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ABSTRACT

A sampling design of local stereology is combined with a method from digital stereology to yield a novel
estimator of surface area based on counts of configurations observed in a digitization of an isotropic 2-
dimensional slice with thicknesss. As a tool, a result of the second author and J. Rataj on infinitesimal
increase of volumes of morphological transforms is refined and used. The proposed surface area estimator is
asymptotically unbiased in the case of sets contained in theball centred at the origin with radiuss and in the
case of balls centred at the origin with unknown radius. For general shapes bounds for the asymptotic expected
relative worst case error are given. A simulation example isdiscussed for surface area estimation based on
2×2×2-configurations.
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INTRODUCTION

Algorithms that determine the surface area of a
three-dimensional object from a binary image can be
grouped into global and local methods (Klette and
Rosenfeld, 2004, p. 302). Global methods usually
require a digital approximation of the surface or
calculation of the surface normals. Local methods
estimate the contributions to surface area of small
voxel blocks in the binary image independently of
the image outside the given block, and add up these
contributions to estimate the total surface area. As
local methods can be implemented using a linear
filter, they are extremely efficient. Lindblad (2005)
suggested a local estimator based on voxel blocks of
size 2×2×2 inspired by the common marching cubes
algorithm, but without an explicit reconstruction of
the surface. There are 28 = 256 possible combinations
of foreground and background voxels in a 2×2×2
block. They will be called configurations in the
following. Two of these configurations contain only
background or only foreground voxels and do therefore
not contribute to the surface area. The remaining
configurations, called boundary configurations, can
be grouped into 14 classes, due to symmetry. Thus,
local estimators of the surface of a setX in three-
dimensional space are of the form

Ŝ(X) =
254

∑
i=1

λiNi , (1)

whereλi is the contribution andNi is the total number
of occurrences of configurationi. Several natural

choices of the weightsλ1, . . . ,λ254 can be found in
the literature (Lindblad and Nyström, 2002; Lindblad,
2005; Schladitzet al., 2006; Ziegel and Kiderlen,
2010).

Assuming that the setX was randomly translated
before digitizing, Ziegel and Kiderlen (2010) found
optimal weights in the sense that the asymptotic
average error is minimized among all estimators of the
form Eq. 1; see also  Gutkowskiet al. (2004) for a
weaker result. Both papers are based on an asymptotic
formula (Kiderlen and Rataj, 2006), where asymptotic
refers to increasing resolution of the image. Ziegel and
Kiderlen (2010) have shown that only 102 of the 254
configuration types can arise in the case whereX is
bounded by a planar surface, and it is only these that
contribute to the surface area measure asymptotically;
see also (Lindblad, 2005). These 102 configurations
are therefore calledinformativeconfigurations.

The estimator Eq. 1 can in principle also be
applied to stacks of binary images of horizontal planar
sections ofX, where configurations are composed of
voxels in two neighbouring section planes. A possible
application is the estimation of the surface area of
particles (e.g. cells) in confocal microscopy, where
a stack of focal planes is digitized and analysed.
However, due to optical effects, section planes that are
hitting a particle close to one of the two horizontal
touching planes yield only an extremely blurred image
of the section profile. In traditional (continuous)
stereology, this problem is solved by considering a
random isotropic slice centred at a reference point of
the particle under consideration. If the thicknesss> 0
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of the slice is chosen small enough compared to the
size of the particle, the blurring effect will not be
expressed within the slice. An unbiased surface area
estimator of Horvitz-Thompson type is then obtained
by weighting the surface area contribution of each
infinitesimal surface patch in the slice with its inverse
sampling probability. This sampling probability is a
function of the distance of the patch from the reference
point, and depends on the thickness 2s of the slice
(Jensen, 1998).

It is the purpose of this paper to show that the two
concepts from digital and local stereology described
above can be combined. We will obtain a surface area
estimator based on a stack of planar parallel digital
images in an isotropic local slice, where the planes
of the batch are parallel to the slice. It is intuitively
clear that an estimator will no longer be a weighted
sum of configuration counts like in Eq. 1. Instead, each
observed configuration must additionally be weighted
according to its inverse sampling probability. However,
one cannot expect to obtain an unbiased estimator
this way. We will propose a set of weight functions
such that the surface area estimator is asymptotically
unbiased in the cases whereX is a ball centred at the
reference point orX is contained in such a ball of
radiuss; see Corollaries 8 and 9. In all other cases we
can determine explicit bounds for the asymptotic worst
case error; see Ineq. 11 and Proposition 10.

In the next section basic notations and concepts are
introduced together with a slight generalization of the
asymptotic formula in  Kiderlen and Rataj(2006) to
weightedvolumes of morphological transforms. This
is the basis for the main theoretical result, Theorem 3,
which describes the asymptotic mean behaviour of an
estimator based on weighted configuration counts in
an isotropic slice. In the penultimate section, Theorem
3 is used to establish a surface area estimator based
on weighted counts ofm different configurations in
a digitization of an isotropic slice section ofX. We
determine estimates for the asymptotic relative mean
error, and show that these can be improved, ifX
is known to be contained in a ball centred at the
reference point with known radius; see Proposition
10. Up to this point, the results hold for digitizations
on general lattices (with possibly different resolutions
along the different axes, and with not necessarily
orthogonal axes) and for voxel blocks, which may be
larger than 2×2×2 configurations. In the final section
we specialize these results to the scaled standard
lattice L = tZ3, define an estimator based on the
102 informative 2×2×2-configurations, and compare
its performance in a simulation example with the
theoretical asymptotic results.

