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Abstract

Let X be a connected, locally finite graph with symmetric growth. We prove that there
is a vertex coloring ¢: X — {0,1} and some R € N such that every automorphism f
preserving ¢ is R-close to the identity map; this can be seen as a coarse geometric version
of symmetry breaking. We also prove that the infinite motion conjecture is true for graphs
where at least one vertex stabilizer S, satisfies the following condition: for every non-
identity automorphism f € S, there is a sequence x,, such that lim d(z.,, f(z,)) = oco.
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1 Introduction

A (not necessarily proper) vertex coloring ¢ of a graph is distinguishing if the only au-
tomorphism that preserves ¢ is the identity. This notion was first introduced in [4] un-
der the name asymmetric coloring, where it was proved that 2 colors suffice to produce a
distinguishing coloring of a regular tree. Later, Albertson and Collins [1] defined the dis-
tinguishing number D(X) of a graph X as the least number of colors needed to produce
a distinguishing coloring. The problem of calculating D(X) and variants thereof has ac-
cumulated an extensive literature in the last 20 years, see e.g. [2, 14, 16, 17, 18, 22] and
references therein.

One of most important open problems in graph distinguishability is the Infinite Motion
Conjecture of T. Tucker. Let us introduce some preliminaries: The motion m(f) of a graph
automorphism f is the cardinality of the set of points that are not fixed by f. For a graph X
and a subset A C Aut(X), the motion of A is m(A) = inf{m(f) | f € A, f # id}, and
the motion of X is m(X) = m(Aut(X)). A probabilistic argument yields the following
result for finite graphs.

Lemma 1.1 (Motion Lemma, [20]). If X is a finite graph and 2"X) > | Aut(X)|?, then

D(X) <2

We always have | Aut(X)|> < 2% when X is countable, which motivates the following
generalization.

Conjecture 1.2 (Infinite motion conjecture, [22]). If X is a connected, locally finite graph
with infinite motion, then D(X) < 2.

The condition of local finiteness cannot be omitted [17]; note also that every connected,
locally finite graph is countable. This conjecture has been confirmed for special classes of

graphs: F. Lehner proved it in [16] for graphs with growth at most (’)(2(1_6)@) for some
€ > 0,! and later, together with M. Pil$niak and M. Stawiski [18], for graphs with degree
less or equal to five.

The aim of this paper is to introduce a large-scale-geometric version of distinguisha-
bility for colorings, and to prove the existence of such colorings in graphs whose growth
functions are large-scale symmetric. This will result in a proof of Conjecture 1.2 for graphs
with a vertex stabilizer S, satisfying that, for every automorphism f € S, \ {id}, there is
a sequence x,, such that d(z,, f(x,)) — oo; we can regard this condition as a geometric
refinement of having infinite motion.

Let X and Y be connected graphs, endowed with their canonical N-valued? metric. In
the context of coarse geometry (see [19] for a nice exposition on the subject), two func-
tions f,g: X — Y are R-close (R > 0) if d(f(x),g(z)) < R for all z € X, and we say
that f and g are close if they are R-close for some R > 0. Let QI(X) denote the group
of closeness classes of quasi-isometries (in the sense of Gromov) f: X — X, and let
t: Aut(X) — QI(X) denote the natural map that sends every automorphism to its close-
ness class. We can adapt the notion of distinguishing coloring to this setting as follows:

Definition 1.3. A coloring ¢: X — N is coarsely distinguishing if every f € Aut(X, ¢)
is close to the identity; that is, «(Aut(X, ¢)) = {[idx]}.

