. The basic structure of a dynamic Bayesian 
network is shown in Fig. 1. Where t is the current 
time slice, t+1 represents the next time slice, Δt is the 
interval of time slices, and dotted directed arcs show 
the relationship between variables in the same time 
slice, while solid line directed arcs represent that in 
different time slices. Similar to the static Bayesian 
network calculation method, the joint probability 
distribution of the dynamic Bayesian network can be 
calculated as follows:

 P A P A Pa AT t
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N

t

T

t
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2  RESEARCH ON REAL-TIME RELIABILITY  
EVALUATION METHOD OF ALL-ELECTRIC CHRISTMAS TREE

2.1  Theoretical Model of Bayesian Network Reliability 
Evaluation for All-electric Christmas Tree

The theoretical model of the real-time reliability 
evaluation of the all-electric Christmas tree consists 
of two main phases: the fault diagnosis stage based 
on a static Bayesian network and the real-time 
reliability evaluation stage based on a dynamic 
Bayesian network, as shown in Fig. 2. In Fig. 1, both 
blue and red directed solid arcs indicate the causal 
relationship between nodes in different time slices. 
The blue arcs represent the degradation trend of 
the same component, and the red arcs represent the 
influence relationship between different components 
in different time slices. Since this study did not 
consider the influence and dependency relationships 
between different components, there are no directed 
arcs between different components in Fig. 2.

The static Bayesian network fault diagnosis 
phase consists of three layers: the additional 
information layer, the fault layer, and the fault 
symptom layer. A1, A2, …, An are parent nodes in the 
additional information layer and also called additional 
information nodes, which represent the influence of 
subsea environment and operator experience on the 
probability of failure of all-electric XT mechanical 
components, such as corrosion degree, well fluid 
temperature, operating depth, repair frequency and 
so on. Child nodes F1, F2, …, Fn are located at the 
fault layer, called fault nodes, which represents the 
probability of failure of relevant components of the 
all-electric Christmas tree, such as the probability of 
valve clogging failure and leakage failure, etc., and 
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each faulty node has a corresponding fault type. Child 
nodes S1, S2, …, Sn are located in the fault symptom 
layer, which are called the fault symptom nodes, and 
mainly from the data acquired by the sensor, such 
as the change of pressure value of pressure sensor 
is the most direct characterization of component 
failure. The supplementary data are the real data of 
the sensor when the fault occurs, and these data are 
re-entered into the fault symptom layer to improve 
fault diagnosis accuracy; the probability of failure of 
a certain component can be deduced reversely through 
the static Bayesian network eventually.

The dynamic Bayesian network reliability 
evaluation phase is composed of multiple time slices, 
and each time slice includes three layers: the additional 
information layer, the reliability component layer, and 
the reliability result layer. The additional information 
layer is the same as the static Bayesian fault diagnosis 
stage, and the above additional information not only 
affects the failure probability of the component 
but also affects the reliability probability of the 
component. During the evaluation phase, Child nodes 
F1, F2, …, Fn are located in the reliability component 
layer, which are the deformation of the fault nodes in 
the fault diagnosis stage, and for each node, the value 
is the complement of the fault diagnosis result in 
[0, 1]. The child node R(x) is located in the reliability 
result layer, and the reliability data in the current 
time slice of the component is obtained. In each time 

slice, the reliability results are obtained based on the 
forward derivation of the Bayesian network. Multiple 
time slices constitute a dynamic Bayesian network 
evaluation model, and the arcs between the time slices 
connect the layers of reliability components located in 
different time slices and represent the trend of inter-
chip transfer, indicating component reliability. The 
time interval between adjacent time slices is denoted 
by Δt, which can be 1 hour, 1 day, 1 month, etc.

Based on the theoretical model of real-time 
reliability evaluation, recording the sensor data at a 
specific moment, then bringing into the fault diagnosis 
stage of static Bayesian network, and the real-time 
component fault diagnosis results can be obtained 
by reverse derivation. The result is numerically 
transformed and input into the time slice t of the 
dynamic Bayesian network reliability evaluation 
stage, and the influence of additional information is 
considered. The forward derivation of the Bayesian 
network in different time intervals is carried out 
to obtain the component reliability probability in 
corresponding time slice, and finally the relationship 
between time and component reliability is obtained.