PRELIMINARIES

By S
d−1 we denote the unit sphere ind-

dimensional real coordinate spaceRd. The standard
scalar product onRd is 〈·, ·〉 with associated norm
‖·‖. By a k-subspace we mean ak-dimensional linear
subspace ofRd. Let A,B ⊂ R

d. The reflection of
A at the origin is denoted by̌A = {−x | x ∈ A},
its complement byAc = R

d\A, and its topological
boundary by∂A. We write A⊕ B = {a + b | a ∈
A,b ∈ B} for the Minkowski sum ofA and B, and
A⊖ B = {x ∈ R

d | x+ B̌ ⊂ A} for the dilatate ofA
by B̌. The positive part of a real valued functionf is
denoted byf + = max(f ,0). The support function of
a convex bodyK in R

d is denoted byh(K, ·). We use
this notion also for compact setsA, A 6= /0, defining
h(A,·) = h(conv(A), ·), where conv(A) is the convex
hull of A. The exoskeleton exo(A) of a closed setA
is the set of allz∈ Ac, which do not have a unique
nearest point inA. The set exo(A) is measurable and
has Lebesgue measure zero (Fremlin, 1997).

A closed setX ⊂ R
d is gentle if forH d−1-almost

all x ∈ ∂X there are two non-degenerate open balls
touching inx such that one of them is contained in
X and the other inXc, and if also H d−1(N(∂X ∩
B×Sd−1)) < ∞ for all bounded Borel setsB ⊂ R

d.
Here H k is the k-dimensional Hausdorff measure

in R
d and N(A) is the reduced normal bundle ofA

(Kiderlen and Rataj, 2006). The class of gentle sets is
rather large. It contains for instance all convex bodies
(compact convex subsets ofR

d) with interior points,
all topologically regular sets in the convex ring (the
family of finite unions of convex bodies), and certain
unions of sets of positive reach.

At almost all boundary pointsa of a gentle set
X there exists a unique outer unit normaln(a) to X.
Let Cd−1(X, ·) be the image measure ofH d−1 on ∂X
under the mapa 7→ (a,n(a)). The measureCd−1(X, ·)
vanishes outsideN(X). Let ξ∂X : R

d\exo(∂X) → ∂X
denote the metric projection. The following theorem
is a generalization of (Kiderlen and Rataj, 2006,
Theorem 1).

Theorem 1. Let X ⊆ R
d be a closed gentle set, f:

R
d → R a compactly supported bounded measurable

function and B,W and P,Q four non-empty compact
subsets ofRd. Then

lim
ε→0+

1
ε

∫

[(X⊕εP)⊖εB]\[(X⊖εQ)⊕εW]
f (ξ∂X(x))dx

=
∫

N(X)
f (a)(h(P⊕ Q̌,n)−h(B̌⊕W,n))+

×Cd−1(X;d(a,n)). (2)

If f is in addition continuous at all points in∂X, then
f (ξ∂X(x)) can be replaced by f(x) in Eq. 2.
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The proof of Theorem 1 can be found in the
appendix. Kiderlen and Rataj (2006) show Theorem
1 in the case wheref is an indicator function. Their
result can be generalized to Theorem 1 essentially by
applying the monotone convergence theorem.

Let x1, . . . ,xd be a basis ofRd and let

L = {n1x1 + · · ·+ndxd | n1, . . . ,nd ∈ Z}

be the lattice generated by this basis. A given lattice
L is generated by infinitely many different bases, but
the volume of the fundamental cellC0 = [0,x1]⊕·· ·⊕
[0,xd] depends only onL and not on the basis chosen;
see for example (Yap, 2000).This number is denoted
by det(L). If ξ is a uniform random variable inC0,
then the random latticeξ + L is a stationary random
lattice. The distribution ofξ + L does not depend on
the choice ofC0. We now define the digitization of
a setX ⊂ R

d. The points ofξ + L are interpreted as
voxel midpoints of a digital image, where each voxel
is a translate ofC0. Often,L is the orthogonal standard
lattice Z

d and the voxels are small cubes. We work
essentially with the Gauss digitization model ofX
consisting of all voxels having their midpoints inX
(Klette and Rosenfeld, 2004, p. 56). As there is a one-
to-one correspondence between the set of voxels on
the one hand andξ + L on the other hand, the Gauss
digitization is determined by the setX∩ (ξ +L) of all
lattice points inX. In order to vary the resolution of
the digitization, the random lattice is often scaled by a
variablet > 0 andX∩t(ξ +L) is called the digitization
of X (with resolution 1/t).

In the following we only consider compact gentle
setsX. Let the functionf be measurable non-negative
or integrable. Letξ +L be a stationary random lattice,
and letB,W ⊆ L be two non-empty finite subsets of
L. The points inB represent ‘black’ pixels of the
digitization, i.e. points which are contained in the set
X, whereasW stands for the ‘white’ points of the
background. Fort > 0 define

Nt := ∑
x∈t(ξ+L)

f (x)1{x+tB⊆X∩t(ξ+L),x+tW⊆t(ξ+L)\X}.

For f ≡ 1 the random variableNt counts the number
of all translations of the pattern(tB, tW) in the
digitizationX∩ t(ξ +L). Calculation shows that

E [Nt ] =
t−d

det(L)

∫

[X⊖tB̌]\[X⊕tW̌]
f (x)dx . (3)

Corollary 2. Let X⊆ R
d be a compact gentle set. Let

f be a locally bounded measurable function, which is

continuous on∂X and let B and W be two non-empty
finite subsets of a latticeL. Then

lim
t→0+

td−1det(L)E [Nt ]

=
∫

N(X)
f (a)(−h(B⊕W̌,n))+Cd−1(X;d(a,n)) .

Proof. LetC be a compact set such that[X⊖ tB̌]\[X⊕
tW̌] ⊂ C for all t > 0 smaller than some fixedt0 > 0
andX ⊂ C. Replacingf , P, B, Q andW in Theorem
1 by 1C f , {0}, B̌, {0} andW̌, respectively, yields the
claim.

COMBINING LOCAL AND DIGITAL
STEREOLOGY

In the following we restrict ourselves toR3.
The results can be generalized toR

d, d ≥ 4, in a
straightforward manner. We prefer to present them
only in R

3 in order to keep the notation concise.

