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This study stems from a previous article [1] in which we found that a psycholinguistically motivated
mechanism based on the Construction-Integration (C-I) model [2,3] could be used for call classifiers in
systems based on Latent Semantic Analysis (LSA). In it we showed that with this model more robust
results were obtained when categorizing call transcriptions. However, this method was not tested in a
context of calls in audio format, where a voice recognition application would be involved. The most
direct implication of a voice recognition application is that the text to be categorized may be
impoverished and is subject to noise. This impoverishment normally translates into deletions and
insertions which are semantically arbitrary but phonetically similar. The aim of this study is to describe
the behavior of a complete system, with calls in audio format that are transcribed by a voice recognition
application using a Stochastic Language Model (SLM), and then categorized with an LSA model. This
process optionally includes a mechanism based on the C-I model. In this study different parameters
were analyzed to assess the automatic router's rate of correct choices. The results show that once again
the model based on C-I is significantly better, but the benefits are more remarkable when the utterances
are long. The paper describes the system and examines both the full results and the interactions in some
scenarios. The economy of resources and flexibility of the system are also discussed.

Povzetek: Razvit je sistem za prepoznavanje govora z namenom uspešnega iskanja storitev ali entitet.

1 Introduction
Interactive Voice Response (henceforth, IVR) systems
enjoy extremely widespread use today to provide
customer service (Self Service). One of their drawbacks
is that many of them consist of menus that limit user
options to a few items, meaning that many intentions are
not described within these items. This happens, for
example, when a person wants something but believes
that it is not represented in the menu. This constitutes a
findability problem, since the category that represents
what the person wants is not found. One of the
alternatives that have been used is to employ
spontaneous speech recognition techniques and
subsequently categorize spontaneous utterances1 into
subject areas. These techniques are usually called “call
routing” or “call steering” [4]. In them, rather than
choosing between several items on a menu, the person
simply hears an input such as “what would you like to
do?” and responds spontaneously in natural language.
What the person says is recognized with the help of an
Automatic Speech Recognition (ASR) module, and once
converted to text it is categorized and sent to a route
where the user's needs are catered for. This is beneficial

1
Utterance: This is how we habitually refer to the phrase returned

by the ASR module. We will also refer to the audio transcription of
each call as an utterance.

in terms of busy channels (the call will only be in one of
the switchboard channels for a few seconds), and also
beneficial in terms of convenience, as callers will be
spared the effort associated with linking the
representation of what they want to the representation of
the categories expressed by the menu items, something
which is not always intuitive [5, 6].

Generically speaking, the process of Call-Routing
described above involves two steps. The first step, voice
recognition, involves phonetic models of the language in
which the service is offered, as well as a Stochastic
Language Model (henceforth SLM), which is a formal
representation of the probabilities of a word occurring if
others have occurred beforehand. These SLM are
habitually 3-gram or 4-gram models, frequently
calculated using Maximum Likelihood Estimation and
corrected by means of some Smoothing method (for
example Good-Turing). In the end, the ASR module
formulates its recognition hypotheses, taking the
phonetic models of the language into account, as well as
the probabilities provided by the SLM. The relative
importance of each element (phonetic model vs. SLM) –
in other words, the way of weighting the phonetic model
over the SLM or vice-versa – can often be configured in
voice recognition devices. Finally, from the scores
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yielded by the phonetic and SLM models, the ASR
module generates a number of recognition hypotheses
ordered by the confidence level which it assigns to each
of them (a list of possible utterances). What the user has
said is already in a text format, and now is the time to
assign it to a destination - this will be the second step. To
this end, classification techniques will be used to
determine when a text (in this case the user request)
belongs to one category or another (in this case to one
destination or another).

Many classification techniques have been used to
this end, with various results, depending also on the text
sample and parameters [7]. Some examples are
probabilistic models such as Maximum Entropy, artificial
neural networks, and high-dimensional spaces, the
category to which Latent Semantic Analysis (from now
on LSA) would belong. All of the techniques mentioned
have been extensively tested, but the current challenge is
to achieve a more optimal and less biased representation
of the words employed in the utterances, doing so even
when data are not labeled or are retrieved and reanalyzed
from samples which were not classified due to their
difficulty [1, 8, 9].

In this study we have carried out a classification task
employing LSA, but, as in these last studies, we have
also opted to provide a better vectorial representation of
the utterances. To this end, before performing the
classification, we pre-processed the utterances using a
technique based on a cognitive (or psycholinguistic)
model that tries to account for the involvement of prior
knowledge in the construction of meaning, and which
also perfectly suits the philosophy underlying LSA: the
Construction-Integration model [2, 3]. In fact, this study
stems from a previous article [1] in which we found that
a C-I based technique could be used for call classifiers,
but we wanted to test it in a case which involved a voice
recognition application, in order to show the performance
of the entire system. Both LSA and C-I will be described
in more detail in later sections.

2 LSA and Call Routing
LSA was originally described as a method for
Information Retrieval [10], although some authors went
beyond the original conception and adapted it as a
psychological model of the acquisition and
representation of lexical knowledge. In recent years its
capacity to simulate aspects of human semantics has
been widely demonstrated. For example, it adequately
reflects why children learn the meanings of words
without the need for massive exposure [11]. It is, to
summarize, a technique derived from the field of
application, but which models some parts of the human
linguistic behavior. This in turn can provide benefits for
the field of application.