I'The notation f = O(g) is used if there are C, N such that f(x) < Cg(z) forallz > N.
2We will use the convention that 0 € N.
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This new definition begs the following question: which connected, locally finite graphs
admit a coarsely distinguishing coloring by two colors? In Section 5.1 we present a sim-
ple example of a graph that does not admit such a coloring. The first main result of this
paper shows that graphs with symmetric growth admit coarsely distinguishing colorings
by two colors; this condition is satisfied by vertex-transitive graphs and, more generally,
coarsely quasi-symmetric graphs [3, Corollary 4.17]. The intuitive ideas behind these no-
tions are as follows: A connected, locally finite graph has the same growth type at all
vertices (see Section 2). If all of those growth types can be compared using the same con-
stants, then the graph is said to have symmetric growth (see Definition 2.3). Similarly,
given any pair of vertices, there is a quasi-isometry mapping one of them to the other one.
If all of those quasi-isometries can be obtained with the same distortion bounds, then the
graph is called coarsely quasi-symmetric [3, Definition 3.16]. This can be thought of as the
coarse-geometric analogue of being vertex-transitive.

Theorem 1.4. Let X be a connected, locally finite graph of symmetric growth. Then there
are R € Nand ¢: X — {0,1} such that every f € Aut(X, ¢) satisfies d(z, f(z)) < R
forallz € X.

Note that we obtain a uniform closeness parameter R for all f € Aut(X,¢); fur-
thermore, we make no assumption on the motion of the graph. A slight modification of the
proof of Theorem 1.4 proves the infinite motion conjecture for graphs X containing a vertex
x € X such that the restriction ¢: S, — QI(X) is injective. Let us rephrase this condition
in a language closer to the statement of Conjecture 1.2. Let X be a connected graph and
let f € Aut(X). The geometric motion of f is then gm(f) = sup{d(z, f(x)) | x € X};
for a subset A C Aut(X), the geometric motion of A is gm(A) = sup{gm(f) | f €
A, f # id}. The definition of the “closeness” relation for functions yields that the restric-
tion : A — QI(X) is injective if and only if gm(A) = co. The second main result of the
paper therefore reads as follows.

Theorem 1.5. Let X be a connected, locally finite graph with symmetric growth. If
m(X) = oo and there exists x € X such that gm(S,) = oo, then D(X) < 2.

In Sections 5.3 and 5.4 we present two families of graphs satisfying the hypothesis of
Theorem 1.5: the Diestel-Leader graphs DL(p, q), p,q > 2, and graphs with bounded
cycle length. The origin of Diestel-Leader graphs goes back to the following question,
posed in [21, 23] by W. Woess:

Question 1.6. Is there a locally finite vertex-transitive graph that is not quasi-isometric to
the Cayley graph of some finitely generated group?

R. Diestel and I. Leader introduced in [10] the graph DL(2, 3) and conjectured that it
satisfies the conditions of Question 1.6. A. Eskin, D. Fisher, and K. Whyte proved in [11,
12, 13] that in fact all graphs DL(p, q) with p # ¢ answer Question 1.6 positively. On the
other hand, graphs with bounded cycle length are hyperbolic (in the sense of Gromov) and
contain as examples free products of finite graphs.

A preliminary version of this paper stated that the authors did not know of any proof
in the literature for the existence of distinguishing colorings by 2 colors for these families
of graphs. An anonymous referee has pointed to us that, in the case of Diestel-Leader
graphs, this actually follows from the fact that they satisfy the Distinct Spheres Condition
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(DSC) [15, Theorem 4]. A connected graph X satisfies the DSC if there is a vertex v € X
such that, for all distinct u, w € X,

dv,u) =d(v,w) = S(u,n)# S(w,n) for infinitely many n. (1.1)

Since both symmetric growth and the DSC prove the existence of distinguishing colorings
by 2 colors for the same family of graphs, it is natural to ask if there is any relation between
these two notions; in Section 5 we present simple examples showing that all four possible
Boolean combinations of these two conditions can be realized. This shows to some extent
that our results and those in [15] are independent.

