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0  INTRODUCTION

Sustainable energy supply, reducing dependence 
on energy resources, efficient energy production, 
climate-friendly and less energy-consuming 
production are some of the most important challenges 
facing the European Union in present times [1]. The 
European commission encourages energy companies 
to follow suggested climate action, which comprises 
cost-efficient and less environmental damaging 
power generation [2] and [3]. Companies have to look 
constantly for new strategies and tools to improve 
processes, decrease cost and increase productivity 
and efficiency [4] and [5]. The appropriate demand 
forecasting methods, inventory data and sharing of 
information constitute comprehensive energy resource 
management, which may lead to essential reduction 
of the total cost, better planning performance with 
energy resources and much more efficient production.

Customer demand is probably one of the most 
important factors to be predicted through a forecasting 
system that is especially problematic when we are 
faced with a noisy demand. Selecting a forecasting 
method from the many available is a very complex 
task (see, for example, [6] and [7]). The main 
approach towards the selection and optimisation of 

alternative methods relates to the minimisation of 
forecast error measures. Most of the stock control 
studies consider demand data as an input to the 
model without explicitly considering that they are the 
results of a demand forecasting system. Even though 
this weakness has been highlighted in the academic 
literature, little empirical work has been conducted 
to develop an understanding of the interaction 
between forecasting and stock control, except in [8] 
and [9], where the problem of the local optimisation 
of forecasting methods was elucidated. In general, 
separate evaluation of the forecasting method and the 
stock control policy may easily lead to poorer overall 
performances [10].

We present an example of a centralized supply 
chain with an order-up-to inventory policy and 
evaluate different forecasting methods together with 
the inventory model. In this joint model we optimise 
total inventory costs where holding and stock-
out costs (for different penalties) are included. We 
demonstrate that smoothing and initial parameters of 
forecasting methods can be determined to minimise 
the total costs. The joint model can be implemented 
easily, even by using an Excel spreadsheet, and the 
proposed solution is easy-to-use for managers. 
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Exponential smoothing methods are a class of 
methods that produce forecasts with simple formulae, 
taking into account the trend and seasonal effects 
of the data [11]. Distinguished by their simplicity, 
their forecasts are comparable to those of more 
complex statistical time series models [12]. The 
main advantages of HW methods, a special subset 
of exponential methods, are low expenses, fast 
calculations and simplicity.

The aim of this paper is to present a modified 
HW method, which is computationally stable and can 
handle both additive and multiplicative seasonality, 
even when a time series contains a nonlinear trend and 
a large noise component. We also expose the problem 
of the local optimisation of forecasting methods. We 
show that in the case of a centralised supply chain 
the calculated forecasts of demand, determined by 
minimising the mean square error (MSE), are not 
optimal. We therefore propose a method for the 
simultaneous optimisation of demand forecasting and 
a stock control policy, and demonstrate that initial 
and smoothing parameters in the forecasting methods 
can be determined to minimise the total costs of the 
supply chain. 

The idea of the joint optimization could be used 
for different objective functions such as the total 
energy efficiency and environmental impact concerns 
[13].

The remainder of the paper is organised as 
follows. In Section 1, the methodology and data 
are described. In Section 2 we present forecasting 
methods; the additive, multiplicative and modified 
HW method. In Section 3 we describe our model 
of the supply chain and calculate average costs for 
all different forecasts considered as an input to the 
model. In Section 4, we describe the proposed joint 
optimisation of total costs and present the results, 
which allows us to compare different forecasting 
methods and replenishment policy combinations. 
Finally, after the conclusions of our paper some 
further steps of research are suggested.

1  DATA AND METHODOLOGY

We used real seasonal time series from the M3-
Competition and conducted a simulation study to 
evaluate the performance of the modified HW method. 
The analyses were carried out in the program R [14]. 
The function sbplx from the nonlinear optimization 
package “nloptr” [15] was used to estimate the 
smoothing parameters. The starting values in the 
minimization step were set to α0 = β0 = γ0 = 0.5 and the 
maximum number of iterations was set to 25,000.