LSA is a vectorial representation of language which
is constituted by exploiting word occurrences in different
contexts using large linguistic corpora (or text samples).
It can be conceived as an automatic sequence of
mathematical and computational methods, including
pruning, weighting and dimension reduction via Singular

Value Decomposition (SVD), to represent the meaning
of words and text passages [10, 11]. A key issue is that
every term or document (a document is a paragraph or
sentence, or in the case of call categorization, a
destination cluster or a call) in the corpus is expressed as
a k-dimensional vector. Once the whole process is
carried out, the cosine of the angle between two vectors
is frequently used to evaluate the semantic relationship
between the two terms or between the two documents
corresponding to the vectors (formula 1). A close
semantic relationship between two words, or between
two documents, is shown by a high cosine, with a high
value that is close to one, whilst two semantically
unrelated words or documents have a cosine that is close
to zero (orthogonally) or even a slightly negative one. In
addition, sentences or texts that are not in the document
matrix can be introduced as if they actually were
included, using a technique commonly known as
Folding-in, which projects this new document into the
document matrix (formula 2). In the case of
categorization, a vector of the user's utterance will be
projected, plus one vector for each of the exemplar texts
that represent the destinations, in such a way that if they
are similar it will be inferred that what the user wants
must be routed to this destination. A new vector d can be
created by computing an utterance c (a new vector
column in the occurrence matrix including all the terms
that occur in it) and then multiplying it by the term
matrix, usually called U, and the inverse of the diagonal
matrix, usually called S; c is also computed by applying
the same weights as in the creation of the original space.
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In the field of Call Routing, LSA has been used mainly
with two motivations: correction of speech recognition
hypotheses and assignation of utterances to destinations
(both are occasionally used in the same router).
Concerning the correction of speech recognition output,
some studies have tested lists of common potential
confusions on the part of speech recognition  applications
(homophones and near-homophones, {affect, effect},
{quiet, quite}), obtaining good results if such mistakes
were corrected by checking the contextual coherence
with indices of semantic similarity taken from an LSA
model [12]. Satisfactory results were obtained if these
confusions were corrected by checking the contextual
coherence by means of indices of semantic similarity
from an LSA model. These results were better than those
of a model that combines a trigram model of the parts of
speech with a Bayesian classifier, leading to the
conclusion that LSA is a good option in these conditions.

Another study confirmed the usefulness of LSA in
conjunction with a model based on n-grams [13]. This
study concludes that the analysis by means of n-grams is
limited to a text window that is too local (normally 3 or 4
words), and that the LSA model greatly enriches the
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results from the router, if the probabilities of the
predicted word due some history sequence are also
calculated in terms of the LSA model, that is, by means
of the similarity between the word and the text of the
history, which is projected as a pseudodocument. This
probability, based on the Semantic Space, will be highest
for words whose meaning aligns most closely with the
meaning of the history and lowest for words that do not
convey any particular information about it, for example,
function terms. It is argued that this fact is
complementary to n-grams models, because it is its exact
opposite. n-gram models tend to assign higher
probabilities to (frequent) function words than to (rarer)
content words. So the added value of this study is to
integrate both kind of probabilities in the generic LM
(Language Model) equations.

Some authors extend this same procedure, improving
the representation of the history sequence that acted as a
pseudodocument in the original study [14]. Due to the
briefness of the history for the utterances (and hence its
pseudodocument), they replace the history
pseudodocument by a more representative one, extracted
from its semantic vicinity. They also use the first nearest
semantic neighbors to estimate unseen sequences, as is
usually done when using smoothing methods.

Again, other studies also obtained good results by
interpolating the LSA model and the n-gram model [15],
directly correcting speech recognition hypotheses and
reassigning new probabilities to them, taking into
account the coherence of the lexical context that
accompanies each word [16]. Similarly, a new study
performed a series of experiments to correct
classification errors [17]. They corrected speech
recognition outputs using indices of syntactic and
semantic coherence (and a combination of both). As for
LSA, the authors reported that it yielded results
comparable to those of Word-Net [18, 19] (LSA being
more economical and flexible), and that, when certain
parameters were used, a combination of the two
measures led to an improvement in error correction. This
same philosophy has also motivated some studies in
which the probabilities of the sequences of SLMs - in
other words, the likelihood of a word occurring given a
history h (sequence of words that precede it) – are
recalculated on the basis of the semantic similarity
between the word vector and the vector of its history
[20].

As for assigning utterances to destinations, a first
study proposed a system in which the user response to
the typical “say anything” cue is classified by an LSA
module according to candidate destinations [4]. The
module will compare the vector representation of what
the user has said (utterance vector) with the vectors that
represent each of the destinations, made up of a
compilation of all the calls that belong to each of those
destinations. This module also has a disambiguation
mechanism in the event that the utterance vector is
similar to several destinations. In this case, terms will be
found that represent the difference vectors between the
utterance vector and each of the destination vectors.
Once found, only the terms that may form bigrams or

trigrams with a term from the original request will be
used. These terms are used to formulate questions for the
users in order to disambiguate. One peculiarity of this
study is that they used 4,497 transcriptions from a
banking services call-center in the LSA training phase.
The occurrence matrix to begin the LSA process consists
of terms and routes (rather than terms and transcriptions),
and as a result few columns are produced – 23, to be
precise. This is precisely the criticism made in a later
study [21]: the authors specified that they took the
possible destinations rather than call transcriptions as
documents, so that the LSA training was quite limited.
They obtained better results in their laboratory if the
documents of the matrix were composed of call
transcriptions. Another study introduced a variant in the
preprocessing stage [22]. When the corpus was trained,
the Information Gain (IG) was calculated in order to
identify the terms that actually contributed useful
information to the router. The IG index is based on the
variations in document entropy (the amount of
information carried by a document) with and without the
term analyzed. Good results were later also reported
when using a training variant in which the labels flagging
the transcriptions (the destinations or routes) were
entered as terms [23]. This enabled the authors to bring
together transcriptions that had been routed to the same
places. Other authors have also obtained improvements
by introducing an additional step between recognition
and Call Routing [24]. These authors did not enter the
“utterance” as collected by the ASR module (with a
generated SLM) directly -– rather they corrected it by
using the LSA model confidence indices. Using this
method, calls that were more than eight words long
(about 12 words) were routed slightly better, and this
improvement is greater if the ASR module has laxer
criteria (a lower confidence threshold of acceptance).