We can sketch the idea behind the proofs of Theorems 1.4 and 1.5 as follows: Choose
a suitable R > 0 and a subset Y C X such that d(z,Y) < R for all z € X. Suppose that
there is a partial coloring ) by two colors such that, if ¢: X — {0, 1} is an extension of ¢
and f is an automorphism of X preserving ¢, then f(Y) = Y. Thus we can regard every
extension ¢ of 7 as a coloring ¢: Y — N by more than two colors. The hypothesis of sym-
metric growth ensures that, for R large enough, we have sufficiently many local extensions
of 7 around every point yy € Y so that, gluing them, we can find a global extension ¢ with ¢
distinguishing. Theorems 1.4 and 1.5 then follow from a simple geometrical argument. In
general, we cannot find a partial coloring v as above, but the same idea works with minor
modifications; this technique is similar to that used in [2].

The outline of the paper is as follows: In the next section we introduce some prelim-
inaries to be used in the proof of the main theorems, which comprises Sections 3 and 4.
Finally, Section 5 contains several examples illustrating some of the concepts that appear
in the paper.

2 Preliminaries

In what follows we only consider undirected, simple graphs, so there are no loops and no
multiple edges. We identify a graph with its vertex set, and by abuse of notation we write
X = (X, Ex). The degree of a vertex © € X, degz, is the number of edges incident to
x, and the degree of X is deg X = sup{degx | z € X}. A graph X is locally finite if
degz < oo forall z € X. A pathyin X of length | € N is a finite sequence xg, x1, . . ., 2
of vertices such that x;_1Fxx; for all ¢ = 1,...,l; when the sequence of vertices is
infinite, we call v a ray. We may also think of a path (respectively, a ray) as a function
o:40,...,n} = X (respectively, 0: N — X). A graph is connected if every two vertices
can be joined by a path. All graphs in this paper are assumed to be connected and locally
finite, hence countable. We consider every graph to be endowed with its canonical N-valued
metric, where d(z, y) is the length of the shortest path joining = and y; a length-minimizing
path is termed a geodesic path.

A partial coloring of a graph X isamap v: Y — N, where Y C X;if Y = X,
we simply call 1 a coloring. We use the term (partial) 2-coloring when v takes values in
{0,1}. For every graph X and coloring ¢: X — N, let Aut(X, ¢) denote the group of
automorphisms f of X satisfying ¢ = ¢ o f. A coloring ¢: X — N is distinguishing if
Aut(X, o) = {id}.

For a graph X,z € X,andr € N, let

D(x,r)={ye€ X |d(y,r) <7}, S(x,r)={y€ X |dy,r) =1}

denote the disk and the sphere of center x and radius r, respectively. We may write
Dx (z,r) for D(x,r) when the ambient space X is not clear from context. A subset ¥’
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of X is R-separated (R > 0)if d(y,y’) > Rforally,y’ € Y withy # y/; itis R-coarsely
dense if, for every x € X, there is some y € Y with d(z,y) < R.

Lemma 2.1 (E.g. [2, Corollary 2.2.]). Let X be a graph and let R > 0. For every x € X,
there is a (2R + 1)-separated, 2R-coarsely dense subset Y C X containing x.

Remark 2.2. The proof in [2, Corollary 2.2.] makes use of Zorn’s Lemma, but the result
can be proved for countable graphs without assuming the Axiom of Choice: First, note that
the proof in [2, Corollary 2.2.] does not require the Axiom of Choice for finite graphs.
Let X be a countable graph, and let A,, be an increasing and exhausting sequence of finite
subsets of X. Since we can use Lemma 2.1 with finite subsets, there is a sequence of
(2R + 1)-separated, 2 R-coarsely dense subsets S,, C A,. The space 2% is sequentially
compact with the topology of pointwise convergence?, so there is a convergent subsequence
Syp, — S. It is now elementary to check that S is a (2R + 1)-separated, 2R-coarsely dense
subset of X.

Let 5,: N — Nand 0, : N — N be the functions defined by
ﬁw(’l“):|D($,’l“)|, UI(T):‘S(£7T)|'

Given two non-decreasing functions f,g: N — R¥, f is dominated by g if there are
integers k,l, m such that f(r) < kg(lr) for all » > m. Two functions have the same
growth type if they dominate one another. The growth type of /3, does not depend on the
choice of point x € X, so every graph has a well-defined growth type. The functions [,
x € X, however, may not dominate one another with a uniform choice of constants, which
motivates the following definition.