Denote the standard basis vectors inR3 by
e1,e2,e3. Let R be a random proper rotation with
distribution given by the normalized Haar measure
on the rotation groupSO3. Fix the 2-subspacel0 =
span(e1,e2). We define the random 2-subspaceL =
Rl0. It is uniformly distributed in the setL of all 2-
subspaces ofR3. Let µ be the distribution ofL. For
l ∈L ands> 0 defineTs = Ts(l) = l ⊕B(0,s). The set
Ts = Ts(L) = R(l0 ⊕B(0,s)) = L⊕B(0,s) is called a
random 2-slice with thickness 2s. It will be clear from
the context whetherTs refers to the deterministic 2-
sliceTs(l) or the random 2-sliceTs(L).

The following Theorem 3, which is the main
theoretical result of the paper, gives a formula
for the asymptotic mean of the weighted number
of occurrences of two setsB and W (black and
white points, respectively), which are specified below.
Theorem 3 is an analogous result in a local
stereological  setup  to   Kiderlen and Jensen(2003,
Theorem 4) in the context of stationary random sets
in the plane, and to  Gutkowskiet al. (2004, Theorem
1) and  Kiderlen and Rataj(2006, Theorem 5) in the
setting of spatial objects, which are digitized by a
stationary random lattice.

Theorem 3. Let X⊆ R
3 be a compact gentle set. Let

R be a random proper rotation and letξ + L be a
stationary random lattice, which is independent of R.
Let B,W ⊂ L be two non-empty finite subsets of the
lattice L and f a continuous non-negative function on
R

3. The weighted sum Nft of occurrences of(B,W) in
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the digitization of X, which lie entirely in Ts, is given
by

∑
x∈tR(ξ+L)

x+tR(B∪W)⊆Ts

f (x)1{x+tRB⊆X∩tR(ξ+L),x+tRW⊆tR(ξ+L)\X},

for t > 0. It satisfies

lim
t→0+

t2(detL)E[N f
t ]

=
∫

L

∫

∂X∩Ts

f (a)H(φX
a,l )H

2(da)µ(dl),

where H(φ) is given by

1
4π|cosφ |

∫

S2∩{|〈e3,·〉|=|sinφ |}
(−h(B+W̌,v))+H

1(dv),

(4)
and φX

a,l is the angle between l and the outer normal
n(a) of X at a∈ ∂X.

The proof of Theorem 3 is based on the following
Proposition 4 and Lemmas 5, 6and can be found in the
appendix.The difference ofN f

t in Theorem 3 and̃Ng
t in

the followingProposition 4 is that the latter also counts
configurations which do not lie entirely in the sliceT2.
These are of course not observable in practice.

Proposition 4. Let X ⊆ R
3 be a compact gentle set.

Let R be a random proper rotation and letξ + L be
a stationary random lattice, which is independent of
R. Let B,W ⊂ L be two non-empty finite subsets of
L. Let g : R

3 ×L → R be a non-negative bounded
measurable function such that g(·, l) is continuous for
all l ∈ L . Then the number

Ñg
t = ∑

x∈tR(ξ+L)

g(x,L)1{

x+tRB⊆(X∩Ts)∩tR(ξ+L),
x+tRW⊆tR(ξ+L)\(X∩Ts)

},

for t > 0 satisfies

lim
t→0+

t2(detL)E[Ñg
t ] = E[Fg(R)],

where

Fg(r) :=
∫

N(X∩Ts)
g(a, rl0)h(r−1n)C2(X∩Ts;d(a,n))

(5)
for r ∈ SO3 with h= (−h(B⊕W̌, ·))+.

The proof of Proposition 4 can be found in the
appendix. It uses that given the rotationR, Corollary
2 can be applied tõNg

t . In the following two Lemmas
we derive a formula for the expected value ofFg(R).

Lemma 5. Let g : R
3 ×L → R be a non-negative

measurable function such that g(·, l) is continuous
for all l ∈ L . Let Fg(r) be given by Eq. 5. Then
the conditional expectationE[Fg(R)|L = l ] can be
expressed as

∫

∂X∩Ts

g(a, l)H(φX
a,l )H

2(da)

+
∫

X∩∂Ts

g(a, l)H(φX
a,l )H

2(da)

for µ-almost all l∈ L , where H(φ) is given by Eq. 4.

Proof. For µ-almost alll ∈L we have thatH 2(∂X∩
∂Ts) = 0. This implies that there is a unique outer unit
normaln(a) for H 2-almost alla ∈ ∂ (X ∩Ts). Hence
we obtain forr ∈ SO3

Fg(r) =
∫

∂ (X∩Ts)
g(a, rl0)h(r−1n(a))H 2(da).

There exists a regular version of the conditional
distribution of R given L (Klenke, 2006, Theorem
8.36). Therefore we can use Fubini’s theorem to obtain

E[Fg(R)|L = l ]

=
∫

1∂ (X∩Ts)(a)g(a, l)E[h(r−1n(a))|L = l ]H 2(da).

Recall that µ-almost surely1∂ (X∩Ts) = 1∂X∩Ts +
1X∩∂Ts. The claim now follows from Lemma 6.

Lemma 6. For n∈ S
2 and l∈ L we have

E[h(R−1n)|L = l ] = H(φ),

whereφ is the angle between n and l, and H(φ) is
given by Eq. 4.

Proof. Fix ρ ∈ SO3 such thatρ l = l0. Then

E[h(R−1n)|L = l ] = E[h(R−1n)|ρRl0 = l0]

= E[h(R−1ρn)|Rl0 = l0].

We have〈n, l〉 = 〈ρn, l0〉, hence the last conditional
expectation in the above equation can be written as
the normalized integral over the two small circles⊂ S

2

parallel tol0 at height±sinφ with radius cosφ , where
φ is the angle betweenn andl .
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AN ESTIMATOR FOR SURFACE
AREA

In this section we will derive an estimator for
surface area using Theorem 3, which is based on a
local stereological sampling design.