As for study [24], the motivation for this study is
also to introduce an additional step between recognition
and LSA based Call Routing in order to differentially
reassign the importance of each term of each utterance.
This is done by means of the Construction-Integration
model [3,2] (henceforth, C-I). C-I is a
psycholinguistically motivated model that seeks to
simulate working memory and real-time comprehension
mechanisms, but it can be applied to categorization tasks
as in the case of Call Routing. We will return to this
model in a later section.

3 Objectives
There are two main objectives of this study, a general
one and a specific one:

1. To implement (and describe in detail) a real full
system in which we used LSA and a mechanism
based on the Construction-Integration model (C-I).

2. To study the efficiency of the system in a real speech
recognition situation by analyzing the percentage of
correct classified utterances using different
parameters. The percentage of correct classified
utterances, thus, showed the quality of the system.
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The manipulated parameters were (1) the use or not
of an additional step based in C-I (over a LSA-based
Call Routing), (2) the length of utterances, (3) the
decrease in recognizer performance, and (4) the
number of hypotheses processed from the n-best list
derived from the voice recognition application.

4 Functional description of the
system

One of the aims of this paper is to present a detailed
study of the results obtained in a real call router in which
a mechanism based on Kintsch's Construction-Integration
model [2] was introduced. This model had already been
partially tested in a previous study [1], but in this study
the full process is described, including voice recognition
for spontaneous speech and classification according to
possible destinations. The system comprises several
modules and is domain-independent, as it was trained
using texts from different subject areas. For this study,
the domain subject area was a customer service at a
Telco (credit balance, top-ups, complaints, phones, etc.)

4.1 The voice recognition phase
Prior to any semantic interpretation, we need a voice
recognition stage. The process consists of several layers.
The first layer is responsible for recognizing words using
the phonetic model of a language. There are numerous
packages that perform voice recognition using a phonetic
model of a particular language, based on sequences of
letters and their pronunciation. These packages usually
have standard dictionaries that specify the pronunciation
of very common words, as well as dictionaries for the
pronunciations that the integrator itself considers to be
correct. In general, for recognition of phrases to occur,
we need to explicitly specify which phrases we expect
will be uttered. They are specified using deterministic
grammars in different formats (abnf, grxml, gsl, etc.).

But if our aim is the recognition of spontaneous
speech, we must generate a statistical language model
(SLM), which uses a large linguistic corpus to generate a
model where the probabilities of some words appearing
are specified, given those that have occurred previously.
To calculate these probabilities, Maximum Likelihood
Estimation (from now on ML) is commonly used,
corrected by a smoothing method that estimates the
occurrences of words within some ranges [7]. One of
these smoothing methods is Good-Turing. The package
that we use to calculate probabilities in our model is
SRILM [25]. It has Good-Turing as the default method
(see
http://www.speech.sri.com/projects/srilm/manpages/ngra
m-discount.7.html). It works as follows: by default, the
unigrams that occur more than once and the n-grams that
occur more than seven times are considered reliable. For
this reason, standard ML is applied to calculate
probabilities. But if the n-grams occur less than seven
times, a correction is applied to the probability extracted
from ML using the Good-Turing smoothing technique. It
is also possible to estimate n-grams that do not occur in

the reference corpus with the Katz method, using the
BOW (back-off weight) of the history of each n-gram
and the smoothed probabilities, but for simplicity’s sake,
this is not implemented in our system. Therefore, our
model only contains conditional probabilities of n-grams
that appear in the training corpus that have been
smoothed (using the Good-Turing method).

As was previously mentioned , all these calculations
are carried out by the SRILM package, in which
individual scripts are used to program SLM generation -
in our case with classes that group words (days of the
week, months, countries, cities, etc.). In the end, the
complete model is output into a file with the .arpa
extension (Advanced Research Projects Agency format),
whose main use is for exchanging language models.
Using this .arpa file, we generate a .grxml file where the
corrected probabilities from the input file are recorded
several times in the form of a tree, but this time in SGRS
(Speech Grammar Recognition Specification) format,
which can be read by many commercially available
recognition packages. In our case, we will use the grxml
of the generated SLM in a Nuance 9 recognition engine.

4.2 The call-routing phase
Once the recognition hypotheses were established - in
other words, what was recognized by the recognition
engine- we proceeded with the second process:
categorization by destination. In the case of this study, as
noted earlier, the categorization procedure is
implemented using LSA. So we needed a LSA semantic
space to project the user's utterance as well as each of the
exemplar texts that represent the destinations in it.

4.2.1 Semantic Space
To obtain that semantic space, we used a training corpus
of digitized utterances belonging to several phone
companies. The LSA was trained and the semantic space
was created using this corpus. These utterances were
extracted using the Wizard of Oz procedure (a technique
where the users are made to believe that they are
interacting with a computer but in fact they interact with
a person) and the transcriber labeled each of them with
the destination to which it was routed. We should note
that the labeling was performed using different criteria,
was carried out at different times and at different
companies, and is not exhaustive. In any case, to provide
cohesion for interrelated words, these labels were
regarded as additional words, as in Featured LSA [23]. In
the end, the LSA comprises the terms and labels that
occur in utterances. In a previous study it was
demonstrated that retaining these labels boosts
categorization performance and produces a positive
interaction with usage of C-I, even if they are non-
exhaustive [1]. It should also be borne in mind that the
only utterances that must be exhaustively labeled are
those that are part of the destination sample (see section
4.2).

