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ABSTRACT

A sampling design of local stereology is combined with a rodtfrom digital stereology to yield a novel
estimator of surface area based on counts of configuratibesreed in a digitization of an isotropic 2-
dimensional slice with thickness As a tool, a result of the second author and J. Rataj on iefimtal
increase of volumes of morphological transforms is refinedi @sed. The proposed surface area estimator is
asymptotically unbiased in the case of sets contained ibalieentred at the origin with radissand in the
case of balls centred at the origin with unknown radius. femegal shapes bounds for the asymptotic expected
relative worst case error are given. A simulation exampla@issussed for surface area estimation based on
2 x 2 x 2-configurations.

Keywords: configurations, digital stereology, local stdogy, surface area.

INTRODUCTION choices of the weighta,...,A.s4 can be found in
the literature (Lindblad and Ny$tm, 2002; Lindblad,

Algorithms that determine the surface area of @005; Schladitzet al, 2006; Ziegel and Kiderlen,
three-dimensional object from a binary image can b010).
grouped into global and local methods (Klette and
Rosenfeld, 2004, p. 302). Global methods usuall;gef
require a digital approximation of the surface or
calculation of the surface normals. Local methods
estimate the contributions to surface area of sma
voxel blocks in the binary image independently of
the image outside the given block, and add up thes
contributions to estimate the total surface area. A
local methods can be implemented using a line
filter, they are extremely efficient. Lindblad (2005) . . o ;
suggested a local estimator based on voxel blocks nfiguration types can arise in the case whkres

size 2x 2 x 2 inspired by the common marching cubes oun_ded by a planar surface, and it is only theS(_a that
algorithm, but without an explicit reconstruction of contribute to the surface area measure asymptotically;

the surface. There aré 2 256 possible combinations see also (Lindblaq, 2005).‘ Thesx_a 102_configurations
of foreground and background voxels in a2 x 2 are therefore calleshformativeconfigurations.

block. They will be called configurations in the The estimator Eq. 1 can in principle also be

following. Two of these configurations contain only applied to stacks of binary images of horizontal planar
background or only foreground voxels and do thereforgections ofX, where configurations are composed of

not contribute to the surface area. The remainingoxels in two neighbouring section planes. A possible
configurations, called boundary configurations, camapplication is the estimation of the surface area of
be grouped into 14 classes, due to symmetry. Thugarticles (e.g. cells) in confocal microscopy, where

local estimators of the surface of a s€tin three- a stack of focal planes is digitized and analysed.

Assuming that the se&X was randomly translated
ore digitizing, Ziegel and Kiderlen (2010) found
ptimal weights in the sense that the asymptotic
verage error is minimized among all estimators of the
orm Eq. 1; see also Gutkowslet al. (2004) for a
eaker result. Both papers are based on an asymptotic
ormula (Kiderlen and Rataj, 2006), where asymptotic
efers to increasing resolution of the image. Ziegel and
iderlen (2010) have shown that only 102 of the 254

dimensional space are of the form However, due to optical effects, section planes that are
- hitting_ a particle _close to one of the two horiz_ontal

é(x) — S AN (1) touching plapes yleld_ only an ext_rgmely qurre_d image
i; ’ of the section profile. In traditional (continuous)

stereology, this problem is solved by considering a
where); is the contribution andl; is the total number random isotropic slice centred at a reference point of
of occurrences of configuration Several natural the particle under consideration. If the thicknessO
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of the slice is chosen small enough compared to the PRELIMINARIES

size of the particle, the blurring effect will not be _ _
expressed within the slice. An unbiased surface area BY S°* we denote the unit sphere inl-
estimator of Horvitz-Thompson type is then obtaineddimensional real codor_dlnate spade®. The standard
by weighting the surface area contribution of eacrpcalar product orR® is (.,-) with associated norm
infinitesimal surface patch in the slice with its inversell‘ll- BY @ k—subdspace we mearljledlmensmnal_ linear
sampling probability. This sampling probability is a SubSpace oR". Let A.B C R The reflection of
function of the distance of the patch from the referencé* @t the origin is denoted by = {—x | x € A},

- - : its complement byA® = RY\A, and its topological
E)Joelzrrllge?]n(iggesp))ends on the thickness & the slice boundary bydA. We write A® B = {a+b | a e

A.b € B} for the Minkowski sum ofA and B, and

It is the purpose of this paper to show that the twoA © B = {x € RY | x+ B C A} for the dilatate ofA
concepts from digital and local stereology described®y B. The positive part of a real valued functidnis
above can be combined. We will obtain a surface are@lenoted byf™ = max(f,0). The support function of
estimator based on a stack of planar parallel digita® convex body in R% is denoted byh(K,-). We use
images in an isotropic local slice, where the planedhis notion also for compact se#s A # 0, defining
of the batch are parallel to the slice. It is intuitively N(A;-) = h(conv(A),-), where conyA) is the convex
clear that an estimator will no longer be a weighted!!l of A. The exoskceletqn ex8) of a closed seh
sum of configuration counts like in Eq. 1. Instead, eacl® the set of allz€ A%, which do not have a unique
observed configuration must additionally be WeightecﬂeareSt point irA. The set ex() is measurable and
according to its inverse sampling probability. However'aS Lebesgue measure zero (Fremlin, 1997).
one cannot expect to obtain an unbiased estimator A closed seiX ¢ RY is gentle if for.7%~1-almost
this way. We will propose a set of weight functionsall x € dX there are two non-degenerate open balls
such that the surface area estimator is asymptoticalfpuching inx such that one of them is contained in
unbiased in the cases whexeis a ball centred at the X and the other inX®, andif also #9-*(N(dX N
reference point oiX is contained in such a ball of Bx S'™)) < e for all bounded Borel set8 C R".
radiuss; see Corollaries 8 and 9. In all other cases we Here 77 is the k-dimensional Hausdorff measure