Previously, the author’s scientific research team 
and CNOOC Energy Development Co., Ltd. Shenzhen 
Oilfield Construction Branch jointly developed 
the XT test system to perform fault detection on 
the Christmas tree, as shown in Fig. 3 [26]. The test 
system is connected to the Christmas tree through 

Fig. 2.  Theoretical model of real-time reliability evaluation
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hydraulic lines and communication cables to complete 
valve operating condition detection, production loop 
detection, annulus loop detection, chemical injection 
loop detection, and acquires sensor data in real time, 
as shown in Fig. 4.

In the conditional probability table, the increase in 
the number of parameters will lead to an exponential 
increase in the amount of calculation; therefore, 
the Noisy-OR and Noisy-MAX models are used 
to determine the conditional probability table. The 
conditional probability table can be calculated simply 
and quickly by using Noisy-OR when a node has 
two states. For the Noisy-OR model, Y is considered 
to be the result of different causal variables, such as 

X1, X2, ..., Xn, and these causal variables are considered 
to be Boolean values: only “true” and “false” status. 
A conditional probability table including n parameters 
(e.g., q1, q2, …, qn) can be determined with the Noisy-
OR model. The formula for calculating the conditional 
probability of a parent node being 1 is as follows [27] 
and [28]:

 P Y X X qn i
i

n

�� � � �
�
�1 11 2

1

| , ,..., X ,  (4)

Q here qi is the probability that Y is false when Xi 
is assumed to be true, and all other parent nodes are 
false.

Fig. 3.  Subsea Christmas tree testing system

Fig. 4.  Sensor data acquisition
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If there are more than two states in a node, for 
example, the sensor data includes “high”, “low”, and 
“normal” states, which represent high pressure, low 
pressure, and normal pressure, respectively. It can be 
calculated simply with the Noisy-MAX model in the 
conditional probability table. Similarly, Y is considered 
to be the result of different causal variables; these 
cause variables such as x1, x2, …, xn, but these causal 
variables are not Booleans. The calculation formula of 
the conditional probability table is as follows [28]:

 P Y y X qi y
x

y

y
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x

n
i

i

�� � �
��

�

��| ,,
' 01

0

 (5)

  

P Y y X

P Y X if y
P Y P Y if y

�� � �
�� � �

�� � � � �� � �
�
�
�

��

|

|

| X | X
,

0 0

0

 

y y 1  
 (6)

where X = x1, x2, …, xn, and y is specific condition 
boundary.

2.2 Fault Diagnosis Stage Based on Static Bayesian 
Network

The cumulative number of various fault symptoms at 
different intervals such as 1,000 hours or 2,000 hours 
can be recorded by using the XT test system; the 
symptom data corresponding to these faults are then 
input into the fault symptom layer. Fault diagnosis is 
carried out by reverse derivation of static Bayesian 
network; the diagnosis result of the fault diagnosis 
method does not clearly indicate that the fault must 
occur, but it provides the failure probability of the 
component to guide the maintenance [28]. Generally, 
the greater the probability of failure, the greater the 
likelihood of failure of the corresponding component. 
However, there is a kind of failure. When the failure 
occurs, it will not cause huge economic losses or 
casualties but will only cause < temporary reduction 
in production or the XT cannot work normally. In this 
paper, the type of failure is defined as safety failure 
of the mechanical component (hereinafter: safety 
failure). For example, when the control signals of 
the surface control subsea safety valve (SCSSV), 
production main valve (PMV), and production wing 
valve (PWV) are lost, the valve cannot be closed. 
However, such failures can usually be resolved by 
restarting the subsea control module (SCM) without 
causing great economic losses. The priority of fault 
maintenance can be determined by taking different 
measures to deal with safety failure. Combined with 
the experience of engineers, three judgment rules are 

defined to determine the diagnosis result, and some 
engineers applied similar judgment rules to the fault 
diagnosis of deep-water blowout preventer (BOP) 
systems [10].