In the LSA training we used Gallito® (see
www.elsemantico.es), a tool that has been used in other
occasions for the creation of semantic spaces [26, 27,
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28]. The words matching a special stop-list for this
domain were eliminated, as were all function words. We
also eliminated words that did not occur at least three
times. Some words which are relevant within the
telephony corpus were artificially grouped into a single
class, for example countries, mobile phone brands or
telecommunications companies, substituting them with
the name of the class. In the end, we obtained a matrix of
1,421 terms and 34,905 utterances. In a next step, log-
Entropy is calculated in this matrix. log-Entropy
estimates the amount of information that a word carries
in the documents where it appears. In this way, the terms
that might contain the most information are given a
heavier weight. So from this last calculation we got a
weighed matrix to which SVD is applied and the three
resulting matrices are reduced to 270 dimensions. We
chose such a dimensionalization based on the
assumptions made in previous studies [28]. In those
studies it was suggested that the optimal number of
dimensions for specific domain corpora does not have to
be extremely low, sometimes even approaching the 300
dimensions recommended by Landauer, et al. [11]. In
summary, the result of the entire process, the three
reduced matrices (terms, diagonal and utterances matrix),
is the semantic space of the mobile telephony domain
that will be used as a basis for projecting the user's
utterance as well as texts that represent the destinations.

4.2.2 Destination Management
The service we wish to evaluate has 29 basic
destinations, covering the needs of a telephone company
call center. Previous LSA-based Call Routing research
compared the vector representation of what the user says
(what the ASR module returns) in real time with each of
the utterances used in training that are labeled with a
destination. After the comparison is performed, the label
of the most similar exemplar is selected [4]. This label
will be the destination selected. The philosophy of our
system is similar, although three important points should
be highlighted:

The first one is that in our system we do not use all
utterances from the training corpus as destination
exemplars, but rather focus on a representative sample.
In particular, a total of 2,329 calls are part of this sample
(which are loaded and transformed into a vector of the
semantic space only once the router has been launched).
This is important because it is not necessary for all the
calls from the training corpus to be labeled and
participate as exemplars. We manually selected only a
few representative calls (an excerpt is shown in Table 1),
making the process more economical and the response to
changes in the routing model (a change in the definition
of the call-center destinations) faster. This is a very
important issue if someone wants a successive
deployment of a Call Routing service [29]. Massive
annotation used to be very time-demanding.  We made
this pre-selection very carefully given that, as was
pointed out in some studies [8], system performance
depends on the quality of these destination exemplars.

1 ALTASBAJASC well I'd like to cancel this phone number
1 ALTASBAJASC switch to a monthly contract
1 ALTASBAJASC to cancel a monthly contract
1 ALTASBAJASC activate a number
1 ALTASBAJASC cancel the mobile
1 ALTASBAJASC I'd like to get a phone with you

Table 1: Excerpt from the destination exemplars.

The second point is that to decide what the most
credible destination or destinations are we do not simply
individually compare the user utterance with each of the
utterances in the destination sample. In this system we
use a method called average-4 which proved to be better
in a previous study [1]. This method averages the four
exemplars with the greatest cosine for each destination.
The chosen destination is the one where the average of
the four exemplars is the highest. In this way, any bias
which an anomalous exemplar (seemingly very similar to
what the user said) might have is eliminated.

The third point is that after converting the user
utterance into a vector and selecting the most likely
destinations, a list of the first four destinations is returned
in descending order of their cosines. When the user is not
sent toward the first option, this allows the first
destination and the next most likely destinations to be
used as candidates, disambiguating with an explicit
question. This will depend on the design of the dialogs.

What is common to earlier studies is that both the
destination exemplars and the user utterance will be
converted into vectors that can be interpreted by the LSA
space (in other words, use of the semantic vector space
will be essential). The way the destinations and user
utterances are converted into vectors will depend on the
effectiveness of the system. In the following section we
explain different ways of doing so.

4.2.3 Construction-Integration Model vs.
direct method

There are two ways of representing each of the utterances
vectorially in the router, whether utterances are
destination exemplars or user utterances. One is Direct
routing, where the utterances are projected onto the latent
semantic space without any kind of additional algorithm.
This is the standard LSA method for constructing new
documents in the vector space, and is known as Folding-
In [10]. The second is C-I routing, which, in contrast to
Direct Routing, has an intermediate step in the
construction of both destination exemplars and user
utterances. This intermediate step is based on a
Construction-Integration network (Figure 1). The
importance that a Construction-Integration network
might have for routers lies in the fact that the words in an
utterance are modulated to their correct meaning, taking
into account the entire lexical context, which constrains
the final meaning. This is particularly relevant for words
that are ambiguous (such as “card”) - the meaning that
best matches the context will be given priority, thus
avoiding predominant sense inundation and other biases
frequently observed in vector space models [26, 27]
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Computational models based on Construction-
Integration [2, 3] are based on the idea that the meaning
of a text is constructed and integrated in the working
memory. The mechanism retrieves the content linked to
every word of a text from long-term memory, and, once
retrieved, ensures that all this content is integrated in real
time using a mutual constraint mechanism in the working
memory. Therefore, it is a model that seeks to simulate
working memory and real-time comprehension
mechanisms [30]. Looking at the model details,
interpretation of a text is carried out in two phases. In the
first phase, all terms related to each of the words that
make up the text or phrase are evoked. A network is
constructed from all of them, where each one is joined to
all the others - this phase is known as the Construction
phase. In the second phase, known as the integration
phase, each of these terms receives activation from the
others proportionally with respect to the similarity they
have with each other. After this phase, the most activated
terms are those related to the main idea in the text [3,30].
This takes into account the fact that a text is not the sum
of the terms included in it, but rather the integration of all
of them into a final idea. Each term is constrained by the
meaning of the other terms, thus generating the meaning
in real time. This type of mechanism has been used on
predicate and metaphorical structures [31, 32, 33] and on
structures enriched with syntactic dependency
relationships, thus demonstrating that the meaning of
complex phrases can be modeled [34]. In operational
terms, this mechanism makes it possible to differentially
reassign the importance of each term. Ultimately, it is an
estimate of the relevance of the utterance terms, as was
done in previous studies [8].