can determine explicit bounds for the asymptotic worst? R? and N(A) is the reduced normal bundle &

rather large. It contains for instance all convex bodies
In the next section basic notations and concepts afgompact convex subsets &) with interior points,
introduced together with a slight generalization of theall topologically regular sets in the convex ring (the
asymptotic formula in Kiderlen and Raté3006) to family of finite unions of convex bodies), and certain
weightedvolumes of morphological transforms. This unions of sets of positive reach.
is the basis for the main theoretical result, Theorem 3, At almost all boundary points of a gentle set

which describes the asymptotic mean behaviour of ag ihere exists a unique outer unit nornrgh) to X.
estimator based on weighted configuration counts ifetc, (X, -) be the image measure g#9-1 on X

an isotropic slice. In the penultimate section, Theoremnder the mag — (a,n(a)). The measur€q_1(X,-)

3 is used to establish a surface area estimator basggnishes outsid®l(X). Let &y : R\ exo(dX) — X

on weighted counts ofn different configurations in denote the metric projection. The following theorem
a digitization of an isotropic slice section &f. We s a generalization of (Kiderlen and Rataj, 2006,
determine estimates for the asymptotic relative meamheorem 1).

error, and show that these can be improvedXif

is known to be contained in a ball centred at the,q R a compactly supported bounded measurable

reference point with known radius; see Propositior} .
) . L unction and BW and PQ four non-empty compact
10. Up to this point, the results hold for dlgltlzatlonssubSets oRY. Tz\én Q Pty P

on general lattices (with possibly different resolutions
along the different axes, and with not necessarily . 1 /
: im =
orthogonal axes) and for voxel blocks, which may be ¢-0+ € J{xaep)ceB)\ [(xceQ)mew]

Theorem 1. Let X C RY be a closed gentle set, :f

F(Sax (x))dx

larger than X 2 x 2 configurations. In the final section . . .

we specialize these results to the scaled standard :/N<><) f(a)(h(PoQ,n)—h(BaW,n))

lattice I = tZ3, define an estimator based on the )

102 informative Z 2 x 2-configurations, and compare xCy-1(X;d(an)). (2)
its performance in a simulation example with thelf f is in addition continuous at all points idX, then
theoretical asymptotic results. f(&sx(x)) can be replaced by (k) in Eq. 2.
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The proof of Theorem 1 can be found in thecontinuous ordX and let B and W be two non-empty
appendix. Kiderlen and Rataj (2006) show Theorenfinite subsets of a lattice. Then
1 in the case wheré is an indicator function. Their
result can be generalized to Theorem 1 essentially by |im td‘ldet(L)IE[l\lt]
applying the monotone convergence theorem. =0+

Letxq,...,Xq be a basis oR? and let = /N(X) f(a)(~h(B&W,n))"Cq_1(X;d(an)) .

L={nxXg+---+ngXq | Ny,...,Ng € Z} Proof. LetC be a compact set such tHato tB]\[X &
be the lattice generated by this basis. A given latticé"V] C C for all t > 0 smaller than some fixed > 0
L is generated by infinitely many different bases, buf"dX C C. Replacingf, P, B, Q andW in Theorem
the volume of the fundamental c€ly = [0,x1] B --- & 1 b_y lcf, {0}, B, {0} andW, respectively, yields the
[0,x4] depends only ofi. and not on the basis chosen; claim. H
see for example (Yap, 2000 his number is denoted

by de{LL). If & is a uniform random variable i€,

then the random latticé + L is a stationary random ~ COMBINING LOCAL AND DIGITAL
lattice. The distribution o + L. does not depend on STEREOLOGY

the choice ofCy. We now define the digitization of

a setX c RY. The points of¢ + L are interpreted as In the following we restrict ourselves t&3.
voxel midpoints of a digital image, where each voxelthe results can be generalized &, d > 4, in a

is a translate o€o. Often, L is the orthogonal standard straightforward manner. We prefer to present them
lattice Zd and the voxels are small cubes. We Work0n|y in R3 in order to keep the notation concise.