Let X ∈ R
3 be a compact gentle set. Suppose

we observeX ∩R[(l0 + B(0,s))∩ t(ξ + L)] for some
random proper rotationR, ξ + L a stationary random
lattice, which is independent ofR, and s, t > 0. Let
(Bi ,Wi), i = 1, . . . ,m be boundary configurations ofL,
i.e. Bi , Wi are non-empty, disjoint finite subsets ofL

with Bi ∪Wi =C0∩L, whereC0 is a fixed fundamental
cell of L. We define the following estimator for surface
area

Ŝ(X) = t2(detL)∑
i

Ni
t , (6)

where Ni
t = Nλi(‖·‖)

t as defined in Theorem 3 with
B= Bi ,W =Wi . The continuous functionsλi : [0,∞)→
[0,∞) have to be suitably chosen according to the
choice of(Bi ,Wi). We give an example for 2×2×2-
configurations in the concluding section.

Proposition 7. We have

lim
t→0+

E[Ŝ(X)] =
∫

∂X
∑
i

λi(‖a‖)gi(‖a‖,ψX
a )H 2(da) ,

(7)
whereψX

a ∈ [0,π] is the angle between a and the outer
normal n(a) of X at a∈ ∂X. The function gi(r,ψ) for
ψ ∈ [0,π] and r∈ [0,∞) is given by

gi(r,ψ) =

{

∫ 1
0 Hi(arcsin(z))dz, for r ≤ s,

∫ 1
0 Hi(arcsin(z))Gψ,s/r(z)dz, for r > s.

With the two sided cut-off function x7→ x∗ =
min{1,max{−1,x}}, the function Gψ,q(z) for ψ ∈
(0,π) and q∈ (0,1] can be written as

Gψ,q(z) =
1
π

(

arccos
(

α∗
ψ,−q(z)

)

−arccos
(

α∗
ψ,q(z)

))

,

where αψ,q(z) = (q − zcosψ)/(sinψ
√

1−z2). For
ψ ∈ {0,π} we have

G0,q(z) = Gπ,q(z) = 1[0,q](z) .

Proof. By Theorem 3 we obtain that

lim
t→0+

E[Ŝ(X)]

=
∫

L

∫

∂X∩Ts
∑
i

λi(‖a‖)Hi(φX
a,l )H

2(da)µ(dl) , (8)

whereHi is given by Eq. 4 for(B,W) = (Bi ,Wi). Using
Fubini’s theorem we can rewrite the right-hand side of
Eq. 8 as

∫

∂X
∑
i

λi(‖a‖)
∫

L

1Ts(a)Hi(φX
a,l )µ(dl)H 2(da) .

We have
∫

L
1Ts(a)Hi(φX

a,l )µ(dl) = gi(‖a‖,ψX
a ), which

is a tedious but not difficult calculation.

Note that for allψ ∈ [0,π] and allr ∈ (s,∞)

∫ 1

0
Gψ,s/r(z)dz=

∫

L

1Ts(a)µ(dl) =
s
r

(9)

(Jensen, 1998). We assumefrom now onthat none of
the functionsHi , i = 1, . . . ,m, is identically zero. This
is fulfilled, if and only if Bi and Wi can be strictly
separated by a hyperplane for alli = 1, . . . ,m, or, in
other words,(Bi ,Wi) is an informative configuration.

The following two corollaries to Proposition 7
show that the weight functionsλi can be chosen to
yield an asymptotically unbiased estimatorŜ(X) in the
case whereX is sufficiently small compared tos or
whenX is a ball centred at the origin with unknown
radius.

Corollary 8. Let X⊆ B(0,s). Setλi(r) = aigi(0,0)−1

with coefficients a1, . . . ,am∈R that are summing up to
one. Then the estimator̂S(X) as given in Eq. 6 is an
asymptotically unbiased estimator of the surface area
S(X).

Proof. By definitionHi ≥ 0. The assumption thatHi 6≡
0 yields gi(0,0) > 0. As gi(r,ψ) = gi(0,0) for all
(r,ψ) ∈ [0,s]× [0,π], Eq. 7 implies the claim.

Corollary 9. Let X be a ball centred at the origin with
unknown radius. Suppose that the sets Bi , Wi are such
that gi(r,0) > 0 for all r ∈ [0,∞) and i = 1, . . . ,m.
Choosing λi(r) = aigi(r,0)−1, where ∑m

i=1ai = 1,
yields an asymptotically unbiased estimatorŜ(X) of
S(X).

Proof. If X is a ball centred at the origin we haveψX
a =

0 for all a∈ ∂X. The claim follows from Eq. 7.

The condition gi(r,0) > 0 in Corollary 9 is
equivalent to requiring that the support ofHi contains
an interval[0,ε) for someε > 0.

For general shapes we cannot expect to obtain an
unbiased estimator of the form Eq. 7. A suitable choice
of λi for r > s will strongly depend on the choice of
the pairs(Bi ,Wi). In the sequel we propose a method
to choose the weight functionsλi and show how the
asymptotic relative worst case error can be determined
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in this case. Suppose we can determine coefficients
µi ≥ 0 such that for allz∈ [0,1] we have

m

∑
i=1

µiHi(arcsin(z)) ≈ 1 ,

then by Eq. 9 we obtain for allψ ∈ [0,π] that
∑m

i=1 µigi(r,ψ) ≈ f (r)−1, where f (r) = max{1, r/s}.
The function f (‖a‖)−1 is the probability thata is
contained in the random 2-sliceTs (Jensen, 1998).
Settingλi(r) = µi f (r), we obtain by Proposition 7, that

lim
t→0+

E[Ŝ(X)] ≈ S(X) .

We suggest to chose(µ1, . . . ,µm) within the set
S ⊆ [0,∞)m of all (µ1, . . . ,µm) such that there
exists (a1, . . . ,am) ∈ [0,1]m with ∑m

i=1ai = 1 and
µi = aigi(0,0)−1. This guarantees that the estimator
is asymptotically unbiased for setsX ⊆ B(0,s) by
Corollary 8.

In the remainder of this section we show how to
determine the asymptotic relative worst case error for
given coefficients(µ1, . . . ,µm) ∈ S . It is immediate
from Eq. 8, that if

1−νm
1 ≤

m

∑
i=1

µiHi(arcsin(z)) ≤ 1+νM
1 (10)

for someνm
1 ,νM

1 > 0 and for allz∈ [0,1], then

1−νm
1 ≤ limt→0+ E[Ŝ(X)]

S(X)
≤ 1+νM

1 . (11)

This error bound is independent of the size and shape
of X. If we know thatX ⊆ B(0,R) for someR > 0,
then the worst case error is typically smaller and one
can determine a bound usingthe following proposition.
Note that the functionf occurring here is the inverse
probability that a point of distancer from the origin is
contained inTs.