Rule 1: If the type of failure is not a safety failure, 
when the difference between the posterior probability 
and the prior probability of the failed node is ≥ 60 %, 
the failure will be reported.

Rule 2: If the type of failure is not a safety failure, 
a warning will be issued when the difference between 
the posterior probability and the prior probability of 
the fault node is ≥ 30 % and ≤ 60 %.

Rule 3: If the failure type is a safety failure, then 
when the difference between the posterior probability 
and the prior probability of the fault node is ≥ 80%, an 
early warning will be issued.

For the convenience of analysis, the mechanical 
system of the all-electric XT is symbolized, as 
shown in Fig. 5. Its working principle is described as 
follows: under normal operating conditions, SCSSV 
continuously transports crude oil from the wellhead 
to the oil storage device through the production loop, 
and PMV, PWV, PCV (production control valve) and  
PIV (production isolation valve) all remain open in 
this case; once a problem occurs in the production 
loop, the signals of the corresponding sensors (such 
as PS11, PS12 and FS11) will change, and the signal 
of the sensor is used to determine whether crossover 
valve (XOV) needs to be turned on. If XOV is opened, 
the annulus loop is connected, and AMV is put into 
operation. At the same time, the valve of the chemical 
injection loop is always kept open, and the chemical is 
injected into the production loop. 

Using Netica software [29] for Bayesian network 
modelling and analysis, the nodes of the additional 
information layer are determined as the parent nodes 
of the fault nodes, and each parent node has two 
states (i.e., a high state and a low state), indicating the 
degree of reasoning of the corresponding additional 
information. Under the influence of additional 
information nodes, fault diagnosis is made for the 
components of the system. The failure layer includes 
12 nodes, which represent the failure probability of 
12 components (surface control subsea safety valve 
(SCSSV), PMV, PWV, chemical injection valve 2 
(CIV2), XOV, annular main valve (AMV), PCV, PIV, 
chemical injection valve 2 (CIV1), AMV (annular 
main valve), AAV (annulus access valve), and MIV 
(methanol injection valve)).

To make the analysis convenient, the components 
are divided into five categories according to the 
structure, function, and parameters of the main 
components of the all-electric XT. The relationship 
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and classification between the additional information 
node and the fault node are shown in Table 1. For 
example, “SCSSV_Failure” indicates the SCSSV 
fault node, “Present” indicates the probability of 
failure of the corresponding component of the node, 
and “Absent” indicates the probability of no failure.

The conditional probability tables of the 
additional information nodes and the fault nodes 
can be calculated by using the Noisy-OR model 
of Eq. (4) and establishing a Bayesian network of 
the relationship between the additional information 

layer and the fault layer, as shown in Fig. 6. In the 
initial state, the high and low state probabilities of 
all additional information nodes are set to 99 % and 
1 %, respectively, and the “Absent” state probability 
and “Present” state probability of the fault node can 
be derived.

In the XT mechanical system, SCSSV, 
PMV, PWV, AMV and XOV are the most critical 
components; therefore, it is very important to guide 
the repair and maintenance of the XT by focusing 
on distinguishing the types of faults during the fault 

Fig. 5.  Symbolic	representation	of	subsea	all-electric	XT	machine	system

Table 1.  The relationship and classification between additional information node and the fault node

Fault nodes State
Additional information (high)

Corrosion degree Well fluid temperature Operating depth Repair frequency

SCSSV_Failure
Absent 0.988 0.985 0.986 0.987
Present 0.012 0.015 0.014 0.013

PMV/PWV
/PIV_Failure

Absent 0.988 0.985 0.986 0.987
Present 0.012 0.015 0.014 0.013

AMV/annular wing valve(AWV)/
AAV/XOV_Failure

Absent 0.988 0.985 0.986 0.987
Present 0.012 0.015 0.014 0.013

CIV1/CIV2
/MIV_Failure

Absent 0.988 0.985 0.986 0.987
Present 0.012 0.015 0.014 0.013

PCV_Failure
Absent 0.988 0.985 0.986 0.987
Present 0.012 0.015 0.014 0.013
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diagnosis stage. For example, when the Christmas 
tree is working normally, the valves on the production 
loop are all open, XOV remains closed, if the control 
signals of SCSSV, PMV and PWV are lost, the valve 
cannot be closed; however, this fault can usually be 
solved by restarting the SCM, which means that only 
a safety failure has occurred and will not cause much 
loss; there is no need to salvage the XT from the water 
to the shore foundation for maintenance. Therefore, 
the failures of the above five key components are 
specifically divided into three failure types, namely 
blocking, leakage and safety-failure (SFailure).