essentially with the Gauss digitization model Xf )
consisting of all voxels having their midpoints ¥ Denote the standard basis vectors IR? by
(Klette and Rosenfeld, 2004, p. 56). As there is a oneSl €2, €. Let R be a random proper rotation with
to-one correspondence between the set of voxels diStribution given by the normalized Haar measure
the one hand and + L on the other hand, the Gauss ©" the rotation group SG;. Fix the 2-subspack =
digitization is determined by the s¥t0 (£ + L) of all  SPareL,€2). We define the random 2-subspace=
lattice points inX. In order to vary the resolution of Rlo- ILiS un|f0r3mly distributed in the se&” of all 2-
the digitization, the random lattice is often scaled by a}subspaces aR", Lgt H be the distribution oL.. For
variablet > 0 andX Nt(& +1) is called the digitization . © -2 ands> 0 defineTs = Ty(1) = ©B(0,5). The set
of X (with resolution Jt). Ts=Ts(L) = Rllo®B(0,s)) = L& B(0,s) is called a
random 2-slice with thicknesss2t will be clear from

In the following we only consider compact gentle the context whetheTs refers to the deterministic 2-
setsX. Let the functionf be measurable non-negative slice Ts(I) or the random 2-slic@(L).
or integrable. Le€ + L be a stationary random lattice,

and letB,W C IL be two non-empty finite subsets of The following Theorem 3, which is the main

theoretical result of the paper, gives a formula
for the asymptotic mean of the weighted number
f occurrences of two set® and W (black and
white points, respectively), which are specified below.
Theorem 3 is an analogous result in a local
stereological setup to Kiderlen and Jensg03,
Nei= 5 fOOLpuBoxnt(E+L)x+wet(4L)\X} Theorem 4) in the context of stationary random sets
Xet{e+L) in the plane, and to Gutkowskt al. (2004, Theorem
1) and Kiderlen and RatgR006, Theorem 5) in the
setting of spatial objects, which are digitized by a
stationary random lattice.

X, whereasW stands for the ‘white’ points of the
background. For > 0 define

For f = 1 the random variabl&; counts the number
of all translations of the patterritB,tW) in the
digitizationX Nt (& +L). Calculation shows that
d Theorem 3. Let X C R3 be a compact gentle set. Let
B[N = t / F(x)dx . @) R be a random proper rotation and I€t+ 1L be a
det(L) Jixot8)\ [xatw) stationary random lattice, which is independent of R.
Let BW C L be two non-empty finite subsets of the
Corollary 2. Let X C RY be a compact gentle set. Let lattice L. and f a continuous non-negative function on
f be a locally bounded measurable function, which isR3. The weighted sumtfl\bf occurrences ofB,W) in
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the digitization of X, which lie entirely ingTis given Lemma 5. Let g: R3 x . — R be a non-negative

by measurable function such that-g) is continuous
for all | € Z. Let Ry(r) be given by Eq. 5. Then
(X)L {x+tRBEXMMR(E L) xHRWCIREL)\X}»  the conditional expectatiorf[Fyg(R)|L = |] can be
XetR(& +1L) expressed as
X+tR(BUW)CTs
fort > 0. It satisfies / aH #2(da
o S@ DR () 2(cR)
- f
tILr&tz(deﬂL)IE[Nt ] + g(a H(g) #%(da)
XNATg ’

= f(a)H % (da)p(dl),
/f/dxrﬂs @ (ﬁl’;ﬁ) (G () for y-almost all l€ .#, where H ) is given by Eq. 4.

where H @) is given by

5 Proof. For u-almost alll € . we have thap#?(dX N
(~h(B+W,v))*#(dv).  T,) = 0. This implies that there is a unique outer unit
(4) normaln(a) for ?-almost alla € d(X N Ts). Hence
and ¢, is the angle between | and the outer normalwe obtain for € SO
n(a) of X at ac dX.

1
4t cosp| Jn{|(es, )= singl}

Fy(r) = / g(a,rlo)h(rn(a))#?(da).
The proof of Theorem 3 is based on the following I(XATs)
Proposition 4 and Lemmas 5ad can be found in the There exists a regular version of the conditional

. . £ S
appendixThe difference o, in Theorem 3and¥’in gistribution of R given L (Klenke, 2006, Theorem

the followingProposition 4 is that the latter also counts8_36)_ Therefore we can use Fubini's theorem to obtain
configurations which do not lie entirely in the slitg

These are of course not observable in practice. E[Fy(RIL =]
Proposition 4. Let X C R3 be a compact gentle set. _/ -1 _ 2

Let R be a random proper rotation and I&t+1L be Loy ()9(& DE[h(r—"n(a))|L = []#7(da).
a stationary random lattice, which is independent of

R. Let BW C L be two non-empty finite subsets ofRecall that p-almost surely 15xq1,) = Loxnt, +
L. Let g: R® x .2 — R be a non-negative bounded Ixngt,- The claim now follows from Lemma 6. [
measurable function such thaf-g ) is continuous for

alll € 2. Then the number Lemma6. Forne S2 and | € . we have

N = 90 L) (5 tRBC (X AT MREHL), | TR
xetR%HL) {iitRW_Q(tRTEwZE)\EXFTg)} Eh(R™n)[L=1]=H(9),
for t > 0 satisfies where ¢ is the angle between n and I, and(é) is
given by Eq. 4.
im t2(detL) B[R] = EFy(R))
where Proof. Fix p € SO; such thaipl = lp. Then
Fo(r) == /( g(a,rlo)h(rIn)Ca(XNTs d(a,n)) E[h(R™In)|L =1] = E[h(R"n)|pRly = lg]
N(XNTs) B
(5) =Eh(R1pn)|Rlp = lg.