1.1  Real Time Series from the M3-Competition

The Makridakis Competitions, known in the literature 
as the M-Competitions, are empirical studies that 
have compared the performance of large number of 
major time series methods using recognized experts 
who provide forecasts for their method of expertise 
[12]. The first M-Competition (1982) used 1001 
time series and 15 forecasting methods. The second 
M2-Competition (1993) used only 29 time series. 
The third M3-Competition (2000) was intended 
to both replicate and extend the features of the first 
two competitions. A total of 3003 time series were 
used. The data sets used refer mainly to business and 
economic time series, although the conclusions can be 
relevant to other disciplines as well. The original time 
series data can be found in the R package Mcomp [16].

In our study, we have analyzed  quarterly series. 
They refer to five different disciplines, as shown in 
Table 1. 

First we used the “ets” function from the R 
package forecast [17] and [18] to classify the series by 
the form of their trend, seasonality and noise. Table 
1 also shows this classification, where ‘A’ stands for 
‘additive’, ‘M’ for ‘multiplicative’, and ‘N’ for ‘none’. 

We applied different forecasting methods to each 
of the series independently of its discipline and ets 
classification. 

Table 1.  Classification of quarterly time series from the M3-
Competition

Discipline Noise Trend Season
Micro 204  A N N 67
Industry 83 A N A 40
Macro 336 A A N 113
Finance 76 A A A 64
Demographic 57 M N N 90
Total 756 M N A 31

M N M 37
M A N 87
M A A 49
M A M 42
M M N 76
M M M 60

Total 756

1.2  Simulated Time Series

We have simulated 300 time series corresponding 
to six different demand patterns using the following 
formula (based on [19]):
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where Dt is the demand in time t, base is the average 
demand, slope captures trend in data (series with no 
trend are obtained by setting slope = 0), season is a 
seasonal factor, noise is the coefficient of demand 
variation, and snormal() is a standard normal random 
number generator. sindt  are seasonal indices, which are 
obtained for t = 1, 2, ..., 12 with snormal(). By varying 
the quantities A, B and C we obtain time series 
differing in the form of their trend, seasonality and 
noise. The possible demand patterns are the following. 
If we make A equal to 1, the equation provides a 
nonlinear (quadratic) trend; otherwise, if we make A 
equal to 1/t, we get a pattern with a linear trend. If we 
make B equal to 1/t, we get a demand pattern with 
additive seasonality; otherwise, if B is equal to 1, we 
get a pattern with multiplicative seasonality. The 
expression in the last term of the equation provides 
additive or multiplicative noise if we make C equal to 
1/t or 1, respectively. Using the different combinations 
of parameters (base, slope, season, noise) we can 
generate the demand patterns. 

Table 2.  Descriptions and marks for different demand patterns

Description Mark noise (step) slope season
add. noise, 
nonlinear trend,
mult. seasonality

AAM_5_50 200-650 (50) 5 50
AAM_5_100 200-650 (50) 5 100
AAM_8_100 200-650 (50) 8 100

mult. noise, 
nonlinear trend,
mult. seasonality

MAM_5_50 10-55 (5) 5 50
MAM_5_100 10-55 (5) 5 100
MAM_20_50 10-55 (5) 20 50

In this study we analysed in detail only 
demand patterns with additive and multiplicative 
noise, additive nonlinear trend and multiplicative 
seasonality. Base was selected to ensure that the 
average demand was approximately 2000 units; the 
parameters for six demand patterns are shown in 
Table 2. We used notation noise (step) to point out 
that for each selected parameter slope and season we 
chose 10 different noises (e. g., for the AAM_5_50, 
noise = 200, 250, …, 650). The AAM produced a 
demand with additive noise, additive nonlinear trend 
and multiplicative seasonality (quantity C is equal 
to 1/t, A and B are equal to 1); the MAM produced a 
demand with multiplicative noise, nonlinear trend and 
multiplicative seasonality (quantities A, B and C are 
equal to 1). Each combination of the simulation study 
was replicated five times (for different snormal()). 
Thus, the total number of simulation runs for the 

experiment is equal to 6 (patterns) × 10 (different 
noises) × 5 (simulations) = 300. 

