UDKB21.3:(53+54+621+66), ISSN0352-9045

informacije MIDEM 33(2003)3, Ljubljana

HEURISTIC APPROACH TO CIRCUIT SIZING PROBLEM

Janez Puhan, Arpad Blrmen and Tadej Tuma

University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia

Key words: computer aided design, integrated circuits, optimization algorithms, circuit sizing.

Abstract: Circuit sizing problem in application specific analog integrated circuit design is in most cases limited to setting MOSFET channel widths and
lengths. It is usually performed by hand by an experienced human designer. As the circuit sizing is an optimization process by its nature, optimization
methods could be used. They always lead to one of the minima of the cost function while eventual other minima stay unknown. Jo reveal different cost
minima an optimisation process composed from many individual optimisation runs is proposed. Individual runs are started from various initial points in the

parameter space. A particular initial point is determined by a heuristic metho

d which maximises the probability of finding a new cost function minimum in

the next run. The optimization process is demonstrated on several real operating amplifier designs.

Heuristi&ni pristop k doloéevanju elementov v integriranih
vezjih

Kijuéne besede: ratunainisko podprto naértovanie, integrirana vezja, optimizacijski algoritmi, doloditev elementov.

lzviecek: Doloditev dimenzij polprevodnigkih komponent v analognem integriranem vezju se najveCkrat prevede na dologevanje dolzin in $irin kanalov
MOSFET-ov. To delo navadno opravi izkusen nacrtovalec. Ker je celoten proces dolodevanja dimenzij po svoji naravi optimizacijski postopek, bi lahko v ta

namen uporabili optimizacijske metode. Le-te vedno vodijo k enemu izmed minimumov kriterijske funkcije, medtem ko morebitni ostali minimumi ostanejo
skriti. V ¢lanku prediagamo optimizacijski proces, sestavijen iz ve¢ posamezni

h optimizacijskih tekov, katerih namen je najti ve¢ razlinih minimumov

kriterijske funkcije. Posamezni teki so sprozeni iz razliénih zadetnih tock v parameterskem prostoru. Zacetne tocke dolo¢imo s pomocjo heuristi¢éne
metode, ki maksimizira verjetnost odkritia novega minimuma v naslednjem teku. Celoten optimizacijski proces je predstavijen tudi na realnih primerih

integriranih operaciiskih ojacevalnikov.

1 Introduction

Creating a good analogue integrated circuit (or analogue
part in a mixed circuit) design is still a hard task, which
usually requires senior designer knowledge and skills.
There are no predefined libraries of standard cells and net-
works as in the digital world. Therefore the design of an
analogue circuit consisting of a few transistors can be more
time consuming than designing a fairly complex digital cir-
cuit. Application specific integrated circuit (ASIC) design-
ers also frequently reuse their previous solutions and adapt
them to their current needs. A circuit simulator is indispen-
sable in this development procedure. The computers are
mainly used to analyze human designs.

Initially a suitable circuit configuration is required, which
can potentially fulfil the given requirements. This task is
mostly left to the designer although several tools partially
automating the topology synthesis appeared in the past
/1/-/4/. Then the circuit sizing problem has to be solved.
One desires such element sizes (e.g. MOSFET channel
widths and lengths, capacitors, resistors, etc.) that required
circuit properties are met in the most robust manner. Cir-
cuit sizing is an optimization process by its nature and one
can find quite an extensive literature in this area. Sizing of
nominal circuits was considered in /5/-/6/, sizing prob-
lems accounting for parameter tolerances (parameter
centering) were addressed in /7/-/9/, and worst-case
optimization in /10/~/12/. Various optimization tools were

developed, like equation based GPCAD /13/, which uses
geometric programming formulation of an optimization prob-
lem /14/ on predefined posynomial equations, AMG /15/,
utilising a symbolic simulator /16/ to obtain circuit equa-
tions, and the simulation based ASTRX/OBLX /17/. Re-
cently numerous papers (e.g. /12/, /18/-/23/) are ad-
dressing the sizing problem from different aspects like proc-
ess and operating tolerances, mismatch, yield and robust-
ness.