Proposition 10. Suppose that X⊆ B(0,R). Let
(µ1, . . . ,µm) ∈ S and set

λi(r) = µi f (r) ,

where f(r) = max{1, r/s}. Let ε > 0, and let L and
M(r) be given as in Lemma 11 below. Define rk = (1+
ε/(2L))ks for k∈N. Let n be minimal such that rn ≥R.
For each k= 0, . . . ,n let0= ψk0 < ψk1 < · · ·< ψknk =
π be a partition of [0,π], such that|ψk,l+1 − ψk,l |
≤ ε/(2M(rk)) for all l = 0, . . . ,nk. Set

νM
2 = max

k,l

m

∑
i=1

λi(rk)gi(rk,ψkl)−1 ,

νm
2 = 1−min

k,l

m

∑
i=1

λi(rk)gi(rk,ψkl) .

Then

1−νm
2 − ε ≤ limt→0+ E[Ŝ(X)]

S(X)
≤ 1+νM

2 + ε . (12)

For a proof of Proposition 10 we make use of a
Lipschitz result for the integrand in Eq. 7.

Lemma 11. The function(r/s)∑m
i=1 µigi(r,ψ) for r >

s is Lipschitz continuous with respect toψ ∈ [0,π] with
Lipschitz constant

M(r) =
1
π

√

r2

s2 −1

∥

∥

∥

∥

d
dz

(H(arcsin(z)))

∥

∥

∥

∥

1
,

where H= ∑i µiHi and ‖·‖1 denotes the L1-norm on
[0,1]. It is also Lipschitz continuous with respect to r∈
[r0,∞), r0 ≥ s, uniformly inψ, with Lipschitz constant
(1/r0)L, where

L = ‖H(arcsin(·))‖∞ +H
(π

2

)

+2

∥

∥

∥

∥

d
dz

(H(arcsin(z)))

∥

∥

∥

∥

1
.

The proof of Lemma 11 can be found in the
appendix.

Proof of Proposition 10.Let ψ ∈ [0,π]. Then withl ∈
{0, . . . ,nk−1} such thatψ ∈ [ψkl,ψk,l+1] we obtain

m

∑
i=1

λi(rk)gi(rk,ψ)

=
m

∑
i=1

λi(rk)gi(rk,ψ)−
m

∑
i=1

λi(rk)gi(rk,ψkl)

+
m

∑
i=1

λi(rk)gi(rk,ψkl)

≤ Mi(rk)|ψ −ψkl|+1+νM
2

≤ 1+νM
2 +

ε
2
.

Hence forr ∈ [s,R] with k such thatr ∈ [rk, rk+1) we
have

m

∑
i=1

λi(r)gi(r,ψ)

=
m

∑
i=1

λi(r)gi(r,ψ)−
m

∑
i=1

λi(rk)gi(rk,ψ)

+
m

∑
i=1

λi(rk)gi(rk,ψ)

≤ L
rk

(r − rk)+1+νM
2 +

ε
2

≤ 1+νM
2 + ε .
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By the same arguments one obtains the analogous
lower bound for∑m

i=1 λi(r)gi(r,ψ). Using Eq. 7 this
yields Ineq. 12.

COEFFICIENTS FOR 2 × 2 × 2-
CONFIGURATIONS

Recall that a configuration of size 2× 2 × 2
is a pair (B,W) of non-empty disjoint subsets of
L = Z

3, such that B ∪ W = Z
3 ∩ [0,1]3. It is

informative, if there is a hyperplane, which strictly
separatesB and W. In this section we want to
investigate the surface area estimator Eq. 6 in the
case, where(Bi ,Wi) runs through the family of all
102 informative configurations. These configurations
are thoroughly investigated in  Ziegel and Kiderlen,
(2010).           In  particular the functions (−h(Bi + W̌i))

+ are
explicitly given, hence we can numerically determine
the functionsHi . As in Ziegel and Kiderlen (2010) we
classify the informative configurations into five types,
depending on the number and position of black points
B or white pointsW. A configuration of type one has
exactly one black point or exactly one white point, a
configuration of type two has exactly two black points
or exactly two white points, and a configuration of type
three has exactly three black points or exactly three
white points. Configurations of type four and five have
exactly four white and four black points, which are
affinely dependent in the case of type four, and affinely
independent in the case of type five.

For configurations of type one, all functionsHi are
identical and we denote them byH1. The function
H1(arcsin(z)) for z ∈ [0,1] is shown in Fig. 1.
All functions Hi(arcsin(z)), z∈ [−1,1], are symmetric
with respect to the origin, which is why we only
display them for valuesz∈ [0,1]. For configurations
of type two, three and four there are two different
functionsHi occurring per type. We denote them by
H2,1, H2,2, H3,1, H3,2 andH4,1, H4,2 respectively; see
Figs. 2, 3 and 4. For configurations of type five
all functionsHi coincide and we denote them byH5,
which is displayed in Fig. 5. Fig. 6 shows all
functionsHi scaled by the number of their occurrence
amongst all functionsHi induced by informative
configurations. The numbers of occurrence of the
functionsH1, H2,1, H2,2, H3,1, H3,2, H4,1, H4,2 and
H5 are given in the last column of Table 2.
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Fig. 1. Plot of the function Hi(arcsin(·)) for a
configuration of type one. There are 16 configurations
of type one (not identifying twins).
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Fig. 2. Plot of the functions Hi(arcsin(·)) that occur
for configurations of type two. There are eight
configurations of type two with Hi = H2,1 (left curve)
and 16 configurations with Hi = H2,2 (right curve).
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Fig. 3. Plot of the functions Hi(arcsin(·)) that
occur for configurations of type three. There are 32
configurations of type three with Hi = H3,1 (left curve)
and 16 configurations with Hi = H3,2 (right curve).
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Fig. 4. Plot of the functions Hi(arcsin(·)) that occur
for configurations of type four. There are eight
configurations of type four with Hi = H4,1 (curve for
z ∈ [0,0.7], zero otherwise) and four configurations
with Hi = H4,2 (curve for z∈ [0.7,1], zero otherwise).
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Fig. 5. Plot of the function Hi(arcsin(·)) for a
configuration of type five. There are 16 configurations
of type five.
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Fig. 6. Plot of all functions Hi(arcsin(·)) that occur
for 2×2×2-configurations scaled according to their
number of occurrence.