How is this model implemented in our system? For
each utterance, whether it is a user utterance or
destination exemplars, a network is constructed based on
the Construction-Integration network whose launch will
lead to the extraction of new terms (see Figure 2). We
might say that these terms produce a better definition of
the utterance, an idea common to all the words contained
in the original utterance. The procedure, in terms of its
functionality, is analogous to that used by a study [35]

implemented to improve classical methods for evaluating
text with LSA. Figure 2 provides a graphic description of
the procedure. Firstly (in the Construction phase), each
term of the utterance is compared to all of the terms
present in the semantic space, and the 200 neighbors
most similar to each of them are extracted (this similarity
is calculated using the cosine). A connectionist network
is created between all these neighbors (neighbor node
layer) and each of the original terms of the utterance
(utterance node layer), where the weight of each
connection is given by the cosines2 between each of the
connected terms (figure 2). Once the weights of the
connections have been assigned, the activation of each
node is calculated based on the connections received, in
the second Integration phase (see formula 3). Thus, the
greater the weight of the connections received, the
greater the activation. The activation function also favors
instances where the source of activation derives from
several terms in the utterance, and not just one or two
(due to the parameter δ in formula 3).
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Where j is the sub-index of the utterance layer, i is the

sub-index of the neighbors layer, Cij is the strength of
the connection that node i received from node j (the latter
node belonging to the first layer), and δ is a correction
factor to avoid unilateral activation (based on the
standard deviation of the connections received), as
defined in formula 4:
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The cosines are calculated using the previously trained semantic

space, in other words each of the terms to be compared is represented
by a vector in this space. Any term vector might then be compared to
another term vector using the cosine.

Figure 1: Graphical view of the Call Routing process for Direct routing and C-I routing.
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Where n is the total number of connections received
by i (or the number of nodes in the neighbors layer) and

Ci is the mean of all the strengths that node i received.
Finally, the 20 most highly activated neighbors are

chosen from all of those activated in the Integration
phase, and a new utterance is constructed with them. In
other studies an utterance has been replaced by a more
representative one [14], but now the aim is also for this
new utterance to contain terms which are closer to the
meaning originally intended by the user.  These 20 terms
are used to form a new pseudodocument, this time using
Folding-in (see Figure 1), and they will be compared
with the destination exemplars (created in the same way)
in order to assign them a destination.

As the reader can realize, there are a few differences
between the procedure to perform C-I used in this study
and the original mechanism proposed by Kintsch [3].
Because call utterances are shorter and simpler than
propositions within colloquial language, the algorithm
used here is not exactly the original construction-
integration algorithm. The integration part proposed by
Kintsch is a spreading activation algorithm which is
iterative until the net is stable (the cycle when the change
in the mean activation is lower than a parameterized
value), whereas our algorithm is a “one-shot”
mechanism. The activation of each node is calculated
based on the connections received. Another difference
with the C-I algorithm as proposed by Kintsch is that we
only consider words and not propositions nor situations.
In any case, note that the original C-I is more complete
and fine-grained, but our mechanism is sufficient for our
purposes and may be more flexibly programmed,
because an OOP (Object Oriented Programming)
paradigm has been used, with classes such as net, layer,
node, connection, etc., instead of the iterative vector ×
matrix multiplication in the original (see [39] for details
of the original conception).

Figure 2: C-I based net implemented in this study. The K
most strongly activated neighbors (with a square) will be
represented in a pseudodocument.

5 Software and Architecture used
This section describes the application that we have
implemented in our lab, and the auxiliary Software and
technologies that has been used. In the last part, we
describe the place of each module in the global
architecture.

5.1 IVR Application
The IVR Application is implemented using VXML
technology (Voice Extensible Markup Language),
located on a Tomcat application server (icon D in Figure
3). The server dynamically generates VXML files and
sends them to the VXML interpreter, in this case
VoxPilot (icon B in Figure 3), as it requests them and
according to the application flow. First, the interpreter
requests the start and welcome VXML files, then the
VXML where the user is asked to request a service (“say
anything”). This second VXML has voice recognition
and therefore requires a grammar - in this case a grxml
grammar generated using the SLM. In this way, Voxpilot
sends the user response to the voice recognition
application (icon C in Figure 3) along with the route
where the grammar is located on the application server.
Finally, the ASR module returns the text recognized with
its confidence interval. This recognized text is sent in the
actual request to the next VXML located on the
application server, using the SOAP protocol3, to the
semantic router (icon E in Figure 3). The semantic router
returns a list with the four most likely destinations. The
first destination from the list will be inserted into the
VXML that is sent once again to Voxpilot for it to run
the definitive Call Routing routine.

5.2 ASR Module
The recognition engine used is Nuance 9® (icon C in
Figure 3), located on the Speech Server®, also by
Nuance, with a test license that allows the use of 4
channels in non-production environments. This
recognition engine accepts grammars programmed in the
standard .grxml (SGRS Speech Grammar Recognition
Specification) so it is a good match for our SLM.

5.3 Semantic Router
The router is basically dedicated to the task of receiving
texts from the application server (icon D in Figure 3) and
returning a list with the 4 most likely routes, or simply
returning a rejection if it does not reach a confidence
threshold. As we explained above, the router application
is based in the LSA and C-I framework and was
programmed in VB.NET using the object-oriented
programming (OOP) paradigm. It is accessible as a web
service on a Microsoft IIS server, which offers a series of
functions and procedures such as loading the destination
exemplars and converting them into vectors, and loading
the reference semantic space (the semantic space

3 SOAP (Simple Object Access Protocols) is a standard protocol
that defines how two objects in different processes can communicate by
exchanging XML data.
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previously generated with the Gallito® tool mentioned
above). It also has a configuration file which specifies
the acceptance thresholds of the logistic function, the
method of converting utterances into pseudodocuments
(C-I Routing and its parameters or Direct Routing) and
the classes that will be used according to the training
(months, days, mobile phone brands, countries, etc.). The
fact that it is implemented as a Web Service means it can
be integrated into a SaaS (Software as a Service)
structure that allows it to route service utterances in a
centralized manner. When the destination has been
assigned, this module returns a list with the four most
likely destinations and their cosines.

Figure 3: Software, technologies, modules and system
architecture used in our lab.