~

forr € S with h= (—h(B&W,-))*.
We have(n,l) = (pn,lp), hence the last conditional
The proof of Proposition 4 can be found in the€XPectation in the above equation can be written as

appendix. It uses that given the rotatiBn Corollary the normalized integral over the two small circtes?
2 can be applied t6. In the following two Lemmas pqrallel tolg at height+ sing with radius cogp, where
we derive a formula for the expected valueFgiR). @ is the angle betweemandl. O
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AN ESTIMATOR FOR SURFACE whereH; is given by Eq. 4 fofB,W) = (B;,W). Using

AREA Fubini’'s theorem we can rewrite the right-hand side of
Eqg. 8 as

In this section we will derive an estimator for 2
surface area using Theorem 3, which is based on a /aXZ’\i(Ha”)/g ]lTs(a)Hi(@l)“(dl)% (da) .
local stereological sampling design. !

Let X € R3 be a compact gentle set. SupposeWe havey, ﬂTs(a)Hi(‘p;(I)“(dl):gi(”au’w;()’wm%]

we observeX N R[(lo+ B(0,S)) Nt(¢ +1L)] for some is a tedious but not difficult calculation.
random proper rotatioR, & + 1L a stationary random

lattice, which is independent &%, ands;t > 0. Let Note that for all € [0, 71 and allr € (s, )
(Bi,W), i =1,...,mbe boundary configurations &f, 1 s
i.e. Bi, W are non-empty, disjoint finite subsets bf /0 Gys/r(2)dz= /f]lTs(a)u(dl) = 9)

with BjUW = CyN L, whereCy is a fixed fundamental
cell of L. We define the following estimator for surface (Jensen, 1998). We assuirfiem now onthat none of
area the functiongH;, i = 1,...,m, is identically zero. This
S(X) = t?(detlL) ZNII , (6) s fuffilled, if and only if B andW can be strictly
| separated by a hyperplane for ak=1,....m, or, in

. AU ] ) . other words(B;,W) is an informative configuration.
where N/ = N as defined in Theorem 3 with

B =Bj, W =W. The continuous function : [0, ) — The following two corollaries to Proposition 7
[0,0) have to be suitably chosen according to theShow that the weight function; can be chosen to
choice of(B,W). We give an example for 2 2 x 2-  Yield an asymptotically unbiased estimafK) in the

configurations in the concluding section. case whereX is sufficiently small compared te or
when X is a ball centred at the origin with unknown
Proposition 7. We have radius.

_ . ‘s Corollary 8. Let X C B(0,s). SetAi(r) = a,gi(0,0)1
tllr&E[S(X)] = / > Aillalgi(llall, ya)7#“(da) ,  with coefficients a...,ap € R that are summing up to
X one. Then the estimat®&(X) as given in Eg. 6 is an

(7) ; . .
whereg ¢ [0, 7 is the angle between a and the Outeras(sy;nptotlcally unbiased estimator of the surface area

normal na) of X at ac dX. The function dr, ) for

Y € [0, andre [0,0) is given by Proof. By definitionH; > 0. The assumption that; £
1 . 0 yields gi(0,0) > 0. As gi(r,¢) = gi(0,0) for all
g(ry) = {ﬁ :i E::E:gg;gzv 22 :g: ; i : (r,@) € [0, x [0, 71, Eq. 7 implies the claim. [
o Y,s/r ) g

Corollary 9. Let X be a ball centred at the origin with

With the two sided cut-off function s x* = unknown radius. Suppose that the setsV8 are such
(0,71) and ge (0,1] can be written as Choosing Ai(r) = &gi(r,0)~", where 31,4 = 1,
yields an asymptotically unbiased estimafgiX) of

SX).

_ Proof. If X is a ball centred at the origin we hayg =
where ay4(2) = (q — zcosy)/(singv/1—2%). For 0 for allac dX. The claim follows from Eq. 7. O
Y € {0, 1} we have

Gyq(2) = 711 (arccoqay, _4(2)) —arccogay, 4(2)))

The condition gi(r,0) > 0 in Corollary 9 is
Go4(2) = Grg(2) = Lpq(2) - equivalent to requiring that the supportldf contains
an intervall0, €) for somee > 0.

Proof. By Theorem 3 we obtain that For general shapes we cannot expect to obtain an

_ . unbiased estimator of the form Eq. 7. A suitable choice
Jim E[S(X)] of A; for r > s will strongly depend on the choice of
the pairs(Bij,W). In the sequel we propose a method
:/ / Z)\i(HaH)Hi(cp;fl)%z(da)u(dl) , (8) to choose the weight function’s and show how the
£ JOXNTs asymptotic relative worst case error can be determined
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in this case. Suppose we can determine coefficientBhen
Hi > 0 such that for alk € [0, 1] we have

iuiHi (arcsinz)) ~

lim¢ 04 E[S(X)]
S(X)

For a proof of Proposition 10 we make use of a

1-v)—e< <1+v)lte.

(12)

then by Eq. 9 we obtain for ally € [0,71] that
sM o igi(r, @) &~ f(r)~1, where f(r) = max{1,r/s}.
The function f(||a)|)~! is the probability thata is

contained in the random 2-slic& (Jensen, 1998).
i f(r), we obtain by Proposition 7, that

SettingAi(r) =
~ S(X) .