1.3  Symmetric Relative Efficiency Measure

The efficiency of the modified HW (MoHW) method 
was measured in terms of the MSE of the in-sample 
one-step-ahead forecasts and compared to that of 
additive (AHW) and multiplicative (MHW) methods. 
Because the first two complete seasons were used 
to initialize the methods, these observations were 
excluded from the reported MSE:

 MSE =
−

−( )
=

−

+ +∑1

2 2

1

1 1

2

T s
F Y

t s

T

t t ,  (2)

where Yt is the actual value at the time point t, Ft is 
the forecasted value at the time point t, s is the length 
of seasonality and T is the length of the observed 
time series. To compare the MoHW method with the 
other method, we first find their mean square errors, 
MSEMoHW and MSEmethod as defined above. We define 
the symmetric relative efficiency measure as
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We prefer the SREM to the standard relative 
efficiency measure the REM (percentage increase or 
decrease of the MSE),

 REM
MSE MSE

MSE
MoHW

method

MoHW method

method

=
−

,  (4)

because it treats the methods symmetrically: e.g., when 
MSEMoHW = 10 and MSEAHW = 20, the REM is –50 %, 
while when the MSEMoHW = 20 and the MSEAHW = 10, 
it is 100 %. On the other hand the SREM is 50 % in the 
first case and –50 % in the second case, indicating that 
‘on average’, none of the methods is preferable. The 
value of the SREM is bounded by the interval [–1, 1], 
which mitigates the possibility of an individual time 
series to substantially outweigh other series in the 
group. The interpretation does not depend on the 
number of series in the group, so the SREM can 
easily be applied to the M3-Competition data where 
different disciplines (or types) have different numbers 
of time series.

Also, we use the definition of the SREM to 
compare the MoHW method with other methods 
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regarding average costs AC (in these cases, the 
SREM1 measures the percentage increase or decrease 
of the average costs):
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2  FORECASTING METHODS

The Holt-Winters method estimates three smoothing 
parameters associated with level, trend and seasonal 
factors. The seasonal variation can be of either an 
additive or multiplicative form. The multiplicative 
version is used more widely and on average works 
better than the additive one ([20]; of course, if a 
data series contains some values equal to zero, the 
multiplicative HW method cannot be used). 

In the multiplicative seasonal form of the HW 
method (MHW) fundamental equations for level Lt, 
trend bt, seasonal factors St and forecast Ft are:

 L Y S L bt t t s t t= ( ) + −( ) +( )− − −α α/ ,1 1 1  (6)

 b L L bt t t t= −( ) + −( )− −β β1 11 ,  (7)

 S Y L St t t t s= ( ) + −( ) −γ γ/ ,1  (8)

 F L bm St m t t t s m+ − += +( ) ,  (9)

where α, β, γ are smoothing parameters (which must 
lie in the interval [0, 1]), m is the number of the 
forecast ahead, s is the length of seasonality (e.g., the 
number of months or quarters in a year) and Yt is the 
observed data at the time point t. We have given values 
for s, m and Yt, t = 1, 2, ..., T. To initialize the level, we 
set Ls = (Y1 + Y2 + ... + Ys) / s; to initialize the trend, we 
use bs = (Ys+1 – Y1 +Ys+2 – Y2 + ... + Y2s – Ys) / s2; and for 
the initial seasonal indices we calculate Sp = Yp / Ls, 
p = 1, 2, ..., s.

The additive seasonal form of the HW method 
(AHW) works with the following equations:

 L Y S L bt t t s t t= −( ) + −( ) +( )− − −α α1 1 1 ,  (10)

 b L L bt t t t= −( ) + −( )− −β β1 11 ,  (11)

 S Y L St t t t s= −( ) + −( ) −γ γ1 ,  (12)

 F L bm St m t t t s m+ − += + + .  (13)

Eq. (11) is identical to (7). The only differences 
in the other equations are that the seasonal indices 

are now added and subtracted instead of relying on 
products and ratios. The initial values for level and 
trend are identical to those for the multiplicative 
method. To initialize the seasonal indices we calculate 
Sp = Yp – Ls, p = 1, 2, ..., s..