We define ηi = gi(0,0)−1. The valuesηi for
informative configurations are given in Table 1, where
ηi = η1 whenever(Bi ,Wi) is a configuration of type
one, and analogously in the other cases.

Table 1.Values ofηi for informative configurations.

Hi ηi =
(

∫ 1
0 Hi(arcsin(z))dz

)−1

H1 η1 = 38.119
H2,1 η2,1 = 48.179
H2,2 η2,2 = 48.179
H3,1 η3,1 = 171.187
H3,2 η3,2 = 171.187
H4,1 η4,1 = 25.856
H4,2 η4,2 = 25.856
H5 η5 = 114.825

We have seen that the estimator in Eq. 6 with

λi(r) = µi f (r) (13)

is unbiased forS(X) if X is a subset ofB(0,s),
whenever (µ1, . . . ,µ102) ∈ S . In      Ziegel   and
Kiderlen, 2010) a one-parameter family of coefficients
(µ ′

1(u), . . . ,µ ′
102(u)), u ∈ [0,1] was derived that

minimizes

max
n∈S2

∣

∣

∣

∣

∣

102

∑
i=1

µ ′
i (u)(−h(Bi +W̌i ,n))+−1

∣

∣

∣

∣

∣

(14)

for each u ∈ [0,1]. Adapting the coefficients
(µ ′

1(u), . . . ,µ ′
102(u)) to yield an asymptotically

unbiased estimator for spherical shapes, we obtain the
family of coefficients(µ1(u), . . . ,µ102(u)), u ∈ [0,1]
given in Table 2; for details see  Ziegel and Kiderlen
(2010). It turns out that(µ1(0), . . . ,µ102(0))∈ S or in
other words

102

∑
i=1

µi(0)

ηi
= 1 .

We therefore suggest to setµi = µi(0) and λi as in
Eq. 13.Hence we obtain the estimator

Ŝ(X) = t2
102

∑
i=1

µi(0)Wi
t , (15)

which has the same formal structure as the estimator
in equation Eq. 1. However, the ordinary configuration
countsNi in the classical estimator are replaced by the
weighted configuration countsWi

t given by

∑
x∈tR(ξ+Z

3)
x+tR(B∪W)⊆Ts

f (‖x‖)1{

x+tRB⊆X∩tR(ξ+Z
3),

x+tRW⊆tR(ξ+Z
3)\X

},

where f (r) = max{1, r/s} is the inverse sampling
probability. The fusion of digital and local stereology
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becomes apparent in the structure of this estimator:
While the weightsµi(0) stem from the ordinary digital
surface area estimation, the weighting of the individual
configurations inWi

t with f reflects the local design.
With this choice we obtain

0.9539≤ max
z∈[0,1]

∑
i

µi(0)Hi(arcsin(z)) ≤ 1.0225, (16)

using the definition Eq. 4 of theHi , henceνm
1 = 0.0461,

νM
1 = 0.0225 fulfill Eq. 10. Therefore, by Ineq. 11, the

upper and lower bound in Ineq. 16 are bounds for the
asymptotic relative worst case error ofŜ(X), as given
in Eq. 15, independent of the shape and size ofX.
In the next paragraph we illustrate the application of
Proposition 10 with a simulation example. This yields
better error bounds but requires information about the
size and preferably also the shape ofX.

Table 2.One-parameter family of coefficientsµi for
u∈ [0,1]. The number in the last column indicates the
number of occurrences of the function H1, H2,1, H2,2,
H3,1, H3,2, H4,1, H4,2, H5, respectively amongst all
functions Hi for informative2×2×2-configurations.

Hi µi(u), u∈ [0,1]
H1 µ1(u) = (1.652/2)u 16
H2,1 µ2,1(u) = 0.675 8
H2,2 µ2,2(u) = 0.675 16
H3,1 µ3,1(u) = 1.168− (1.652/4)u 32
H3,2 µ3,2(u) = 1.168− (1.652/2)u 16
H4,1 µ4,1(u) = 0.954 4
H4,2 µ4,2(u) = 0.954 2
H5 µ5(u) = 1.652(1−u) 8

We consider a cylinder with radius 1 and height
2 centred at 0 which is contained inB(0,

√
2). We

observe an isotropic slice of thicknesss = 1. For
a lattice distance oft = 0.055 we obtain a mean
estimated surface area of 18.115 with variance 1.146
in 1000 Monte Carlo simulations. This corresponds to
a mean relative error of 3.8%. Fort = 0.020 the mean
estimated surface area in 1000 simulations is 18.553
with variance 1.205 and mean relative error 1.6%. The
asymptotic relative mean error for setsX with X ⊆
B(0,

√
2) andψX

a ∈ [0,π/4] for all a ∈ X is less than
1.2%. We determined this value numerically using
Proposition 10.We obtain‖(d/dz))H(arcsin(z)))‖1 =
5.7002, whereH = ∑i µi(0)Hi and L = 13.3768 as
defined in Lemma 11. Note that the informationψX

a ∈
[0,π/4] reduces the asymptotic relative mean error as
it is then sufficient to work with partitions 0= ψk0 <
ψk1 < · · · < ψknk = π/4 in Proposition 10.With ε =

0.0030 we obtainνM
2 = 0.0042 andνm

2 = 0.0082.