We suggest to choséps,...
& C [0,00)™ of all (ug,...
exists (as,...,am) € [0,1™
i = ai(0,0)
is asymptotically unbiased for seb C B(0,s) by
Corollary 8.

g, B8]

with 3,4 = 1 and

In the remainder of this section we show how to
determine the asymptotic relative worst case error for

given coefficients(ps, ...
from Eq. 8, that if

,Um) € . It is immediate

m
1-v< Zlui Hi(arcsir(z)) < 1+ v (10)
i=
for somev{", v} > 0 and for allz € [0, 1], then
lime_o. E[S(X)] M
v < < )
1-v"< SX) <1+vy (11)

This error bound is independent of the size and shape

of X. If we know thatX C B(0,R) for someR > 0,

then the worst case error is typically smaller and one
can determine a bound usitite following proposition.
Note that the functiorf occurring here is the inverse

probability that a point of distanaefrom the origin is
contained inTs.

Proposition 10. Suppose that XC B(0,R).
(Ua,...,Um) € ¥ and set

Ai(r) = i f(r)

where f(r) = max{1,r/s}. Lete > 0, and let L and
M(r) be given as in Lemma 11 below. Defipe-r(1-+

g/(2L))ks for ke N. Let n be minimal such thag &> R.

Foreachk=0,...,nlet0= Yo < Y1 < - < Yhn, =

m be a partition of [0, 71, such that|(i 1 — k|

<g/(2M(ry)) foralll =0,...,n. Set

Let

vy = rrll?x;/\i(rk)gi(rk, ) —1

vil=1— rrllilni;)\i (r)gi (rc, Yha) -

,Um) within the set
,Um) such that there

~1, This guarantees that the estimator

Lipschitz result for the integrand in Eq. 7.

Lemma 11. The function(r/s) S, pigi(r, ) forr >
sis Lipschitz continuous with respectipoe [0, 17) with
Lipschitz constant

n\/ 32 H

H (arcsin(z)))

9

1

where H= 3, tiH; and ||-||; denotes the }:norm on

[0,1]. Itis also Lipschitz continuous with respect ta r
[ro,), ro > s, uniformly iny, with Lipschitz constant
(1/ro)L, where

L = ||H(arcsin-))o + H (g)

+2H:jjz(H(arcsir(z)))

1

The proof of Lemma 11 can be found in the
appendix.

Proof of Proposition 10.Let ¢ € [0, 7). Then withl €
{0,...,n¢—1} such thatp € [y, Yk +1] we obtain

m

> AN (M @)
= 3 A8k~ 3 M5 (e th)

+ _i)\i (rQ)gi(rk, Yi)

< Mi(rio) | — Y] + 1+ vy
&
<1+ vz“"+§.

Hence forr € [s,R] with k such that € [ry,r 1) we
have

m

Z/\i (r)gi (rv QU)

3

M ()G (1, ) — i (R)Gi (T 1)

+ 3 Ai(re)gi(re, @)
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0.04

By the same arguments one obtains the analogous
lower bound fory ™, Ai(r)gi(r, ). Using Eq. 7 this oossf
yields Ineq. 12. O

0.031
0.025

0.021

COEFFICIENTS FOR 2 x 2 x 2-
CONFIGURATIONS

Recall that a configuration of size 22 x 2 0 o1 02 03  o0a o5 06 07 o8 oo 1

is a pair (B,W) of non-empty disjoint subsets of Fig. 1. Plot of the function HHarcsir(-)) for a

L= 23’_ such thatBUW = z° o, 1]_3- It IS configuration of type one. There are 16 configurations
informative, if there is a hyperplane, which strictly of type one (not identifying twins).
separatesB and W. In this section we want to

investigate the surface area estimator Eq. 6 in the ,
case, whergB;j,W) runs through the family of all
102 informative configurations. These configurations
are thoroughly investigated in Ziegel and Kiderlen,
(2010). In particular the functions-h(B; +W))* are
explicitly given, hence we can numerically determine
the functiondH;. As in Ziegel and Kiderlen (2010) we
classify the informative configurations into five types,
depending on the number and position of black points
B or white pointsW. A configuration of type one has
exactly one black point or exactly one white point, a
configuration of type two has exactly two black points
or exactly two white points, and a configuration of type
three has exactly three black points or exactly three ) )
white points. Configurations of type four and five havel 19+ 2: Plot of the functions Harcsir(-)) that occur
exactly four white and four black points, which arefor configurations of type two. There are eight

. . " configurations of type two with;H= H21 (left curve)
;fgggleyn%?ﬁ?r??r?; '2;2: g}? t‘; zgff;[\)//ge four, and aﬁmel)gmd 16 configurations with H= H?2 (right curve).