In the fault layer of the Bayesian network, 
the nodes of the above five key components are 
replaced, and each replaced node includes four 
states: Normal, Blocking, Leakage, and SFailure, as 

Fig. 7.  Fault nodes replacement

Fig. 6.  Bayesian network of additional information and fault layer

shown in Fig. 7 (Netica software figure). Based on 
the reverse derivation of the static Bayesian network 
fault diagnosis stage, the fault types of the five key 
components can be discriminated, according to the 
judgment rules to report the corresponding message. 
The relationship between the replaced and replaced 
nodes is shown in [10].

The fault diagnosis model of the all-electric XT 
established based on the static Bayesian network is 
shown in Fig. 8, the fault symptom layer includes 13 
nodes (DHPT, PS11, PS12, PS13, PS14, PS21, PS22, 
FS11, FS12, FS21, FS22, FS31, FS32), representing 
the corresponding sensor data, and each node has 
three states, namely “normal”, “high” and “low”. The 
sensor value below 10 % of the normal value is in a 
“low” state, while 10 % above the normal value is 
in a “high” state. Because each fault symptom node 
has three states, the Nosiy-MAX model can be used 
to calculate the conditional probability tables of the 
fault node and the fault symptom node, as shown in 
Eqs. (5) and (6). Due to system uncertainties in the 
static Bayesian network fault diagnosis model, such as 
the detection accuracy and measurement error of the 

Fig. 8.  Static Bayesian network fault diagnosis phase model of 
subsea	all-electric	XT
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sensor, the “Absent” state of all fault nodes is set to 99 
% instead of 100 % in the initial state [30].

2.3  Reliability Evaluation Stage Based on Dynamic 
Bayesian Network

The real-time reliability evaluation of the dynamic 
Bayesian network is carried out on the basis of the 
fault diagnosis of the static Bayesian network, and 
the evaluation model is still modelled using Netica 
software. The model of the dynamic Bayesian 
network evaluation stage is shown in Fig. 9. Each 
time slice Time t is expanded to four layers: additional 
information layer, component reliability layer, loop 
reliability layer and Christmas tree reliability layer. 

The additional information layer consists of four 
nodes and is consistent with the fault diagnosis 
stage of a static Bayesian network. The component 
reliability layer is the deformation of the fault node 
in the fault diagnosis stage and includes 12 nodes. 
The loop reliability layer includes three nodes: PL_R, 
AL_R and CL_R. The XT reliability layer has only 
one XT reliability node XT_R.

In the stage of reliability evaluation based 
on dynamic Bayesian networks, the state of the 
node “Re” indicates the reliability probability of 
the component, “Fa” means the failure rate of the 
component, and in the initial state, set the “Re” of 
all component reliability nodes to 100 %. All-electric 
Christmas tree components comply with the life 

Fig. 9.  Dynamic	Bayesian	network	reliability	evaluation	phase	model	of	subsea	all-electric	XT
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Fig. 10.  Real-time	reliability	evaluation	model	of	subsea	all-electric	XT
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cycle law of general electronic control components; 
therefore, the life cycle of each component conforms 
to the Weibull distribution; the probability distribution 
of the life cycle is shown in the following Eq. (7). 
The proportional parameters θ = 6800, and shape 
parameters β = 2.3 [31] to [33].

 f x
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In the reliability evaluation stage, the three loops 
of the all-electric XT belong to a series relationship, 
meaning that if any loop fails, the mechanical system 
fails. Therefore, the conditional probability tables 
of the nodes of the loop reliability layer and the 
Christmas tree reliability layer can be obtained, as 
shown in Table 2.