The only difference between the AHW and the 
MoHW method is in the equation for seasonal factors:

 S Y L St t t t s= −( ) + −( ) −γ αγ1 ,  (14)

and forecast:

 F L bm St m t t t s m+ − += + +α .  (15)

The other equations for MoHW conform to the 
AHW format. Thus, when we minimize the MSE with 
respect to the smoothing parameters, the new effect 
is to smooth the seasonal factors by changing them 
less. The initial values for the level, trend and seasonal 
components are the same as in the case of the AHW 
method.

For each of the series we also used the “ets” 
function [17] and [18] to obtain the MSE, where we 
set opt.crit = ’mse’, ic = ’aic’, bounds = ’usual’, so that 
the MSE was minimized to estimate the parameters of 
each model; the aic was used to select the best model, 
and the standard parameter restrictions were applied. 
We use the notation ETS method. It is a state space 
model that includes some transition equations that 
describe how the unobserved components or states 
(level, trend, seasonal) change over time. The classical 
decomposition method splits a time series into a trend 
and a seasonal component and projects them into the 
forecast horizon [21].

3  THE SUPPLY CHAIN COST MODEL

Consider a simple two-stage supply chain consisting 
of one distributor of derivate energy products (e.g., 
hot water, steam, electricity) and one supplier of 
primary energy sources (e.g., coal, crude oil, gas). 
The distributor holds an inventory in order to meet an 
external demand and places inventory replenishment 
orders to the supplier. At the time t, the last known 
value of the external demand is Dt–1. The distributor 
places an order Qt to the supplier. We assume that the 
order placed one period ago is received (delivery lead 
time is one period). After the order placement, the 
external demand Dt is observed and filled. At the end 
of each period, the inventory costs are evaluated. The 
unsatisfied demand is backlogged and causes penalty 
costs for the distributor. The supplier is able to supply 
any requested quantity. 
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We assume that the distributor follows an 
order-up inventory policy. An order Qt placed by 
the distributor to the supplier can be expressed as 
Qt = Ft+1 – FSt, where Ft+1 is the forecasted demand 
for a time point t+1 and FSt is the final stock for the 
time point t (if FSt > 0 the distributor has on-hand 
inventory, if FSt < 0 the unsatisfied demand occurs). 
When it is Qt < 0, an order is not placed. The final 
stock is calculated as FSt = ISt – Dt, where the initial 
stock  is obtained as ISt = Qt–1 – FSt–1. 

As the supplier has information about the external 
demand (the centralized supply chain), it places the 
order, which is equal to the forecasted demand (less 
FSt , if FSt > 0). The missing amount of products 
supplied from the marketplace (assuming that a perfect 
substitute for the product exists) causes penalty costs 
for the supplier.

The costs of the supply chain are the sum of the 
holding costs and the penalty costs for all links in 
the supply chain. We assume the penalty costs to be 
higher than the holding costs, which is expressed by 
introducing a weight, penalty, that is greater than 1. In 
our analysis, for all calculations of total costs (average 
costs and minimised average costs) we assume that 
the penalty is equal to 3 or 5. 

In other words, using the common notation 
X+ = max(X, 0), the supply chain costs Ct at the time 

point t are expressed as (l is an individual link in the 
supply chain [in our case, l = 1, 2], n is the total number 
of links in the supply chain [n = 2]): 
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Because the first two seasons were used to 
initialize the methods, the average costs (AC) are 
calculated as:

 AC
T s

C
t s

T

t=
− = +

∑1

2 2 1

.  (17)

3.1  Real Time Series from the M3-Competiton

For each observed method and series, the symmetric 
relative efficiency measures (the SREM and the 
SREM1) of the MoHW with respect to the AHW, 
MHW or ETS were computed. Also, the portion of 
time series for which the MoHW method outperforms 
each other method was recorded. 