L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.03

For configurations of type one, all functioks are
identical and we denote them Wy!. The function
H(arcsin(z)) for z € [0,1] is shown in Fig. 1.
All functions H; (arcsinz)), z< [—1, 1], are symmetric
with respect to the origin, which is why we only
display them for valueg € [0,1]. For configurations
of type two, three and four there are two different
functionsH; occurring per type. We denote them by
H21, H22 H31 H32 andH*!, H*? respectively; see
Figs. 2, 3 and 4. For configurations of type five
all functionsH; coincide and we denote them bip,
which is displayed in Fig. 5. Fig. 6 shows all
functionsH; scaled by the number of their occurrence
amongst all functionsH; induced by informative Fig. 3. Plot of the functions Harcsir(-)) that
configurations. The numbers of occurrence of theccur for configurations of type three. There are 32
functionsH1, H21 H22 H31 H32 H4l H42 gnd configurations of type three with; H H31 (left curve)
H® are given in the last column of Table 2. and 16 configurations with H= H32 (right curve).
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0.015

0.005
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105



ZIEGEL JET AL: Surface area estimation from digital images

0.5

We define nj = ¢i(0,0)~%. The valuesn; for
informative configurations are given in Table 1, where
ni = n* whenever(B;,W) is a configuration of type
one, and analogously in the other cases.

0.451
0.4
0351

Table 1.Values ofry; for informative configurations.

03[

0.25 ) ] _ 1 ) . -1
Hi n = (fo H.(arcsw(z))dz)
AT T = 38119
H21 n2l = 48.179
H22 n?2 = 48.179
H31 3l = 171187
0 0‘1 0‘2 0‘3 0‘4 0‘5 0.6 0‘7 O‘B 0‘9 1 H372 r7372 = 171'187
. o H4l 4l = 25856
Fig. 4. P!ot of_the functions Harcsir(-)) that occur H42 n%2 = 25856
for configurations of type four. There are eight 45 N5 = 114.825

configurations of type four with jH= H* (curve for : : _
z € [0,0.7], zero otherwise) and four configurations ~ We have seen that the estimator in Eq. 6 with
with H; = H*2 (curve for ze [0.7, 1], zero otherwise).

= 0-7.1] ) M) = (1) (13)

T is unbiased forS(X) if X is a subset ofB(0,s),
whenever (pi,...,H102) € . In  Ziegel and
Kiderlen, 2010) a one-parameter family of coefficients
(My(u),...,H1p2(w), u € [0,1] was derived that
minimizes

0.025

102 .
3 HW-hEHWom)T -1 (14)

0.015
max
ne&?

for each u € [0,1]. Adapting the coefficients
(Mi(u),...,H1pp(u)) to vyield an asymptotically
unbiased estimator for spherical shapes, we obtain the
family of coefficients(uy(u),..., Hio2(u)), u € [0,1]
given in Table 2;for details see Ziegel and Kiderlen

Fig. 5. Plot of the function Harcsir()) for a (2010). It turns out thafui: (0), ... f102(0)) € . or in
configuration of type five. There are 16 configurationgyther words

0.005

0

1 L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09 1

of type five. 102 4.(0) .
1 : : : : : : : : : i= r]i
0ol We therefore suggest to sgt = 1;(0) and A; as in
b Eq. 13.Hence we obtain the estimator
07} 1 R , 102 _
SX) =3 WOW . (15)
1=

05

which has the same formal structure as the estimator
in equation Eq. 1. However, the ordinary configuration

0.4

0ar 1 countsN; in the classical estimator are replaced by the

o2} ! weighted configuration count§' given by

i > f(”XH)1{x+tRBCXﬂtR(E+Z3),}’

% o1 o0z 03 04 o5 os 0.7 08 09 1 X€tR(E+Zs) X+HtRWCtR(E +ZS)\X
X-+HR(BUW)CTs

Fig. 6. Plot of all functions HK{arcsir(-)) that occur
for 2 x 2 x 2-configurations scaled according to their where f(r) = max{1,r/s} is the inverse sampling
number of occurrence. probability. The fusion of digital and local stereology
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becomes apparent in the structure of this estimator: In summary this simulation example indicates that
While the weightgy; (0) stem from the ordinary digital the bias of the simple linear surface area estimator
surface area estimation, the weighting of the individuaEg. 6 with weight functions Eq. 13 is of reasonable
configurations iV with f reflects the local design. magnitude. It appears that the theoretical asymptotic
With this choice we obtain error bounds are often too optimistic, and should only
be used in the case where good to very good resolution
0.9539< max z Hi(O)Hi(arcsin(z)) < 1.0225 (16) images are available.

z€[0,1] 4

using the definition Eq. 4 of th;, hencev]" = 0.0461,
vM = 0.0225 fulfill Eq. 10. Therefore, by Ineq. 11, the ACKNOWLEDGEMENTS
upper and lower bound in Ineq. 16 are bounds for the
asymptotic relative worst case error &fX), as given

in Eq. 15, independent of the shape and sizeXof
In the next paragraph we illustrate the application o
Proposition 10 with a simulation example. This yields
better error bounds but requires information about the
size and preferably also the shapexof

The first author was generously supported
by RiskLab Switzerland. The second author was
upported by the Danish Council of Strategic
esearch.