Definition 2.3 ([3, Definition 4.13]). A graph X has symmetric growth if there are k, [, m €
N such that 8,(r) < kB, (Ir) forallr > mand z,y € X.

Lemma 2.4. If X has symmetric growth, then deg X < oc.
Proof. Let z € X, then we have degy < 8,(1) < kB,(Im) < oo forevery y € X. O

Let X be a graph with A := deg X < o0, then the following holds for all x € X and
r > 1[2, Lemma 2.12]:

o.(1) <A, 2.1)
ox(r+1) <o.(r)(A-1), 2.2)
ox(r+1) <AA-1)". (2.3)
We will later fix a graph with A > 2; note that in this case A/(A — 2) < 3, so
— A((A=1) -1
Bx(r)§1+A;(A—1)S:1+(( A_)2 )
<1+3A-1)"-1
=3(A-1)". (2.4)

We say that X has exponential growth if lim inf w > 0 for some, and hence all

x € X, else it has subexponential growth. The following lemmas have elementary proofs.

31t is well-known that, for a countable product of compact subsets of the real line, the Tychonoff theorem can
be proved without using the Axiom of Choice.
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Lemma 2.5. Let X be a graph with symmetric exponential growth. Then there are k,l,m €
N such that e" < kB, (Ir) forallx € X andr > m.

Lemma 2.6. If X has symmetric subexponential growth, then, for every a,b > 0, there is
some m € N such that 3,(r) < ae” forall x € X andr > m.

3 Construction of the coloring

Let R be a large enough odd number, to be determined later. Let Y be a (2R+1)-separated,
2R-coarsely dense subset of X; we define a graph structure Ey on Y as follows:

yEyy' ifandonlyif 0<d(y,y") <4R+1. 3.1

Lemma 3.1. The graph (Y, E'y) is connected with degy y < |Dx (y,4R + 1)| — 1 for all
yey.

Proof. The inequality follows trivially from (3.1), so let us prove that Y is connected. Let
y,y € Y,andlet (y,z1,...,2,-1,Yy") be a path in X. Since Y is 2R-coarsely dense, for
every i = 1,...,n there is some y; € Y with dx (z;,y;) < 2R. The triangle inequality
and (3.1) then yield that (y,y1,...,Yn—1,¥’) is a path on (Y, Ey ). O

Recall that R is a large enough odd number, so assume R > 5. Let
R-1 R-1
A:{2n|2§n§T}, B={2n+1|1§n§T}, (3.2)
and, for r < R, let

T):UD(y,T), S(Y,T) (Y?”)\DYT*Z[ Usy7

yey yeYy
where the last equality holds because Y is (2R + 1)-separated. Let us define a partial

coloring

¢ X\ | S(y,r) —{0,1}

reB

as follows (Cf. [9, Lemma 3.2], see Figure 1 for an illustration):

T € UT:Q1 S(Y,r),
z e S(Y,2),
z€U,caSY,r),
, ©¢ D(Y,R).

P(x) = (3-3)

—_— = = O

Note that the vertices that are not colored by this formula are precisely those in S(y, r) for
T € B.

Lemma 3.2 (Cf. [9, Lemma 3.2.]). Let ¢: X — {0,1} be an extension of v, and let
f € Aut(X, ). Foreachy € Y, there is some §y € Y such that d(y, f(y)) < 1 and

d(z,9) = d(z, f(y)) forall z € X \{y, f(y)}.
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Figure 1: An illustration of the coloring ¢, where y1,y2 € Y, black represents the color 0,
and white represents 1. The grey vertices are those where v is not defined.