Despite all the research efforts made circuit sizing is still a
task that is addressed manually. New sizes for the next
experiment are determined by a human designer and not
automatically by the optimization method. In our opinion
the automated optimization is rarely used because of three
major reasons:

- there are no general optimization tools integrated into
any of the most popular circuit simulators for ASIC
design (optimization tools, e.g. /13/, /15/, /17/, are
not integrated into commercial simulators and there-
fore offer only very limited capabilities),

- the mathematical formulation of the cost function,
which would vield acceptable solutions, is rather com-
plicated and demands an experienced user (optimi-
zation algorithms can get trapped in senseless regions
of parameter space, resulting in degenerated solu-
tions; searching for the minimum of the cost function
can also result in circuits highly sensitive to manu-
facturing process and operating condition variations
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J/21/; a possible solution is the use of implicit con-
straints /14/, /20/, /23/), and

- the results of the optimization run are not to be unlim-
itedly trusted (in many cases the minimum found is
not the global one, even if a global optimization meth-
od was used).

This paper focuses on the last of these three drawbacks.
There exists many different gradient, quasi gradient, and
direct search optimization algorithms. A good survey of the
first family can be found in /24/. Gradient based methods
are greedy by default and require the derivatives of the
cost function to be calculated at each iteration. When ap-
plied to circuit sizing, the derivatives are usually calculated
by a sensitivity analysis, meaning that the cost function cant
be of arbitrary form. Those methods have a strong local
nature and are therefore usually used for finetuning cir-
cuits /25/.

On the other hand direct search methods /26/-/28/ do
not require additional gradient computations. Convergence
properties for pattern search methods have been report-
edin /29/. These methods can be classified by their be-
haviour as local or global. Some global methods even guar-
antee to find the global minimum if certain conditions are
fulfilied /30/-/31/.

Performance of an optimization method on cost functions
depends on many parameters one of which is the initial
point. The same method can lead to quite different results
for different initial points. L.ocal methods are more sensi-
tive than global ones. The latter have always some ran-
domness build into them, which at least partially neutralis-
es the importance of the proper selection of the algorithm’s
initial point.

The selection of the initial point is usually left to the user,
who relies upon knowledge and intuition. Usually a point is
chosen where the circuit’'s best performance is expected.
If the choice is right, the minimum of the cost function lies
near and the optimization task turns to fine tuning of the
circuit. But on the other hand no additional information is
gained. The optimization process just confirms the expec-
tations. A great part of the parameter space is left unex-
plored and the question of finding a better solution remains
open.

If we want to be assured that no better point exists then
the whole parameter space has to be explored. One way
to do this is to optimize the circuit starting from several
different initial points, and each optimization run has to
cover a different part of the parameter space. The optimi-
zation process becomes a group of individual optimization
runs.

Optimization methods have limited memory and therefore
only a few points from previous iterations are used to de-
termine the next step. Today computers easily store all the
evaluated points, while the evaluation itself is still compu-
tationally expensive. Thus the initial point for the next opti-
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mization run should be determined using the information
obtained from evaluated points. This paper proposes a
heuristic method based on the probabilistic approach
/32/-/33/. The method puts the new initial point in a part
of the parameter space, where the probability of finding a
new minimum is high. It can be applied to multidimension-
al parameter space and does not require significant com-
puter effort.

Several minima are obtained in such an optimization proc-
ess. The designer can decide, which one is most appeal-
ing and may even continue with the investigation of the
unexplored parts of the parameter space. First the mathe-
matical background of the assumptions used later in the
heuristic algorithm are highlighted. Several optimization
cases of CMOS integrated operational amplifiers are illus-
trated and the obtained results are commented.

2 Mathematical Background, One
Dimensional Probabilistic
Approach

LetE(x), xe ACR?, E: R"— R denote the cost function
where A denotes a feasible region. The purpose of every
optimization process is to find a global minimum xg of the
cost function £(x), £(x¢) < E(x), vx € A. In one dimension
the feasible region of the parameter space is defined as
aninterval A = [Xjow, Xnign]. Let us define a continuous sto-
chastic process f(x, ). It assigns a function f(x} to every
outcome w & £ of experiment {. The domain of w is the
set of all experimental outcomes Q, and the domain of x is
aset of real numbers R. Let the one dimensional cost func-
tion E(x) be equal to a realisation of the stochastic process
f(x, w) for an outcome wg on the interval A.