Table 3 shows averages of the SREM for quarterly 
time series. We can observe that with the MoHW 
method the MSE can be reduced on average by more 

Table 3.  Averages of the SREM and the SREM1 for time series from the M3-Competition; the series are grouped by disciplines or types 

MSE → COST
SREM (MSE) [%]

SREM1 (AC) [%]
penalty = 3 penalty = 5

MOHW/      
AHW

MOHW/
MHW

MOHW/    
ETS

MOHW/      
AHW

MOHW/  
MHW

MOHW/    
ETS

MOHW/      
AHW

MOHW/  
MHW

MOHW/    
ETS

Di
sc

ip
lin

e

MICRO 7.30 3.73 13.29 2.76 1.33 9.11 2.64 1.30 9.69
MACRO 3.56 3.57 10.43 1.72 1.80 8.47 1.77 1.88 8.81
INDUSTRY 1.94 -2.92 6.82 0.93 -0.34 3.99 1.07 -0.22 3.84
FINANCE 0.42 0.24 10.38 0.57 0.74 3.74 0.74 0.89 2.91
DEMOGRAPHIC -3.74 -3.24 1.07 -4.09 -3.37 -0.19 -4.55 -3.86 -0.72

Ty
pe

ANN 0.21 1.27 14.65 -0.02 -0.33 10.54 -0.27 -0.54 10.99
ANA 1.55 5.33 9.30 0.45 2.87 11.83 0.40 2.85 13.18
AAN -1.96 -0.27 6.67 -2.07 -1.05 5.77 -2.39 -1.32 6.23
AAA 10.63 14.39 20.63 3.82 4.86 11.47 3.99 4.96 11.19
MNN 1.33 -0.52 16.11 0.97 0.21 9.31 0.91 0.20 9.27
MNA -0.56 -0.14 16.89 -0.36 0.23 6.91 -0.31 0.26 5.73
MNM 3.68 -4.83 8.84 0.63 -1.21 11.17 0.58 -1.07 12.18
MAN -2.00 -2.27 4.18 -2.56 -2.04 1.57 -2.79 -2.31 1.17
MAA 3.56 7.83 4.62 0.10 4.84 3.86 -0.34 4.59 3.90
MAM 14.07 1.60 5.84 7.32 0.99 3.80 7.52 1.31 3.72
MMN -1.17 -2.91 4.49 0.02 -0.18 3.51 0.38 0.19 3.74
MMM 23.22 9.33 12.10 13.52 5.95 8.74 14.27 6.66 9.24
Average 3.53 2.05 10.09 1.36 0.94 7.02 1.36 0.96 7.19
Portion [%] 67.59 50.26 78.44 55.56 50.53 72.22 54.76 50.79 70.63
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than 3 % (2 %) in comparison with the AHW (MHW) 
method. Also, the MoHW method outperforms the 
ETS, on average by more than 10 %. 

For all included disciplines the MoHW method 
performs better than the ETS method, indicating the 
universality of the MoHW method regarding the ETS 
which tries to select the most appropriate method for 
forecasting. 

The MoHW method does not outperform the 
classical AHW and MHW methods for the classes 
with no seasonal component (xxN), except for the 
ANN type, but the MoHW substantially outperforms 
them for classes with additive/multiplicative trend 
and additive/multiplicative seasonality, irrespective of 
the noise. Surprisingly, the fit of the MoHW method 
is better even in the AA and AM classes, where the 
AHW and MHW methods are the theoretically correct 
methods. 

Since demand data is usually considered as input 
to the model in stock control studies, the average 
costs (for the period t = T – s) for forecasts obtained 
with different forecasting methods were calculated. 
Table 3 also shows the averages of the SREM1 (the 
percentage of improvement of the average costs) of 
the MoHW with respect to the AHW, MHW and ETS. 

Almost the same as we observe for the SREM 
holds for the SREM1. If the MoHW outperforms 
classical methods regarding the MSE, the MoHW 
outperforms them regarding the average costs as well 
as in this case the costs are calculated for forecasts 
considered as an input to the stock control model. 

3.2  Simulated Time Series

We analyzed 300 simulated time series in the same 
way that we analyzed the real time series from the 

M3-Competition. For each method and series, the 
symmetric relative efficiency measures (the SREM 
and the SREM1) of the MoHW with respect to the 
AHW, MHW or ETS were computed. From Table 4 
we can observe that for the AAM patterns the MoHW 
method reduces the MSE on average by more than 
71 % (55 %, 95 %) in comparison with the the AHW 
(the MHW, the ETS) method. For the MAM patterns 
the MoHW reduces the MSE on average by more than 
35 % (9 %, 84 %) in comparison with the AHW (the 
MHW, the ETS) method.