Table 2.  CPT for the nodes of the circuit reliability layer and the tree 
reliability layer

PL_R(Re) [%] AL_R(Re) [%] CL_R(Re) [%] XT_R(Re) [%]

100 100 100 100
100 100 0 0
100 0 100 0
100 0 0 0

0 100 100 0
0 100 0 0
0 0 100 0
0 0 0 0

Fig. 11.  Bayesian network of circuit reliability layer and tree 
reliability layer

The real-time reliability evaluation model of the 
all-electric XT is shown in Fig. 10. First, the sensor 
state of the fault symptom layer nodes in the fault 
diagnosis stage of the static Bayesian network is used 
to deduce the nodes state of the fault layer in reverse 
and to obtain component failure rate (probability 
of “Present”), and whether the component fails is 
determined by the above judgment rule. Second, the 
complement of the failure rate of the faulty component 
is calculated and transformed into the reliability 
probability of the component and then substituted 
into the reliability probability of the corresponding 
node in the component reliability layer of the dynamic 
Bayesian reliability evaluation stage (probability of 
“Re”). The reliability probability of the specified time 
slice interval Δt can be obtained by using dynamic 
Bayesian network forward derivation.

The probability relationships in Table 3 are 
substituted into the loop reliability layer and the 
Christmas tree reliability layer, as shown in Fig. 11. 
Fig. 11a shows that when the Re probability of the 
PL_R node, AL_R node and CL_R node are all 100 
%, the reliability of the Christmas tree reliability node 
(XT_R) is 100 %. As shown in Fig. 11b, the reliability 
probability of any node PL_R, AL_R and CL_R is 0, 
meaning that when the probability of Fa is 100 %, the 
Christmas tree mechanical system will fail, meaning 
that the probability of Fa of XT_R node is 100 %.The 
reliability probability of the current time slice of the 
all-electric Christmas tree mechanical system can be 
derived forwardly through the Bayesian network by 
obtaining the reliability probability of the three loops, 
as shown in Fig. 11c.

3  RESEARCH ON REAL-TIME RELIABILITY OF DYNAMIC 
BAYESIAN NETWORK FOR ALL-ELECTRIC CHRISTMAS TREE

3.1  Verification of Bayesian network model of All-electric 
Christmas tree

Model verification is an important part of fault 
diagnosis and reliability analysis. In the static 
Bayesian network fault diagnosis stage, the Christmas 
tree test system is used to collect sensor data and 
determine whether the component has failed, as shown 
in Fig. 4, and can be compared with fault diagnosis 
results. The correctness of the fault diagnosis method 
is verified based on three examples [10], as follows:

(1) When the fault symptom nodes DHPT, 
PS11, PS12, and PS13 are high, low, low, and low, 
respectively, the remaining nodes are normal, and 
SCSSV has safety failure, the fault diagnosis result 
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is the “SFailure” state probability of SCSSV > 80 %, 
which is consistent with the actual result.

(2) When the fault symptom nodes DHPT, PS11, 
PS21, PS22, and FS22 are low, high, high, low and 
low, respectively, the remaining nodes are normal, 
and AMV has leakage fault, the fault diagnosis result 
is the “Leakage” state probability of AMV > 60%. 
Generally, when the failure probability is greater than 
50 %, it indicates that the component has a high risk 
of fault and should be shut down for maintenance. 
Therefore, it can be considered that the BN (Bayesian 
network)-based fault diagnosis method diagnoses that 
the AMV leakage fault probability is greater than 60 
% is consistent with the actual result.

(3) When the fault symptom nodes PS13, 
PS14, FS11 and, FS32 are low, high, low and high, 
respectively, and CIV1 failed (the component does not 
consider safety failure), the fault diagnosis result is 
the “Present” state probability of CIV1 > 90 %, which 
is consistent with the actual result.

It is impractical to fully verify the results of the 
life cycle reliability evaluation of the all-electric 
XT mechanical system, but Jones et al. proposed a 
three-axiom-based validation method for reliability 
evaluation method verification [34]:

Axiom 1. A slight increase/decrease in the prior 
subjective probabilities of each parent node should 
certainly result in the effect of a relative increase/
decrease of the posterior probabilities of the child 
node.