E(x) = f(x,0,) ©,eQ xeA (1)

Cost function E(x) is an arbitrary real function on the inter-
val A. By its definition the distribution function G(fo, x) gives
the probability of an event {f(x, w) < fo} at a particular x. We
assume normal distribution for G(fo, x) with variance o%(x)
and expected value m(x).

G(fp» ) =P{f(x,0) < f; }
1 g ~(f=m(x)? 120 %(x)
— e mix (e} X d (2)
V216 (x) _J; 4

After one or more optimization runs the cost function has
been evaluated at several points. Lets say we have k such
points x1, X2, ... Xk, and the corresponding cost function
values E(xj), i = 1, 2, ... k, are known. An event Zx is de-
fined as {f(x;, ) = E(x;), i =1, 2, ... k). In other words, the
event Zx occurs, when the stochastic process function fix,
) is equal to the cost function E(x) in all known points x1,
X2, ... Xk, for outcome w. The event Zx becomes certain if
the expected value m(x) is equal to the cost function and if
variance 62(x) is zero at all known points. Therefore m(x;) =
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E(x) and o(x) — O fori=1, 2, ... k. When mean and vari-
ance have the above properties, the distribution G(fo, x)
becomes the conditional probability of event {fix, w) <fo /
Zk}.

Let opt be the index of a point with the lowest cost func-
tion value among known points. So the relation E{xopr) <
E(x),i=1,2,... k, isvalid. We define a function fmin(x, ).
Its value is always lower than E(xqp:) for an arbitrary x and
any outcome .

Sonin (%,00) = min(E(x,,), f (x,0)) (3)

fmni(x, ®) B

T ‘
E(xapt) s :
S/
/ | .
Xy x, Xy = Xopr X,
Figure 1: Functions fmin(x, W) (solid) and realisations

of a stochastic process f(x, w) (dashed) for
different outcomes w. The event Zx is
certain, therefore m(x;) = E(x;) and c2(x;) —
0,i=12 ..k k=4.

Distribution Gmin{fo, x) of function fmin(x, ®) gives the prob-
ability of event {fmin(x, W) £ fo / Zk}, where Zx represents a
certain event as mentioned above. It can be obtained from
the distribution G(fo, x) and the definition of fmin(x, w). The
probability density function gmin(fo, x) is the derivative of
the distribution Gmin{fo, X).

G (S X) = P (6,0) < £}
= G(fy, )+ (=G (foulfy—E(x,) 7
3G, (8, (s ), %) _

o,

gmin (f;),X) =

_ e(fo~"t(x))2 1267 (x)

= W(l —u(fy - E(XO,,, )+ (5)
(1= G(E(x,,), )8 (fo = E(x,,))

Functions u(fo - E(xopt)) and &(fo - E(xopt)) in (4) and (5) rep-
resent a unit step function and its derivative, a unit Dirac
impulse, respectively.

The expected value E{fmin{x, @) / Zx} is the mean of the
function fmin{x, ®) at a particular x. Because of event Z it
is equal to the cost function’s value E(xqpt) in all k known

points. The question is where to choose the new initial
point for the next optimization run, if the cost function is
already known in k points. A natural decision is to set it
where the expected value E{fmin(x, ) / Zx} is minimal. To
find out a new starting point xo & minimisation problem (6)
has to be solved. The integral definition of the expected
value expresses the minimisation problem with the density
function gmin(fo, x). The upper bound of the integral can be
set to E(Xopt) Using equation (5).

xO = mi?(E{fmin (X,O))/Zk })

- I{g}? "-ﬁ)grrxirz (fé)ax)dfo

E opt

=min [ /i, (/o5

The minimisation problem (6) can be transformed into a
maximisation problem (7) using the distribution function
Gminlfa, X) instead of the probability density.