From Table 4 we can also observe that for the 
AAM patterns at penalty = 3 the averages of the 
SREM1 are more than 53 %, 40 % and 80 % with 
respect to the AHW, MHW and ETS, respectively, and  
that  for penalty = 5 the values of the SREM1 slightly 
increase. This holds also for the MAM patterns 
(averages of the SREM1 are now more than 27 %, 
9 % and 61 % for penalty = 3). The MoHW method 
outperforms the AHW and ETS in all 150 cases of the 
MAM patterns and the MHW in 70 % of cases.

Applying all smoothing methods under 
consideration to the simulated data confirms the 
good performance of the MoHW method and yields 
another important insight. For the AAM patterns we 
can observe that the improvement of the MoHW with 
respect to other methods increases as seasonality 
increases and decreases as the slope increases. For 
the MAM patterns the improvement of the MoHW 
with respect to the AHW and ETS increases and with 
respect to the MHW decreases as seasonality increases 
and increases with respect to all methods as the slope 
increases.

Table 4.  Averages of the SREM and the SREM1 for the simulated time series

MSE → COST
SREM (MSE) [%]

SREM1 (AC) [%]
penalty = 3 penalty = 5

MOHW/      
AHW

MOHW/  
MHW

MOHW/    
ETS

MOHW/      
AHW

MOHW/  
MHW

MOHW/    
ETS

MOHW/      
AHW

MOHW/  
MHW

MOHW/    
ETS

AAM_5_50 62.17 37.58 93.09 47.15 30.40 74.94 49.28 32.73 74.96
AAM_5_100 81.29 66.70 97.83 59.21 48.47 84.67 60.48 49.54 84.42
AAM_8_100 70.20 62.79 95.42 55.50 43.86 81.56 62.83 50.24 84.51
Average 71.22 55.69 95.45 53.95 40.91 80.39 57.53 44.17 81.30
Portion [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 95.56 100.00

MAM_5_50 25.76 9.32 74.98 22.64 12.96 50.82 24.58 14.98 51.62
MAM_5_100 29.15 1.49 88.54 22.66 -1.63 65.96 25.29 -3.04 66.30
MAM_20_50 51.58 17.91 88.95 37.93 18.56 66.53 39.76 20.11 66.68
Average 35.50 9.58 84.16 27.74 9.96 61.10 29.87 10.68 61.53
Portion [%] 94.44 61.11 100.00 100.00 70.00 100.00 100.00 70.00 100.00
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4  JOINT OPTIMIZATION

In this section we illustrate the advantage of joint 
optimisation over the optimisation based solely 
on forecasting data. Namely, the smoothing and 
initial parameters calculated by optimisation of the 
forecasting method (the minimisation of the MSE) are 
not optimal values for minimising the supply chain 
costs. Therefore, joint optimisation was used (notation 
J_method) and the initial and smoothing parameters 
were optimised to minimise the average total costs of 
the supply chain (Eq. (17)).

4.1   Real Time Series from the M3-Competition

From the joint optimisation of supply chain (costs) 
model for the time series from the M3-Competition 
(see Table 5), we observe the following: joint 
optimization with the MoHW method (JMoHW) 
outperforms all other methods for all disciplines and 
it is particularly good for micro and macroeconomic 
time series. Also, the JMoHW method outperforms all 
other methods for all types and it is particularly good 
for the AAA and MMM patterns. 

At the bottom of Table 5, we can see that the 
SREM1 and a portion of series with an improved 
SREM1 increase as the penalty increases. 