APPENDIX

Table 2.0ne-parameter family of coefficients for In this appendix we present the proofs of Theorems

u € [0,1]. The number in the last column indicates thel and 3, Proposition 4 and Lemma 11.

number of occurrences of the functiort HH?*, H??2,

H31, H32, H41 H42, H5, respectively amongst all Proof of Theorem 1Let C C RY be a bounded Borel

functions H for informative2 x 2 x 2-configurations.  set. Then Eq. 2 holds fof = 1c by Kiderlen and
Rataj (2006, Theorem 1). It is immediate that Eq. 2

Hi Hi(u), ueo,1] also holds for compactly supported measurable step
HI ut(u) = (1.652/2)u 16 functions. For a non-negative compactly supported
H21 p2l(u) = 0675 8 bounded measurable functidn let (f)ken, (Ok)ken
H22 p22(u) = 0.675 16 be sequences of step functions such that f and
H31 uS,l(u) — 1.168— (1652/4)[,] 32 Ok | f and fy > 0. Let M¢ .:: [(X ® $P) S/ SB]\[(X S/
H32 u3,2(u) — 1.168— (1652/2)[] 16 EQ) ® EW] Then we obtain Wlt”ﬂ() = (h(P@ Q, ) —
H41 pAl(u) = 0.954 4 h(B&W,-))* that
H*2 p*2(u) = 0.954 2 '
g “usﬁui = ey : /N , W@ 1(X;dlan)
<limsupt [ f(Ex(x))dx

We consider a cylinder with radius 1 and height e—0+ & J/Me

2 centred at 0 which is contained B(0,/2). We </ .

observe an isotropic slice of thickness= 1. For ~ INx) K(@N(MCa-1(X;d(@am) - (17

a lattice distance of = 0.055 we obtain a mean

estimated surface area of.185 with variance 1146 Using the monotone convergence theorem we obtain

in 1000 Monte Carlo simulations. This corresponds to

a mean relative error of.8%. Fort = 0.020 the mean  lim SUPE/ f(&ox (x))dx
estimated surface area in 1000 simulations 5438 £-0+ (X@eP)SeB\[(XSeQ)@eW]

with variance 1205 and mean relative errorGP6. The = / _1(X;d(a,n)) .

asymptotic relative mean error for setswith X C

B(0,v/2) and g € [0,71/4] for all a € X is less than  Note that for applylng the monotone convergence
1.2%. We determined this value numerically usingtheorem to the right-hand side of Ineq. 17 we can
Proposition 10We obtain|(d/d2)H(arcsir(2)))[l1 = assume thatuknSuppgk) is compact and that the
5.7002, whereH = 3; 1i(0)H; and L = 133768 as sequence(g)en is uniformly bounded. The same
defined in Lemma 11. Note that the informatiggf < argument holds if we take limigf.q, in Ineq. 17 and
[0, 77/4] reduces the asymptotic relative mean error agence the claim is shown fdr > 0. For generalf =
it is then sufficient to work with partitions & Yo <  f+ — f~ we can treaff * and f ~ separately to obtain
Ukt < --- < Ykn, = T7/4 in Proposition 10.With e =  Eq. 2. If f is in addition continuous in all points @tX,
0.0030 we obtainv}! = 0.0042 andvy' = 0.0082. we obtain uniform continuity in the following sense.
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For eachn > O there exists @ > 0 such that for alk €
X Nsupf f) andy e RY with ||x—y|| < & it follows
that || f(x) — f(y)|| < n. Furthermorex € M, implies
[x—Ex ()]l < €R, whereR=2max{[ly|| |y € (W e
Q)U(B@&P)}. This implies the second claim. [

Proof of Proposition 4.For p-almost alll € . we
have that/#?(dX NdTs) = 0, which can be seen using
Fubini’'s theorem. This implies that the s&tN Tg
is compact gentle fop-almost alll € .. Applying
Corollary 2 we obtain tha?E[NZ|R = r] — Fy(r) for
t — O+ pointwise for almost alt € SG; as(—h(rB®
rW,n))* = h(r~n). We claim that the conditional
expectationt’E[N?|R] is uniformly bounded fort <

Proof of Theorem 3Let 0 < € < s/2. For | € %,
define the continuous functioxge ' R® — [0,1] as

a smoothed version oft, such thatxgg(x) =0, if
x € (Ts)® and xi(x) = 1, if x € Ts_¢. Substituting
g(x.1) = f(X)X&_¢.¢(X) in Lemma 5 we obtain

E[F;

|
Xs—e,¢

(R)IL=1]

| 2
OXMTs f(a)XS*S,S@H(‘P;I)% (da) .

The right hand side converges pointwiséd to

2
| f@HE) #(d).

1, hence Lebesgue’s dominated convergence theorem

yields the assertion. In fact Eq. 3 implies

ER¢R=1] :t‘s/

3 _g(x,rlo)dx.
[(XNTs)otrBJ\[(XNTs)dtrw]

By assumption there is a_constadt> 0 such that
gl <C.If xe [(XNTs) otrB]\[(XNTs) &trW], then

dist(x,d(X NT)) < tC/, whereC' > 0 is a constant
depending only oriB,W). Hence we obtain

CENIR)| = t‘l/.