In summary this simulation example indicates that
the bias of the simple linear surface area estimator
Eq. 6 with weight functions Eq. 13 is of reasonable
magnitude. It appears that the theoretical asymptotic
error bounds are often too optimistic, and should only
be used in the case where good to very good resolution
images are available.
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APPENDIX

In this appendix we present the proofs of Theorems
1 and 3, Proposition 4 and Lemma 11.

Proof of Theorem 1.Let C ⊆ R
d be a bounded Borel

set. Then Eq. 2 holds forf = 1C by  Kiderlen and
Rataj (2006, Theorem 1). It is immediate that Eq. 2
also holds for compactly supported measurable step
functions. For a non-negative compactly supported
bounded measurable functionf , let ( fk)k∈N, (gk)k∈N

be sequences of step functions such thatfk ↑ f and
gk ↓ f and fk ≥ 0. Let Mε := [(X ⊕ εP)⊖ εB]\[(X ⊖
εQ)⊕ εW]. Then we obtain withh(·) = (h(P⊕ Q̌, ·)−
h(B̌⊕W, ·))+ that
∫

N(X)
fk(a)h(n)Cd−1(X;d(a,n))

≤ limsup
ε→0+

1
ε

∫

Mε
f (ξ∂X(x))dx

≤
∫

N(X)
gk(a)h(n)Cd−1(X;d(a,n)) . (17)

Using the monotone convergence theorem we obtain

limsup
ε→0+

1
ε

∫

[(X⊕εP)⊖εB]\[(X⊖εQ)⊕εW]
f (ξ∂X(x))dx

=
∫

N(X)
f (a)h(n)Cd−1(X;d(a,n)) .

Note that for applying the monotone convergence
theorem to the right-hand side of Ineq. 17 we can
assume that∪k∈N supp(gk) is compact and that the
sequence(gk)k∈N is uniformly bounded. The same
argument holds if we take liminfε→0+ in Ineq. 17 and
hence the claim is shown forf ≥ 0. For generalf =
f + − f− we can treatf + and f− separately to obtain
Eq. 2. If f is in addition continuous in all points of∂X,
we obtain uniform continuity in the following sense.
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For eachη > 0 there exists aδ > 0 such that for allx∈
∂X∩ supp( f ) andy∈ R

d with ‖x− y‖ ≤ δ it follows
that ‖ f (x)− f (y)‖ < η . Furthermorex ∈ Mε implies
‖x− ξ∂X(x)‖ ≤ εR, whereR= 2max{‖y‖ | y∈ (W⊕
Q)∪ (B⊕P)}. This implies the second claim.

Proof of Proposition 4.For µ-almost all l ∈ L we
have thatH 2(∂X∩∂Ts) = 0, which can be seen using
Fubini’s theorem. This implies that the setX ∩ Ts
is compact gentle forµ-almost all l ∈ L . Applying
Corollary 2 we obtain thatt2

E[Ñg
t |R= r] → Fg(r) for

t → 0+ pointwise for almost allr ∈ SO3 as(−h(rB⊕
rW̌,n))+ = h(r−1n). We claim that the conditional
expectationt2

E[Ñg
t |R] is uniformly bounded fort ≤

1, hence Lebesgue’s dominated convergence theorem
yields the assertion. In fact Eq. 3 implies

E[Ñg
t |R= r] = t−3

∫

[(X∩Ts)⊖trB̌]\[(X∩Ts)⊕trW̌]
g(x, rl0)dx .

By assumption there is a constantC > 0 such that
|g| ≤ C. If x ∈ [(X ∩Ts)⊖ trB̌]\[(X ∩Ts)⊕ trW̌], then
dist(x,∂ (X ∩ Ts)) ≤ tC′, whereC′ > 0 is a constant
depending only on(B,W). Hence we obtain

∣

∣t2
E[Ñg

t |R]
∣

∣ = |t−1
∫

[(X∩Ts)⊖tRB̌]\[(X∩Ts)⊕tRW̌]
g(x,L)dx|

≤Ct−1
H

3(∂ (X∩Ts)⊕B(0, tC′))

≤Ct−1
H

3(∂X⊕B(0, tC′))

+Ct−1
H

3(∂ (Ts∩B(0,diamX))⊕B(0, tC′)).

Applying (Kiderlen and Rataj, 2006, Proposition 4),
which is derived from a far-reaching generalization of
Steiner’s formula (Huget al., 2004), we obtain

t−1
H

3(∂X⊕B(0, tC′))

=
3

∑
i=1

iκi

∫

N(∂X)

∫ δ (∂X;a,n)

0
si−1

1∂X⊕B(0,tC′)(a+sn)

×dsµd−i(∂X;d(a,n))

≤ t−1
3

∑
i=1

iκi

∫

N(∂X)

∫ tC′

0
si−1ds|µd−i |(∂X;d(a,n))

≤ t−1
3

∑
i=1

κi(tC
′)i |µd−i |(∂X;∂X),

whereµi(∂X; ·) are the support measures of∂X, and
δ (∂X;a,n) = inf{t ≥ 0 | a+tn∈ exo(∂X)} is the reach
function of ∂X at (a,n). The support measures have
locally finite total variation asX is gentle and hence the
compactness ofX yields boundedness of the last term
in the above inequality fort ≤ 1. The same argument
can also be applied tot−1H 3(∂ (Ts∩B(0,diamX))⊕
B(0, tC′)) asTs∩B(0, tC′) is compact gentle.

Proof of Theorem 3.Let 0 < ε < s/2. For l ∈ L ,
define the continuous functionχ l

s,ε : R
3 → [0,1] as

a smoothed version of1Ts such thatχ l
s,ε(x) = 0, if

x ∈ (Ts)
c and χ l

s,ε(x) = 1, if x ∈ Ts−ε . Substituting
g(x, l) = f (x)χ l

s−ε ,ε(x) in Lemma 5 we obtain

E[Ff χ l
s−ε ,ε

(R)|L = l ]

=
∫

∂X∩Ts

f (a)χ l
s−ε ,ε(a)H(φX

a,l )H
2(da) .