Axiom 2. Given the variation of subjective 
probability distributions of each parent node, its 
influence magnitude to the child node values should 
keep consistency.

Axiom 3. The total influence magnitudes of the 
combination of the probability variations from x 
attributes (evidence) on the values should always 
be greater than the one from the set of x-y (y∈x) 
attributes (sub-evidence).

In the initial state, the “Re” state prior probability 
of the 12 component reliability nodes are all set to 60 
%, then the “Re” of the 12 components are increased 
to 100 % in sequence, and finally the “Re” of the 
XT_R node are increased in sequence; combined with 
the three cases in Fig. 12, the Bayesian reliability 
evaluation model is shown to conform to the Three-
axiom-based validation method.

3.2 Real-time Reliability Evaluation of All-electric XT

The value of the time slice interval Δt can be any 
period when no fault occurs, Δt takes 200 h，400 
h，600 h，800 h and 1000 h, etc. The trend of the 

time slice interval and the reliability of the mechanical 
system is shown in Fig. 12.

Fig. 12.  Effect of Δt on the tree reliability

It can be seen from the figure that the time slice 
interval has little effect on the reliability evaluation 
of the XT mechanical system; regardless of the 
value of the time slice interval, the reliability of the 
mechanical system will eventually become consistent, 
the reliability of the XT drops rapidly to around 0.958, 
and then shows a slow downward trend only due to 
the impact of the additional information layer on the 
reliability of the mechanical system, and the trend 
is consistent with the Weibull distribution of the life 
cycle of the XT. Theoretically, if Δt is reduced by 
one time, the reliability data points will be doubled. 
The more data points there are, the more accurate the 
degradation trend will be depicted. As the degradation 
curve is fitted by a computer according to the data 
points, and the number of data points is limited 
during the 20-year service life of the XT. Therefore, 
for computers, the impact of increasing limited data 
points on time costs is not obvious. In other words, 
the time cost is acceptable. However, the degradation 
trend of XT reliability is relatively slow, and the 
degradation trend is not obvious in a short time, so the 
time slice should be appropriately larger.

The larger the value of the time slice, the better 
in reducing time cost (although the time cost is 
acceptable). However, it can be inferred from Fig. 
12 that if the value of Δt is too large, the reliability 
probability point will be lost. If Δt is 2000 h, then data 
points less than 2000 h will be lost. Therefore, the 
larger the Δt, the lower the resolution of the obtained 
reliability degradation curve. If Δt is 10000 h, the 
obtained reliability curve will become a straight line 
in Fig. 12. In summary, considering that it can fully 
describe the degradation trend of system reliability 
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and the slowness of system degradation in a short 
period, Δt is taken 1000 h in the analysis of this paper.

Evaluating the reliability of the all-electric 
Christmas tree mechanical system by using the three 
examples in the previous section, and based on the 
static Bayesian network fault diagnosis stage, the 
fault probability of three cases is reversely deduced, 
as shown in Table 3. The reliability probabilities 
of a component can be obtained by calculating the 
complement of component failure probabilities and 
then substituted into the corresponding node of the 
dynamic Bayesian network reliability evaluation 
stage. For example, case 1 in the table, the “Present” 
probability of the node “PMV_Failure” is 0.0933, 
which indicates that the reliability probability is 
0.9067, then it is replaced to the “Re” state of the node 
“PMV_R” in the Bayesian network time slice Time 
t of the reliability evaluation stage, and the forward 
derivation of reliability is carried out after successive 
substitution.