[t°E(N[R]| = | [(XNTs) StRB]\ [(XNTs) StRW]
<CtL#3(0(X NTs) ©B(0,tC'))

<Ct L3(0X @ B(0,tC))

+Ct 13(9(Tsn B(0,diamX)) & B(0,tC')).

g(x,L)dx|

Applying (Kiderlen and Rataj, 2006, Proposition 4),

as € — 0. It is also bounded independently ef
andl, hence by the dominated convergence theorem
E[foées(R)] converges to

/,g/(,msf<a>H<<0aX,|>%2<da>u(dl>. (18)

Proposition 4 yields that

lim lim t?(detL)E
£—0t—0+

|:|<|th5%£‘,£:|

is also given by Eq. 18. It remains to show that

|:“<|IfXé‘sﬁs o Ntf ‘] 0.

Chooseq > 0 such thatBUW C B(O,qe. Then for
t < &/qwe have thak € Ts 2: implies X5 , ((X) =1

lim lim E
£—0t—0+

which is derived from a far-reaching generalization ofandx+t(BUW) C Ts. Therefore

Steiner’s formula (Hugt al,, 2004), we obtain

t~L73(0X ©B(0,tC"))

3 c‘S(r?X;a,n)Si 1
=Y iK; 1 n(a+sn
i; i /N o /o oxaB(0sc) ( )

x dslg—i(9X;d(a,n))

3 tC

gtlzlim/ /§71d5|ﬁ1d—i|(0x:d(a’n))
£ N(9X) Jo
3

ZKi (tC')'|Ha-i] (9X; 9X),

<t?

where;(dX;-) are the support measures@X, and
0(0X;a,n) =inf{t >0|a+tnec exodX)} is the reach

f

I’\‘Ithé—as o N’[

F() (Xs_e.6(X) — Lpxetrow) ) (%)
XetR(E+L)
XE€Tste\Ts2¢

wherelt (X) = 1y, tRBCXAtR(E+L) xHRWCtR(E4+L)\ X} &nd

we used thaks . . (x) =0forxe (Ts_¢)C. Using Eq. 3
this yields '

t2E |:‘ N[szL—e‘,s - Ntf | ‘R: r:|

<t_1/ f(x)[1 X) dx .
N [X@tré]\[XEBtrW]‘ (x)] 5Ts®B(o,2g)( )

function of X at (a,n). The support measures have Choose a constai such that f| < C on a compact
locally finite total variation aX is gentle and hence the Set containing(XNTs) ©trB] for all r € SGz and all
compactness oX yields boundedness of the last termt < 1. Then the last expression in the above inequality

in the above inequality for < 1. The same argument
can also be applied to1.73(9(TsNB(0,diamX)) &
B(0,tC’)) asTsNB(0,tC’) is compact gentle. O

is bounded by

Ctil/ Lot X)) dx.
[XEtrB]\[Xatr\W] aTs38(0.3¢) (ox (X))
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This integral converges for alle SO; by Theorem 1 hence M(r) is a Lipschitz constant for

ast — 0+ to (r/s) S, migi(r,y) with respect tap.
. N ) To find a Lipschitz constant fog{", Ai(r)gi(r, ¢)
/0 x(*h(fB@ r'W,n(a)))" Lotep03e)(@)#°(da) . with respect ta' we first differentiate with respect to
and obtain

The function (—h(rB @ rW,-))* is bounded by a 1

constantC’, independent of. Therefore, using the 7/ H(arcsinz))Gy s/ (2) dz

dominated convergence theorem, the limit of the above P

integral ass — 0 is bounded bﬁ:’ff_z(dxerS)zo +,7/ H(2)Gy s/ (2)dz.

for almost allr, which yields the claim. O sor Jo
The first term of the above expression is bounded
by 1/r||H(arcsin-))|l~. In order to find a bound

Proof of Lemma 11In order to find a Lipschitz for the second term we use partial integration to

constant with respect tg for rewrite S, igi(r,y) for r > s as in Eq. 19. Then
(0/0r) 3% Kigi(r, @) is given by
Higi(r, @) / HiHi(arcsinz))Gy s/r(2) dz, (M s
Zl Zl H (2) r2
L . . . 1( ] z9
we use partial integration to rewrite the function for _/ OTZ(H(arCSlr(Z)))/ ﬁGw,s/r (X) dxdz.
r>sas 0 0

Lety,r,zsuch thatay s/ (2)| < 1, then we have

ms [td . z
(E)F_/o d—Z(H(arcsn(z)))/O Gy s/r(X) dxdz, 5
(19) < arccogay, g (2)
whereH = S, piHi. Then(d/9y) S, pigi(r,g) is S

given by =
rz\/sin(w)2 —2-%4 Zszcos(tp)

1 z
_ /O (;jZ(H(arcsir(z))) /O ;:pG%S/r(x)dxdz.

Let q=s/r and ¢, q,z such thatjay q(2)| < 1. Then / arccosay /r(2)) dz

we obtain
_s
k) = arctan 2 reosy) .
I arcco$ay q(2)) 2 \/sin(w)z—zz—%JrZ?zcos(l,U)
qCOS(LI’) —z The term on the right-hand side of the above equation
sm )v/sin(y) — P+ 2qzcoq )’ is bounded in absolute value by

ST

and hence 22
K Therefore, for > ro, the function(r /s) {4 pigi(r, )
I arccogay q(2)) dz has Lipschitz constantl/ro)L in r uniformly in
y. O

= Sin(lw)\/sin(w)2 —Z2— 2+ 2qzcoqy) .
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