The right hand side converges pointwise inl to
∫

∂X∩Ts

f (a)H(φX
a,l )H

2(da) ,

as ε → 0. It is also bounded independently ofε
and l , hence by the dominated convergence theorem
E[Ff χL

s−ε ,ε
(R)] converges to

∫

L

∫

∂X∩Ts

f (a)H(φX
a,l )H

2(da)µ(dl). (18)

Proposition 4 yields that

lim
ε→0

lim
t→0+

t2(detL)E

[

Ñ
f χL

s−ε ,ε
t

]

is also given by Eq. 18. It remains to show that

lim
ε→0

lim
t→0+

E

[

∣

∣Ñ
f χL

s−ε ,ε
t −N f

t

∣

∣

]

= 0 .

Chooseq > 0 such thatB∪W ⊆ B(0,q). Then for
t < ε/q we have thatx ∈ Ts−2ε implies χL

s−ε ,ε(x) = 1
andx+ t(B∪W) ⊆ Ts. Therefore

Ñ
f χL

s−ε ,ε
t −N f

t

= ∑
x∈tR(ξ+L)

x∈Ts+ε\Ts−2ε

f (x)(χL
s−ε ,ε(x)−1{x+tR(B∪W)⊆Ts})It(x) ,

whereIt(x)=1{x+tRB⊆X∩tR(ξ+L),x+tRW⊆tR(ξ+L)\X} and
we used thatχL

s−ε ,ε(x) = 0 for x∈ (Ts−ε)
C. Using Eq. 3

this yields

t2
E

[

∣

∣Ñ
f χL

s−ε ,ε
t −N f

t

∣

∣

∣

∣

∣
R= r

]

≤ t−1
∫

[X⊖trB̌]\[X⊕trW̌]
| f (x)|1∂Ts⊕B(0,2ε)(x)dx .

Choose a constantC such that| f | ≤ C on a compact
set containing[(X ∩Ts)⊖ trB̌] for all r ∈ SO3 and all
t ≤ 1. Then the last expression in the above inequality
is bounded by

Ct−1
∫

[X⊖trB̌]\[X⊕trW̌]
1∂Ts⊕B(0,3ε)(ξ∂X(x))dx .
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This integral converges for allr ∈ SO3 by Theorem 1
ast → 0+ to

∫

∂X
(−h(rB⊕ rW̌,n(a)))+1∂Ts⊕B(0,3ε)(a)H 2(da) .

The function (−h(rB ⊕ rW̌, ·))+ is bounded by a
constantC′, independent ofr. Therefore, using the
dominated convergence theorem, the limit of the above
integral asε → 0 is bounded byC′H 2(∂X∩∂Ts) = 0
for almost allr, which yields the claim.

Proof of Lemma 11.In order to find a Lipschitz
constant with respect toψ for

m

∑
i=1

µigi(r,ψ) =
∫ 1

0

m

∑
i=1

µiHi(arcsin(z))Gψ,s/r(z)dz ,

we use partial integration to rewrite the function for
r > s as

H
(π

2

) s
r
−

∫ 1

0

d
dz

(H(arcsin(z)))
∫ z

0
Gψ,s/r(x)dxdz ,

(19)
whereH = ∑m

i=1 µiHi . Then(∂/∂ψ)∑m
i=1 µigi(r,ψ) is

given by

−
∫ 1

0

d
dz

(H(arcsin(z)))
∫ z

0

∂
∂ψ

Gψ,s/r(x)dxdz .

Let q = s/r andψ,q,z such that|αψ,q(z)| ≤ 1. Then
we obtain

∂
∂ψ

arccos(αψ,q(z))

=
qcos(ψ)−z

sin(ψ)
√

sin(ψ)2−z2−q2 +2qzcos(ψ)
,

and hence

∫ ∂
∂ψ

arccos(αψ,q(z))dz

=
1

sin(ψ)

√

sin(ψ)2−z2−q2 +2qzcos(ψ) .

The above expression is non-negative and bounded
by

√

1−q2. Therefore (∂/∂ψ)∑m
i=1 µigi(r,ψ) is

bounded by

∫ 1

0

∣

∣

∣

∣

d
dz

(H(arcsin(z)))

∣

∣

∣

∣

∣

∣

∣

∣

∫ z

0

∂
∂ψ

Gψ,s/r(x)dx

∣

∣

∣

∣

dz

≤
∥

∥

∥

∥

d
dz

(H(arcsin(z)))

∥

∥

∥

∥

1

1
π

√

1−q2 ,

hence M(r) is a Lipschitz constant for
(r/s)∑m

i=1 µigi(r,ψ) with respect toψ.

To find a Lipschitz constant for∑m
i=1 λi(r)gi(r,ψ)

with respect tor we first differentiate with respect tor
and obtain

1
s

∫ 1

0
H(arcsin(z))Gψ,s/r(z)dz

+
r
s

∂
∂ r

∫ 1

0
H(z)Gψ,s/r(z)dz .

The first term of the above expression is bounded
by 1/r‖H(arcsin(·))‖∞. In order to find a bound
for the second term we use partial integration to
rewrite ∑m

i=1 µigi(r,ψ) for r > s as in Eq. 19. Then
(∂/∂ r)∑m

i=1 µigi(r,ψ) is given by

−H
(π

2

) s
r2

−
∫ 1

0

d
dz

(H(arcsin(z)))
∫ z

0

∂
∂ r

Gψ,s/r(x)dxdz .

Let ψ, r,zsuch that|αψ,s/r(z)| ≤ 1, then we have

∂
∂ r

arccos(αψ,s/r(z))

=
s

r2
√

sin(ψ)2−z2− s2

r2 +2s
r zcos(ψ)

,

and
∫ ∂

∂ r
arccos(αψ,s/r(z))dz

=
s
r2 arctan





z− s
r cos(ψ)

√

sin(ψ)2−z2− s2

r2 +2s
r zcos(ψ)



 .

The term on the right-hand side of the above equation
is bounded in absolute value by

s
r2

π
2

.

Therefore, forr > r0, the function(r/s)∑m
i=1 µigi(r,ψ)

has Lipschitz constant(1/r0)L in r uniformly in
ψ.
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