E opt

xO = IEXEaAX J. Gmin (f;) H x)df;)

( ) E(xpp )=m(x)/o(x)
G(x 2
= max _[e C 2 dtdu

The probability distribution and the density function of a
limited random walk, also known as Wiener process w(t),
are normal with constant mean and variance increasing
with t. We also assume normal distribution for our process
f(x, ). Wiener process w(t) is a continuous function of
variable t. Suppose the cost function E(x) is continuous in
the vicinity of known points, so it can be a sample path of
a Wiener process there. This assumption does not place
any physically unrealistic limitations on types of cost func-
tions, which take place in circuit design optimization prob-
lems. Therefore we can presume a constant expected val-
ue and a linearly increasing variance near known points.
We set the mean and variance to m(x) = E(x;) and 62(x) = a
[x - x| around /" point. Then event Zx is certain as well. In
the neighbourhood of every determined point equation (7}
becomes

E(¥ o )=E(x) Jolx-x ]

X, = max elxzx] Je"zlzdtdu
xe A 21 . - (8)
i=12,.k.

The expression in equation (8) is a monotonically decreas-
ing function of cost value E(x;) and monotonically increas-
ing function of distance |x - x;|. This leads to two conclu-
sions:
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- first due to decrease with E(x;) the new initial point xo
lies rather closer to the known points with lower cost
function value, than to those with higher cost function
value,

- due to the increase resulting from [ x - x;| it lies away
form all known points so the distance to the nearest
one is as large as possible.

Both conclusions can be intuitively generalized to n dimen-
sional parameter space. A simple heuristic method de-
scribed in the following section is based on this generali-
sation.

3 A Heuristic Method for Finding
New Initial Points

The second conclusion tells us, that a new initial point has
to be somewhere in the parameter space, where the den-
sity of already evaluated points is low. If it is low, then we
expect the average distance between two nearest points
to be large in general. But we have to define how to meas-
ure the density of known points. Let us divide the parame-
ter space into 2”7 equal subspaces (2" equal boxes). Let
the density be equal to the number of known points in a
particular subspace, and let it be constant across the whole
subspace. A new initial point will be chosen in the sub-
space with the lowest density.

The first conclusion on the other hand tells us, that the
contribution to the density is not always the same for all
already evaluated points. Those with lower cost function
values should contribute less, than the ones with higher
cost function values. In the previous definition all of them
contributed one unit, regardless of the cost function val-
ue. Therefore known points have to be weighted. Each
point will contribute its weight, which has to be proportion-
al to its cost. Let the weight u of a point with cost function
value E be defined by equation (9).

u= (B —1)E+ Emax - BEmin
E

Emin and Emax represent the lowest and the highest cost
function value among already determined points, respec-
tively. The point with the lowest cost function value has
always weight one. The weight of the point with the high-
est cost function value is given by coefficient 3, and now it
contributes P times more to the density, than the lowest
point.

(9)

max min

So far all known points, for which we know, that they vio-
late implicit constraints, are still not included in our defini-
tion of density. They lack a cost function value E, so their
weight can not be calculated by equation (9). But those
points give us some information about the cost function
and therefore they have to be taken into account. We set
their weight to 2p.

Finally the heuristic algorithm for determining a new initial
point for the next optimization run is described in the re-
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peat until loop (Fig. 2) below. The space is divided into 2"
equal subspaces, until we find a subspace with no points
determined yet. A new initial point is selected there ran-
domly. The algorithm is very simple, so it demands only a
small amount of computational time.

calculate weights for all known points;
femporary space := expliclily constrained space;
repeat
divide temporary space into 2” equal subspaces;
add up weights in particular subspaces;
temporary space =
subspace with the lowest sum of weights;
untll lowest sum # 0
randomly pick new point in temporary space;

Symbolic algorithm of heuristic initial point
determination for a new optimization run.

Figure 2:

4  Sizing Problem Cases and Results

In this section three CMOS design cases are described to
illustrate the capabilities of the proposed approach. Two
simple two-stage operational amplifiers with p and n-chan-
nel differential pair (Figs. 3 and 4) and a telescopic cas-
code operational amplifier (Fig. 5) were optimized. Sever-
al versions of the above three sample circuits optimized to
meet different requirements were used as a part of larger
mixed signal integrated circuits. The amplifiers were de-
signed for and produced in 0.3um and 0.8um technolo-
gy. The parameters varied were all transistor channel di-
mensions (widths and lengths), MOS multiplier factors and
also the resistances and the capacitances.

b Bt

Operational amplifier with p-channel
differential pair.