6 Evaluation of the system
In this section we describe the procedure that we
followed to examine the efficiency of the system in
different configurations. First we will present the
variables that were manipulated. Second, we will explain
the procedure and the method to test them.

6.1 Dependent variable and independent
variables

The dependent variable used to assess the efficiency of
the system was whether the destination was correctly
classified or not.

The first independent variable is called Routing
Method and has to do with how LSA vectorially
represents the test utterances and the utterances that
represent the destinations. There are two methods (see
section 4.2.3): Direct routing and C-I routing.

The second independent variable is the Number of
Captures, the number of utterances captured by the voice
recognition application that were passed as input to the
categorization module. The voice recognition application
can be programmed to return only one text containing
what it has recognized of the participant's voice message.
However, as this captured text derives from a
probability-based model, it can also be programmed to
return the second, or the third most probable text, and so
on. Bearing in mind the idea that by combining the first
two options we can create a text including more correctly

recognized words than using only the first option, the
independent variable contains two quantities: the first
recognized utterance and the concatenation of the first
and second utterance. We named the two levels Captur1
and Captur2.

A third independent variable is Accuracy, which is
measured by a value F’ (see later in the method section).
This value F’ is broken down into two groups: high and
low accuracy (see later for a more detailed description).

Lastly, another independent variable is the number
of tokens that is the length in words of transcriptions of
the utterances. Two groups are again formed: Short and
long utterances.

6.2 Procedure and Method
The evaluation method is as follows: 1,872 (randomized)
audio files are obtained from real calls to several
telecommunications companies. All of these audio files
were then transcribed, to create the ideal condition where
the ASR module captures the utterance perfectly.
Recognition of each of these audio files was forced using
the Nuance® ACC_TEST tool. The outputs from this
tool provided the first two captures of what had been
recognized (the two first outputs from the n-best list).

To obtain objective measures of the third
independent variable, Accuracy, measured as the
deviation between what is recognized and what is
transcribed, Information Retrieval measures were used.
Their usage is justified by some studies in substitution of
the WER (Word Error Rate) [36]. The measures used for
IR were Recall, Precision and the combination of both in
F'. Recall is the proportion of the transcription that is
present in recognition; Precision is the proportion of the
recognition that is present in transcription. These two
measures range from 0 to 1, and are combined in an
index, F´. The latter is the harmonic mean of the
precision and the recall measures.  To calculate them, we
used the most popular natural language package in the
Python environment, the Natural Language Toolkit
(NLTK) [37] available at http://www.nltk.org/. Using
this tool we extracted recall, precision and F' of each
recognition compared to its transcription as well as
revealing the recognition loss, and these were introduced
as variables in the overall analysis of the router
(becoming the Accuracy variable). It is important to note
that both precision and recall have been calculated using
only relevant terms, meaning those that will be
considered by the router. Function words and words from
the stop-list, for example, will be excluded from the
calculations. At the same time, we also counted the
number of tokens in each transcription to obtain a
measure of the fourth independent variable, which gave
us an idea of the length of the phrases uttered by users to
make system requests.

In the second phase the router is forced to categorize
the text of each audio clip, beginning with the first
recognition capture (Captur1), followed by the first two
captures concatenated together (Captur2).  This operation
is repeated twice, once with the router working in Direct
Routing mode, and once with C-I Routing. As a result we
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obtain all the combinations of independent variables
(Routing Method × Number of Captures to route).  In
addition the router is forced to categorize the
transcriptions, simply to have a baseline, but without
introducing these results into the analysis matrix. The
Call Routing is considered correct if the first destination
returned by the router coincides with the ideal destination
previously assigned to the utterance by a human4.

With this data we now have all the necessary
conditions and all the grouping variables. A matrix is
formed and we proceeded to carry out a Repeated
Measures ANOVA (Routing Method × Number of
Captures to route) with two grouping variables
(Accuracy – high or low, and Nº of tokens – long or
short). In summary, a 2×2×2×2 ANOVA. The results
will be extracted from this analysis, and their
implications will be examined in the discussion.

At the end of the analysis, a logistic function is
proposed to create acceptance zones in the router. There
is a first zone where the first hypothesis returned and
routed to this destination is accepted as valid; then a
second disambiguation zone, where we might
disambiguate between four hypotheses returned by the
router, asking the user to choose;, and a  third rejection
zone , where any hypothesis is assumed to be erroneous
and is not routed. The results of this mechanism will be
shown as the percentage of correct call routings.

7 Results
In this section we will present the results of the study.
First we will present the percentages of correctly routed
calls under all possible conditions, including those which
involve voice recognition. In addition, we also present
the results of an ANOVA which displays the interactions
between the variables involved: Routing Method,
Accuracy, number of tokens and Number of Captures.
Finally, the results of entering an acceptance criterion by
means of a logistical function are presented, as well as
the application of various confidence levels for a
potential disambiguation strategy.

7.1 Performance of the ASR module (F')
As suggested above, one of the proposed means of
measuring the ASR module's performance is applying
Information Recall indices. To be precise, our system
provides the following indices: Recall=.912,
Precision=.959, F'=.932.

4
Very often, many categories are interrelated or overlap, such

that not even a human classifier could be sure which category to assign.
As a last resort, whilst both may even be correct, the choice between
one or another is binary and exclusive, so the results may be
understated. Some evaluations of Call Routing have used not only
binary coincidence to correct this but also ratings of the fitness of the
destination returned, or also a scale of possible success [38]. We have
not used this type of evaluation due to the high cost involved, which
lessens information in the results and implies that they may be
understated.