Table 5.  Averages of the SREM1 obtained with joint optimisation for  quarterly time series from the M3-Competition 

JOINT
SREM1 (AC) [%]

penalty = 3 penalty = 5
JMOHW / JAHW JMOHW / JMHW JMOHW / ETS JMOHW / JAHW JMOHW / JMHW JMOHW / ETS

Di
sc

ip
lin

e

MICRO 6.25 4.43 33.28 9.49 6.31 46.89
MACRO 9.76 9.42 30.51 14.50 14.23 44.13
INDUSTRY 4.83 2.71 26.95 7.22 4.79 41.85
FINANCE 2.44 2.55 26.38 3.42 3.29 38.56
DEMOGRAPHIC 2.57 3.42 18.70 6.59 7.85 30.39

Ty
pe

ANN 0.88 2.96 32.01 3.52 4.26 45.15
ANA 2.99 4.66 35.09 3.36 3.59 49.26
AAN 5.10 4.85 25.11 9.51 8.07 36.75
AAA 12.24 15.83 36.42 15.26 19.72 49.52
MNN 3.64 1.42 33.73 3.93 3.92 47.56
MNA 1.70 0.97 30.15 0.80 2.31 44.37
MNM 5.63 1.30 37.39 9.21 4.66 51.21
MAN 6.15 5.41 24.03 12.53 11.53 38.43
MAA 5.98 10.21 27.93 10.53 13.23 42.17
MAM 12.60 3.93 26.61 15.86 6.93 42.30
MMN 7.86 8.23 23.09 13.12 12.51 34.30
MMM 21.84 13.85 32.44 27.22 17.81 47.85
Average 6.99 6.20 29.56 10.64 9.47 43.03
Portion [%] 68.65 63.36 98.02 70.90 64.15 98.68

Table 6.  Averages of the SREM1 for the time series from the M3-
Competition (a comparison between the joint model and the model 
where the forecasting/inventory problem is treated separately)

JOINT/not_joint

SREM1 (AC) [%]

penalty = 3 penalty = 5
JMOHW/      

AHW
JMOHW/  

MHW
JMOHW/      

AHW
JMOHW/  

MHW

Di
sc

ip
lin

e

MICRO 28.38 27.15 42.60 41.61

MACRO 25.27 25.44 39.70 39.86

INDUSTRY 25.36 24.01 41.11 39.91

FINANCE 24.27 24.55 37.84 38.11

DEMOGRAPHIC 15.31 15.46 27.39 27.27

Ty
pe

ANN 23.76 23.31 38.01 37.49
ANA 39.28 41.19 42.07 43.52

AAN 43.62 45.00 30.35 31.22

AAA 58.30 59.83 45.96 46.70

MNN 41.08 41.51 43.33 42.73

MNA 42.84 44.35 41.41 40.64

MNM 47.13 44.78 44.46 43.23

MAN 41.94 44.19 35.66 36.04

MAA 41.54 43.51 39.61 42.81

MAM 42.97 41.84 45.61 40.85

MMN 44.28 45.12 32.12 32.06

MMM 36.14 30.54 50.86 46.41

Average 25.27 24.90 39.52 39.21
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Table 7.  Averages of the SREM1 obtained with joint optimisation for the simulated time series

JOINT
SREM1 (AC) [%]

penalty = 3 penalty = 5
JMOHW / JAHW JMOHW / JMHW JMOHW / ETS JMOHW / JAHW JMOHW / JMHW JMOHW / ETS

AAM_5_50 52.98 36.71 80.46 65.61 58.67 85.74
AAM_5_100 61.23 44.29 86.80 67.56 44.93 88.69
AAM_8_100 58.13 53.95 85.14 71.77 53.10 89.80
Average 57.45 44.98 84.13 68.31 52.23 88.08
Portion [%] 100.00 94.44 100.00 100.00 91.11 100.00
MAM_5_50 29.80 37.00 65.41 45.03 39.08 75.36
MAM_5_100 16.85 9.23 75.66 14.44 8.52 79.43
MAM_20_50 53.15 19.56 76.45 65.00 26.93 81.52
Average 33.27 21.93 72.50 41.49 24.85 78.77
Portion [%] 96.67 95.56 100.00 98.89 91.11 100.00

Finally, if we use the JMoHW instead of the 
models where forecasts are calculated with the AHW 
or MHW method regarding minimising the MSE, we 
can observe the following (see Table 6): for penalty = 5 
(penalty = 3) the JMoHW (on average) can reduce the 
average costs by at least 37.84 % (24.27 %) for all 
disciplines, except for a demographic series, where 
the JMoHW can reduce costs “only” by 27.27 % 
(15.31 %) in comparison with the AHW (the MHW) 
method.