Figure 3:

The circuit characteristics that take part in the cost func-
tion are listed in the upper part of Tables 1 and 2 . The
cost function is a rather complicated mathematical formu-
lation which combines results of several types of analyses
in several different operating conditions (variable supply
and reference voltages, variable bias current, variable tem-
perature etc.) and manufacturing environments (variable
production process conditions given with corner transis-
tor models) /12/. Beside searching for an optimal nominal
circuit the robustness is also taken into account. For the
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Figure 4: Operational amplifier with n-channel
differential pair.

two-stage amplifiers mismatching is simulated by slight
model variations of one of the matching transistors. The
shape of such a complicated cost functions in multidimen-
sional parameter space is completely unknown. Finding a
global minimum is a difficult task for any optimization meth-

od and circuit simulator since it requires many circuit anal- Figure 5: Telescopic cascode operational amplifier.
property target p-channel diff. pair n-channel diff. pair
A um‘z 1 11619 12289 12241 10105 14151 13521 17706 14286
Yy \Y% T 3.7 37 3.8 3.6 3.8 3.9 3.8 3.8
vpp/vl.npp T 2101 2937 2153 2159 4535 4246 4232 4741
Vo et Y L &7 60 96 49 32 81 49 11
v mV 1 201 199 198 199 99 101 100 100
outoffset
z'p HA 1 727 636 674 559 689 828 754 659
deB MHz T 20 20 20 14 16 20 14 13
pm ° T 37 37 31 23 34 40 55 37
am dB 1 -39 -37 -24 222 -40 -32 -38 -40
CMRR dB 1 -96 -100 -91 -97 -108 -106 -104 -102
PSRRp dB 1 -89 -90 -112 -101 -49 -50 -46 48
PSRRn dB 1 -62 -62 -60 -58 -50 -51 -51 -52
noisel/f nV/Hz 2 1 100 91 80 56 114 100 102 108
noz’selerm nV/Hz!2 1 9.0 9.5 9.0 10.3 8.6 94 9.0 8.6
Lice ns 1 361 431 405 431 285 259 243 312
tfal/ ns 1 174 134 171 216 479 426 44() 582
transistor mw /[ ratio
differential pair 173 141 200 151 130 117 41 154
active load 12 9 12 4 18 21 41 14
current source 18 24 18 7 19 10 31 39

Notations: A ... area, Vpp ... peak-to-peak voltage, vpp/Vinpp ... dC gain, Vorrset ... Offset voltage, Voutoffset ... symmetry, ip ...~
current consumption, fogs ... frequency at 0dB gain, pm ... phase margin, am ... amplitude margin, CMRR ... common
mode rejection ratio, PSRRp ... power supply rejection ratio to positive terminal, PSRRN ... power supply rejection ratio to
negative terminal, noise1/s ... noise at low frequencies (at 100Hz), noiseterm ... thermal noise at higher frequencies (at
100KHZ), trise ... rise time, tzy ... fall time, m transistor multipiier, w channel width and / channel length. Symbols Tand
indicate that the desired value is as high or as low as possible.

Table 1: Results of some succesfull optimization runs for both two-stage amplifiers (0.8um technology)
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yses. Nevertheless we expect that somewhere in the pa-
rameter space there is a global minimum which defines
the optimal solution satisfying the given requirements.

The results for the two-stage operational amplifiers are
summarised in Table 1 and for the telescopic cascode
operational amplifier in Table 2. Only some of the optima
found with the initial point set by the described heuristics
are given because of the tables size. The upper part of
both Tables contains nominal circuit performances. The
lower part summarises parameter values in each minimum.
Multiplying factor * channel width / channel length (mw =
/) ratio is given for some transistors in all three cases. If
short channel effects in submicron region are neglected
then the ratio defines a transistor. Therefore it is conven-
ient for estimating if two solutions are equivalent.

The optimization method used in a particular run is not
essential. In fact any local method can be used since glo-
bal methods tend to the global minimum regardless of the
chosen initial point. Direct methods are preferable since
the derivatives of the cost function are not required (often
impossible to calculate without resorting to perturbation
methods which are not accurate enough). So one can use
any simplex, quasi gradient (metric matrix, trust region etc.),
heuristic, etc. based method. In our experiments a heuris-
tic simplex based method was used. The cost function was
composed as a weighted sum of deviations from the target
values for nominal and worst conditions. If a particular tar-
get is fulfilled the optimization process does not tend to
improve it any further. Approximately 500 to 1000 circuit
evaluations were needed for one run to converge and on
the average every third run was successful. Thus the re-
sults in Table 2 were obtained in 30000 circuit evaluations.
Comparing this result to a performance of well known glo-
bal optimization methods like simulated annealing or ge-
netic algorithms is encouraging since over 150000 circuit

evaluations are needed to optimize a circuit like the tele-
scopic cascode amplifier.