7.2 Decrease in performance caused by
voice recognition

Another of the relevant issues to be examined is the
lowered performance of the whole system when speech
recognition output utterances are routed rather than
transcriptions. If we consider only the router's first
hypothesis (Table 1), the results show that between the
best condition with transcriptions (.75 with C-I) and the
best condition with recognition (.67 also with C-I), we
lose 8 percentage points in the rate of correct choices. If
we consider the first four hypotheses returned (Table 2),
between the best condition with transcriptions, also using
C-I (.91), and the best with recognition, again using C-I
(.85), the difference is reduced to 6 percentage points.
We should remember, though, that our application has
not undergone any optimization process for either voice
recognition or the model of categories and that the main
aim of this study is to check the scenarios in which C-I
might behave more productively. We will look at this in
the following section.

1st hypothesis

Trans Captur1 Captur2

No C-I .69 .63 .62

C-I .75 .67 .66

Table 1: Percentages of correctly routed calls,
considering only the first hypothesis returned by the
router. Captur1 and Captur2 represent the conditions
where one or two speech recognition hypotheses
respectively are used.

Accumulated first 4 hypotheses

Trans Captur1 Captur2

No C-I .89 .83 .83

C-I .91 .85 .84

Table 2: Percentages of correctly routed calls,
considering the four hypotheses returned by the router.
Captur1 and Captur2 represent the conditions in which
one or two speech recognition hypotheses respectively
are used.

7.3 Results of the ANOVA
Another of the aims of this study was to analyze the
performance of each method in different scenarios -
specifically bearing in mind the Accuracy of recognition
measured with F', and the number of tokens in user
utterances. For this purpose the ANOVA described in the
method section was carried out, extracting both main
effects and interactions.
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Figure 4: Interaction between Routing Method and
Number of Tokens.

Three significant main effects were in fact found.
The first of them relates to Routing Method
(F(1,1735)=18.13, MSE=.087, p < .001). C-I is better
than Direct Routing as a general effect. The second is the
Nº of tokens (F(1,1735)=34.07, MSE=.637, p < .001).
Short phrases boost the router's effectiveness.  The third
is F' (F(1,1735)=128.14, MSE=.637, p < .001). The
Accuracy of voice recognition also increases the router's
performance.

0,4
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Figure 5: Interaction between Routing Method and
Accuracy.

Given that we also found significant interaction
effects with the variables above, we will focus on these,
leaving the main effects as supplementary information.
Firstly, we find a two-way interaction effect between the
factors Routing Method and Nº of tokens
(F(1.,1735)=4.45, MSE=.087, p = .035). The loss of
effectiveness observed when the user utters long phrases
is greater with Direct Routing than with C-I (Figure 4).
Both methods show reduced effectiveness with long
utterances, but C-I less so, hence we could say it has a
corrective effect.  We also found a significant effect for
the two-way interaction between Routing Method and
Accuracy (F(1,1735)=15.41, MSE=.087, p < .001). C-I
shows beneficial effects if the quality of the recognition
(measured by F') is good (Figure 5); otherwise, C-I
works the same as Direct Routing. Lastly, we found a
significant effect for the two-way interaction between
Number of Captures and Accuracy (F(1,1735)=8.60,
MSE=.087, p = .003). The results of this last interaction
show how concatenating the first two speech recognition
Captures is advantageous compared to using only one, if
the quality of the recognition is low (Figure 6).

Figure 6: Interaction between Number of Captures and
Accuracy.

7.4 Acceptance levels
Beyond straight performance data - in other words, the
percentage of occasions a hypothesis returned is correct -
we must introduce acceptance levels into the process.
These maximize the correct choices and minimize errors
by using a confidence threshold above which the route
proposed by the system is accepted (formula 5). Previous
studies have often introduced objective acceptance
criteria into the process, such as logistic functions of
acceptance [4]. In our case we will use the same
parameters used by a similar study [1] in the logistic
function, as they gave good results. In this function two
parameters act as predictor variables, and the correct
choice / error rate as our dependent variable. The
parameters are as follows: firstly we use the cosine from
the first hypothesis (average of the 4 largest cosines with
the exemplars of this destination). As the second
parameter, we use the difference between this first cosine
and the cosine from the second hypothesis. The latter
parameter takes into account the level of certainty about
whether the first hypothesis should be returned rather
than the second.

cos97.2cos02.317.21

1
)1( 


de
YP

(Formula 5)

With the output from the logistic function, we define
three zones of acceptance. The first one (0.5 - 1), above
which we accept the label directly; the second one (0.4 –
0.5), where we then disambiguate (using a question)
between the four destinations proposed by the router
(those that have the greatest cosine); and the third one (0
– 0.4), where it is directly rejected. In this way, not only
does the percentage of correct choices fall within the
acceptance zone, but it can also retrieve calls that are in
the intermediate zone. Disambiguation mechanisms, such
as preparing questions using the four hypotheses
returned, could be built in this zone.  For example, if the
logistic function returned 0.46, the hypothesis returned
would not be rejected, but rather disambiguated using the
four hypotheses returned by the router, in the hope that
the correct route would be among them, which is very
likely. The results (Table 3) show that this
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disambiguation mechanism would be productive. In the
acceptance zone (0.5 - 1), the percentage of correct
destinations would be 76.54%. If we also disambiguated
in the next zone of acceptance (0.4 – 0.5), we would
guarantee that 81% of the time the correct destination
would be among the four hypotheses used to ask the
question. In addition, our data would contain 215 calls
that would be rejected directly as they are in the rejection
zone (0 - 0.4). This amounts to only 12% of the calls.

Error Correct choice

N % N %
0.4 to 0.5
(disambiguation) 39 18.14 176 81.86
0.5 to 1
(1st hypothesis) 308 23.46 1005 76.54

Table 3: Correct choice rates in the two zones of
acceptance.

8 Discussion
The overall results of this system are encouraging.
Considering that it is a pilot study performed without
optimizing voice recognition, and using a hypothetical
customer service operation, the results are very
satisfactory. To offer some raw data, 67% of utterances
were assigned a destination where router and human
agreed (with spontaneous speech recognition and
categorization). As explained above, this finding is
cautious if we consider the possibility that the
destinations overlap or that there is ambiguity in the
human assignment of an utterance to a destination. In
addition, by introducing an acceptance criterion and
using disambiguation mechanisms, a large proportion of
the remaining utterances (81% of the total utterances)
can be assigned to a correct destination.  In any case,
since this is an academic study, our aim was to focus on
checking the performance of some methods in certain
scenarios and not so much on the overall results, which
could be improved upon.