Table 3.  Fault diagnosis results of the three cases

Fault nodes State
Probability of fault

Case 1 Case 2 Case 3

SCSSV_Failure Present 0.1384 0.3253 0.0696

PMV _Failure Present 0.0933 0.4691 0.0444

PWV _Failure Present 0.0647 0.0444 0.0427

PIV_Failure Present 0.0444 0.0444 0.0444

AMV _Failure Present 0.0434 0.8561 0.0432

AWV _Failure Present 0.0434 0.0434 0.0434

AAV _Failure Present 0.0434 0.0449 0.0449

XOV_Failure Present 0.0352 0.0367 0.0187

CIV1 _Failure Present 0.0514 0.0514 0.9411

CIV2 _Failure Present 0.0514 0.0514 0.4182

MIV_Failure Present 0.0514 0.0514 0.0514

PCV_Failure Present 0.0454 0.0454 0.0463

In the state of case 1, the reliability curve of the 
mechanical system is obtained, as shown in Fig. 13. It 
is worth noting that in this case, as mentioned above, 
despite the fault diagnosis result is the “Sfailure” state 
probability of SCSSV > 80 %, but safety failure is not 
real failure (need to transfer the XT to land for repair). 
Safety failure is a temporary failure behaviour; for 
example, the system crashes due to signal interference. 
After the interference disappears, the problem can be 
solved by restarting the system without transferring the 
XT to land for repair. So it is a self-healing fault. The 
real failure rate of SCSSV is only 0.1384, as shown in 
Table 3, which shows that the component still has high 
reliability, which effectively prevents misjudgement 

of the fault and avoids the cost of salvage maintenance 
and detection. Time in the figures represents the 
time when the failure probability is input into the 
dynamic Bayesian network; for example, Time = 
200 h means that the reverse derivation of the fault 
diagnosis stage is performed at 200 h. It can be seen 
from the “no fault” curve that the safety failure of 
SCSSV has a certain impact on the reliability of the 
mechanical system, which will cause the reliability 
of the mechanical system to decrease slowly. When 
the reliability of the mechanical system drops to 95 
% after continuous working for 5000 hours, adequate 
attention should be paid to safety failure to prevent 
the failure of the mechanical system. However, if 
a safety failure occurs, it is detected after 800 hours 
of system operation (the curve of Time = 800 h); at 
this time, the safety failure has a greater impact on 
the reliability of the mechanical system, and if it 
continues to work, the reliability of the mechanical 
system will decline rapidly. In summary, the time 
when the safety failure is detected has a greater impact 
on the reliability evaluation results of the mechanical 
system. In addition, it can be seen from the figure that 
when the mechanical system continues to work for 
8000 h, the system reliability presents a rapid decline, 
and the decline rate is significantly greater than the 
decline rate of the previous 8000 h. Therefore, when 
the mechanical system works normally for 8000 h, it 
is necessary to shut it down for maintenance in order 
to ensure the stable operation of the system.

Fig. 13.  Reliability evaluation results of machine system-case 1

In the state of case 2, when the failure probability 
of AMV is detected as high as 85.61 %, the reliability 
of the mechanical system is evaluated, as shown 
in Fig. 14. Due to AMV failure, the reliability of 
mechanical system decreases rapidly; at any values 
of Time (200 h, 400 h, 600 h, 800 h), the mechanical 
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system reliability is less than 10 %, which shows 
that the failure probability of AMV components has 
an important impact on the reliability of mechanical 
systems.

Fig. 14.  Reliability evaluation results of machine system-case 2

Fig. 15.  Reliability evaluation results of machine system-case 3

In the state of case 3, when the failure probability 
of CIV1 is detected to be 94.11 %, the reliability of 
the mechanical system is evaluated, as shown in Fig. 
15. Failure of CIV1 can also cause mechanical system 
reliability to drop below 10 %; however, the downward 
trend is significantly less than the impact of AMV on 
the reliability of mechanical systems. CIV1 is located 
in the chemical injection loop, and AMV is located in 
the annulus loop, indicating that the components on 
the annulus loop have a more obvious influence on the 
reliability of the mechanical system. In cases 2 and 
3, it can be found that if the failure rate of a certain 
component of the system is too high, the reliability 
will quickly drop to an extremely low value after the 
system works for 8000 h. To summarize, whether the 
system components are malfunctioning or not, 8000 h 

of continuous system operation is the recommended 
limit value and should be shut down for maintenance.