For different types of series we can observe that 
for penalty = 3 the JMoHW can reduce the average 
costs for the ANN and MMM patterns “only” by 
23 % to 36 % and for all other types by 39 % to 60 %. 
For penalty = 5, the JMoHW can reduce the costs for 
patterns with no season “only” by 30 % to 43 % and 
for other types by 40 % to 51 %.

4.2  Simulated Time Series

For the AAM patterns we can observe (see Table 7) 
that the improvement of the JMoHW with respect to 
all others methods increases as seasonality increases, 
except for the JMHW for penalty = 5. Also, for 
penalty = 5 the improvement of the JMoHW with 
respect to all others methods increases as the slope 
increases, and this also holds for the JMHW at 
penalty = 3. 

For the MAM patterns the improvement of the 
JMoHW with respect to the ETS increases and with 
respect to the JAHW and the JMHW decreases as 
seasonality increases. Also, the improvement of the 
JMoHW with respect to the JAHW and the ETS 
increases and with respect to the JMHW decreases as 
the slope increases.

Finally, if we use JMoHW instead of the models 
where forecasts are calculated with the AHW or 
MHW method regarding minimising the MSE, we can 
observe (see Table 8) that the JMoHW can essentially 
reduce the average costs on average by more than 60 % 
(48 %) in comparison with the AHW (MHW) method. 
The improvement of the JMoHW with respect to the 
AHW and the MHW at the AAM patterns is greater 
than at the MAM patterns and increases as the penalty 
increases for both types of patterns.

Table 8.  Averages of the SREM1 for a simulated time series (a 
comparison between the joint model and the model where the 
forecasting/inventory problem is treated separately)

JOINT/
not_joint

SREM1 (AC) [%]
penalty = 3 penalty = 5

JMOHW/
AHW

JMOHW/
MHW

JMOHW/
AHW

JMOHW/
MHW

AAM_5_50 58.91 45.60 71.20 61.66
AAM_5_100 64.93 54.93 71.46 63.27
AAM_8_100 63.99 53.85 75.54 66.88
Average 62.61 51.46 72.73 63.94
MAM_5_50 44.78 36.45 61.70 54.89
MAM_5_100 44.50 23.94 55.24 34.51
MAM_20_50 55.50 40.61 66.30 54.10
Average 48.26 33.66 61.08 47.83

5  CONCLUSION AND FURTHER RESEARCH

The biggest challenges facing the European energy 
policy are sustainable energy supply, reducing 
dependence on energy resources and energy 
efficiency. Appropriate energy-demand forecasting  
methods offer many opportunities regarding process 
optimisation and appropriate strategic decisions. 
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This paper exposes two problems: the problem 
of forecasting energy demand with large noise and 
the problem of the local optimisation of forecasting 
methods. We propose the modified HW method for a 
simultaneous optimisation of demand forecasting and 
total costs.

From our study of 756 quarterly real series from 
the M3-Competition and 300 simulated demand 
patterns we can conclude that the average costs can 
always be reduced if we use joint optimisation with 
the MoHW method. For real data they can be reduced 
on average by more than 24 % for penalty = 3 and by 
more than 39 % for penalty = 5 in comparison with 
the models where forecasts are calculated with the 
AHW or MHW methods regarding minimising the 
MSE and are treated separately from the cost model. 
When joint optimisation with the modified HW 
method for simulated data was used, the average costs 
were reduced on average by more than 55 % (42 %) 
for penalty = 3 and by more than 66 % (55 %) for 
penalty = 5 in comparison with the AHW (MHW).

Joint optimization ensures better planning 
performance with energy resources, better utility 
of power plant assests and much more efficient 
production of derivate energy products from primary 
energy sources. Finally, the result shows that sharing 
information and comprehensive energy resource 
management lead to essential reduction of the total 
cost. 

Further research will include a detailed study 
of the impact of the modified HW method on the 
bullwhip effect if the proposed joint optimisation is 
used. Also, relaxation of the limitation for the lead 
time assumed to be only one period will be analysed 
for better evaluation of the joint model over longer 
horizons. It would be also interesting to investigate 
how the proposed joint optimization with the modified 
HW method would effect the systems described in 
[22].
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