Our system brings several features together. One of
them is that the router is based on LSA, a technique that
is independent from the subject domain and is also fairly
economical in terms of implementation. We have
inserted an additional layer in this router, based on the
assumption that the meaning of an utterance is not the
sum of its words. Rather it is important to take into
account how these words activate others that are not
explicit, but participate in the final meaning. Whilst it is
not identical, this layer is based on the Construction-
Integration model, which makes the same assumption.
We have also decided to summarize the final routing
destinations in a file of sample utterances that represent
them (golden destinations), thus avoiding any change in
the organization of destinations, leading to a need to
reclassify all utterances in the training corpus. This
provides added flexibility to the system and reduces the
response times to changes. All this has been integrated
with a voice recognition engine (supported by a
Stochastic Language Model or SLM), whose outputs are

passed to the router in order to assign destinations. In
order to maximize the number of correctly recognized
words, not only the first hypothesis output from the ASR
module is routed: there is an option where the
concatenated first and second hypotheses can also be
routed. This was tested on audio clips of real calls and an
experimental design that allowed us to evaluate
performance in some scenarios depending on length of
utterances and accuracy of voice recognition.

The analysis performed yielded various findings.
Firstly that C-I is better than the direct method, in
particular when it comes to cushioning the drop in
performance in certain scenarios. It is true that in
conditions where recognition has greatly declined, the
contribution of C-I is not important, but when
recognition is not bad, the C-I method seems to behave
best with long utterances. Whilst this is not the case in a
model like C-I, some previous studies have found
benefits in long utterances if the speech recognition
outputs are corrected by means of similarities extracted
from LSA [24]. It should come as no surprise that in our
system the C-I method performed best for long
utterances, given that the original C-I model was created
to account for longer propositions [2] and that the
presence of a number of terms in the phrase facilitates
the building of a context. This helps to over-weight the
words that are within this context and to under-weight
those that are not - for example, substitution or insertion
errors. It also biases the meaning of ambiguous terms
toward a meaning coherent with this context. The great
contribution of this type of models is that they
objectively mimic the process carried out in working
memory while processing texts. As a text is being read or
listened to, it is available in working memory, which
retrieves content related with each word in the text from
long-term memory. This will be the construction phase.
In the integration phase, a mutual constraint mechanism
is applied to this linked content [34] in order to extract
the key idea. Therefore it is only to be expected that the
higher the number of words in working memory (up to a
threshold for simultaneous processing), the more data
will be available to carry out this integration in a more
correct way.

Secondly, although this is approximate
complementary data, we have also tried using two voice
recognition captures in the Call Routing process. The
results are modest, although they show a subtle trend.
When recognition is expected to decline, there is a
tendency that taking two hypotheses rather than one
improves the results. We sense that occasionally the
errors committed in the first hypothesis are not
committed in the second, and vice-versa.

Thirdly, we have seen that introducing a logistic
function with some parameters helps to form acceptance
criteria, above which correct choices are maximized,
either by correctly rejecting the label or by accepting a
label that later proves to be correct. By doing so, the
results rise to 76.54% accuracy (either correct choices or
correct rejections). We have also shown that improved
performance results from setting up three zones of
acceptance:  the first one (0.5 - 1), above which we
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accept the label directly; the second one (0.4 – 0.5),
where we then disambiguate (in the form of a question)
between the four destinations proposed by the router; and
the third one (0 - 0.4), where the label is rejected directly.
In this way this, we achieve 79.3% correct Call Routing,
and the correct destination of the utterances that remain
in the intermediate zone for disambiguation would be
among the four labels proposed in the question (the four
returned by the router) in 81.56% of cases. Thus we have
not only the percentage of correct choices in the
acceptance zone, but also those that arise from
disambiguation. It is clear that this requires a cost in
terms of disambiguation question design, and a cost in
terms of satisfaction, but it might be a good way to
gradually implement the system.

There is one last thing to note: this system’s
adaptability to change. On the one hand, although in this
study we have used labels to identify the destinations for
utterances in the training corpus, acceptable results can
be obtained without them. We could even extend the
training corpus, combining labeled with unlabeled parts,
or parts labeled using different criteria. If we did these
things, we would find a small, controlled reduction in
performance, but not an abrupt drop [1]. On the other
hand, the only labels that need to be exhaustive are those
that identify the utterances that act as destination
exemplars. These exemplars form part of a chosen
sample of training utterances, but represent only a small
percentage of them. Since there are few of them, they can
be examined, changed or expanded quickly. Thus any
change in the routing model (for example, a re-
dimensioning of skills) can be dealt with, with acceptable
response times, and with no need to retrain all utterances,
thereby slowing down the process.

9 Conclusion
In view of these results, the possibility of using
psycholinguistic models in information recovery or
utterance categorization systems is encouraging.
Simulating human processing is not an easy task. It is not
even easy to describe, but it is useful to reflect upon it in
order to find possible improvements to current systems.
In summary, LSA represents a very flexible and
economical means of implementing Call Routing, and
also allows us to explore algorithms and methods derived
from research in Cognitive Science that may prove very
promising. In this case, we have presented a system that
combines LSA with a network based on Construction-
Integration. The results obtained are good, although fine
tuning is needed to optimize the voice recognition
process, as well as more coherent organization of the
destinations (which would be the case in a working
production system). In any case, what has proved most
interesting about this study is not the overall results in
absolute terms, but rather testing the C-I layer and how it
works. This has offered quite promising results,
demonstrating superiority in some scenarios and stability
in others. We believe that establishing links between
computational science and psycholinguistics can help to
find ways to optimize current categorization systems.
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