From all presented cases we can see that many different
solutions of the circuit sizing problem exist. An interesting
parallel can be drawn with /34/-/35/ where the entire
circuit synthesis problem (topology and sizing) was ad-
dressed by genetic programming. Uncommon circuit to-
pology solutions were found beside well known ones.

More or less the same circuit properties can be obtained
with several different sets of circuit parameters. Two ex-
planations are at hand: 1.) the target values are to loose for
the used circuit configuration and for the given technology
and are easily fulfilled, or 2.) the optimization run is stopped
at different trade offs among given targets. Because all
requirements are never fulfilled the second explanation is
more probable. To confirm this, the same experiments were
repeated with tighter targets. The requirements remained
unfulfilled and individual solutions didn’t merge.

A closer look at the Table 2 also confirms that the solu-
tions represent trade offs among required targets. We can
see for instance that the last two results have complemen-
tary properties. While the solution from column nine has
low vpp, pm and am it has high i, and foqs. On the other
hand the last circuit (column 10) has opposite properties.
The same observations can be made in Table 1 .

5 Conclusion

A simple heuristic method for setting the initial points of
individual optimization runs was described. The idea is
based on a one dimensional probabilistic approach extend-
ed to multidimensional parameter space. The main objec-
tive is to uniformly search the parameter space with a se-
quence of optimization runs. Each run contributes some

telescopic coscode operational amplifier

2603 2735 2706 3000 2686 2905 2479

2.8 2.8 2.9 2.8 2.8 23 3.1
135 137 134 135 135 136 135

1 38 5 21 0.3 25 30
1.4 1.4 1.3 1.3 1.4 1.4 1.1

263 250 261 268 273 305 171

75 76 70 65 73 66 79
-25 -28 -25 -20 -25 -24 -28

mw /[ ratio

property target
A 1m? d 2795 2605 2688
y \Y% T 30 27 29
op
v, T 133 139 135
pp inpp
Y \E 24 04 34
i, LA \’ 14 12 13
foan MHz d 242 260 269
pm ° T 74 73 73
am dB T 25 25 226
transistor
main differential pair 290 350 290
auxiliary p differential pair 28 22 22
auxiliary n differential pair 14 20 8

290 230 350 290 290 410 230
16 16 16 28 28 22 28
8 11 14 20 20 11 11

Notations: A ... area, vpp ... peak-to-peak voltage, Vpp/Vingp ... dc gain, cmiboriset ... common mode feedback offset, ip ...
current consumption, fods ... frequency at 0dB gain, pm ... phase margin, am ... amplitude margin, m transistor multiplier,
w channel width and / channel length. Symbols T and { indicate that the desired value is as high or as low as possible.

Table 2: Results of some successful optimization runs for telesopic cascode amplifier (0.3um technology)
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new information about the cost function shape in the mul-
tidimensional parameter space. Different local minima are
found, if they are present. Multiple solutions are obtained
providing additional insight into circuit behaviour. The de-
signer can decide which one is the most appropriate and
continues his/her work from there with finetuning. Fine-
tuning is usually necessary since the obtained minimum of
the cost function not necessarily satisfies the designer's
expectations. A statistical model of the cost function was
presented. The construction of cost function itself /12/ is
beyond the scope of this paper.

The method takes into account all collected cost function
data. Therefore all calculated points must be stored and
some additional MBytes of RAM are occupied for that rea-
son. But on the other hand it requires only a small comput-
ing effort and does not take a considerable amount oftime.
The optimization method used in the individual runs can
be an arbitrary fast greedy (local) method. Fast conver-
gence of such methods ensures short runtimes since glo-
bal methods (like simulated annealing or genetic algorithms
ete.) have in general slow convergence. More information
is obtained instead of a single minimum. Our method can
try several different initial points in the time needed by a
global method to converge.
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