3.3  Sensitivity Analysis of All-electric XT

The influence of components on the reliability of 
the mechanical system is studied by sensitivity 
analysis, mutual information can be used to analyse 
the reliability and sensitivity of the XT mechanical 
system, and mutual information is used to indicate the 
relationship between two basic events, the reliability of 
12 components are considered as 12 basic events, and 
the reliability of a mechanical system is considered as 
a basic event, and the mutual information about the 
reliability of component basic events and mechanical 
system basic events are calculated in sequence [35]; 
the calculation formula is as follows:

 I X Y P x y P x y
P x P yx Yx X

( ; ) ( , ) log
( , )

( ) ( )
,�

��
��  (8)

where X and Y represent two basic events, P(x, y) is 
the joint probability distribution function of X and Y, 
P(x) and P(y)  are the edge probability distribution 
functions of X and Y, respectively. Figs. 16 and 17 
are the mutual information values of the reliability of 
each component and the reliability of the mechanical 
system for 5,000 hours and 10,000 hours of operation 
of the mechanical system, respectively.

It can be seen from Fig. 16 that when the 
mechanical system works for 5000 hours, the 
SCSSV, PMV, PWV, PCV and PIV components in 
the production loop have a great influence on the 
reliability of the mechanical system, SCSSV, PMV, 
PWV, PCV and PIV components in the production 
loop have a greater impact on the reliability of the 
mechanical system, followed by AMV, AWV and AAV 
components in the annulus loop, and MIV, CIV1 and 
CIV2 components in the chemical agent injection loop 
have less impact. The components in the production 
loop and the annulus loop affect the reliability of the 
mechanical system by several orders of magnitude 
higher than the components in the chemical injection 
loop on the reliability of the mechanical system. 
Therefore, the reliability of the two-loop components 
should be guaranteed first. Fig. 17 shows that the 
mechanical system has the same rule when it works for 
10,000 hours; however, with the increase of working 
time, the mutual information value of the influence of 
production loop components on the reliability of the 
mechanical system is increased to more than 0.04239, 
while the mutual information value of the influence 
of the chemical injection loop components on the 
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reliability of the mechanical system is reduced to 
below 0.000104, which indicates that the longer the 
working time of the mechanical system, the greater 
the influence of the components on the production 
loop on the reliability of the mechanical system, 
More attention should be paid to prevent failures from 
occurring, so as to avoid major safety accidents.

Fig. 16.  Mutual information value of components reliability  
and machine reliability (5000 h)

Fig. 17.  Mutual information value of components reliability  
and machine reliability (10000 h)

4  CONCLUSION

A real-time reliability evaluation method of an all-
electric XT mechanical system incorporating static 
Bayesian network fault diagnosis stage was proposed 
in this article. The reliability evaluation model was 
established, and the influence of the type of failure and 
component failure rate on the reliability evaluation 
results under the condition of additional information 
was studied. The sensitivity of mechanical system 
reliability was analysed by using mutual information, 
and the importance of the basic events of each 

component on the reliability of the mechanical 
system was revealed. The following conclusions were 
obtained:

1) The time slice interval had little effect on the 
reliability evaluation of the XT mechanical system; 
regardless of the time slice interval, the reliability 
trend of the mechanical system was basically the 
same.

2) Safety failure had a certain impact on the 
reliability of the mechanical system, which would 
cause the reliability of the mechanical system to 
decrease slowly. After 5,000 hours of continuous 
operation, the reliability of mechanical system was 
reduced to 95 %. However, the time at which the 
safety failure was detected had a greater impact on the 
reliability evaluation results of the mechanical system; 
therefore, it was recommended to use this method to 
identify, diagnose and real-time reliability assessment 
of mechanical system faults every 1,000 h.

3) The failure probability of components on 
the annulus loop included AMV components had a 
significant impact on the reliability of the mechanical 
system. If the failure rate of any component were 
large, it would quickly reduce the reliability of the 
mechanical system. However, the failure rate of 
components in the chemical injection loop had less 
influence on the reliability of the mechanical system.

4) It could be seen from the sensitivity analysis 
that the longer the working time of the system was, 
the higher the influence degree of components in the 
production loop on the system reliability was, while 
the influence degree of components in the chemical 
injection loop was lower. Therefore, the failure 
probability of components in the production loop 
should be paid more attention during long-term work.
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