Proof. Let
Y={ze€X|¢()=0forall 2’ € D(2,1) },

then (3.3) yields Y/ C D(Y,1), and clearly f(Y’) = Y’ for all f € Aut(X,¢). For
y € Y, let § be the unique vertex in Y which is adjacent to f(y). We have ¢(z) = 0
for every vertex z € D(f(y),1) and D(f(y),1) € D(g,2), so D(f(y),1) € D(y,1)
by (3.3). Since D(y,1) C D(f(y),2), we also get D(g,1) C D(f(y),1), and the result
follows. O

Corollary 3.3. If X has infinite motion, then f(Y) =Y.

Proof. Let f € Aut(X,¢) and suppose f(y) # §. By the previous lemma we have
D(f(y),1) = D(y,1), so there is a non-trivial automorphism exchanging f(y) and 7 and
leaving all other vertices in X fixed. This contradicts the assumption that X has infinite
motion. O

Remark 3.4. Note that there might be automorphisms f € Aut(X, ) with f(Y) # Y
when m(X) < oo. The graph in Figure 1 provides such an example: the map f that
interchanges y; and z and leaves the rest of vertices fixed is an automorphism preserving

¥ but f(Y) £ Y.

Since domy = X \ [J,c5 S(Y,7), an extension of ¢ to X is the same thing as a
coloring of | J,. 5 S(Y,7); for such an extension ¢, let ¢ denote the induced coloring Y —
[15 N defined by

¢(y) = (dr(y))rep, where ¢,(y) = |S(y,r) N~ (1)]- 34

Lemma 3.5. If { := (&)rep: Y — [ Nis such that &.(y) < o,(r) for every y € Y,
then there is at least one extension ¢ satisfying ¢ = &.
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Proof. Since Y is (2R + 1)-separated, the spheres S(y,7), y € Y, r € B, are pairwise
disjoint. Thus we can define ¢ independently over each sphere S(y, r) by coloring &,.(y)
vertices with the color 1 and the rest with the color 0. O

Lemma 3.6. For each extension ¢: X — _{O, 1} of ¥ and every automorphism [ €
Aut(X, @), there is a unique automorphism f € Aut(Y, @) such that d(f(y), f(y)) < 1
forally €Y.

Proof. Let f be defined by the formula f(y) = 7, where §j € Y denotes the point given by
Lemma 3.2. This point satisfies d(f(y),z) = d(f(y), z) forall z € X \ {f(vy), f(y)}, so

d(y,y'") = d(f(y), f(y') = d(f(y), f¥))

for every v, € Y,y # v'. This equation and (3.1) yield that f is an automorphism of Y;
moreover,

F(S(y,m) = S(f(y),r) = S(f(y),r)
for 7 > 1 by Lemma 3.2, so f preserves & by (3.4). O

Proposition 3.7. If X has symmetric growth, then we can choose R large enough so that
[Lep(oa(r) +1) > B (4R + 1) forall z € X.

In order to keep with the flow of the argument, we defer the proof of Proposition 3.7 to
Section 4. Assume for the remainder of this section that X has symmetric growth and that
R has been chosen satisfying the statement of Proposition 3.7.

Proposition 3.8. There is a distinguishing coloring § = (& )rep: Y — [[5 N such that
&r(y) <oy(r) + 1L

Proof. Choose a spanning tree T for (Y, E'y') and a root yg € Y. In order to define &, first
let&(yo) = (0,...,0). Every y € Y with y # yo has at most | Dx (y, 4R+ 1)| — 1 siblings
in T by Lemma 3.1. Using Proposition 3.7, we can define £ so that £(y) # (0, ...,0) for
all y # yo, and every vertex is colored differently from its siblings in 7". It can be easily
checked that such a coloring is distinguishing [8, Lemma 4.1]. O

Proof of Theorem 1.4. Lemma 3.5 and Proposition 3.8 prove the existence of some ¢: X —
{0,1} extending 1 and such that ¢: ¥ — N is distinguishing. By Lemma 3.6, every
f € Aut(X, ¢) satisfies d(f(y),y) < 1forall y € Y. Since Y is 2R-coarsely dense, the
triangle inequality yields d(z, f(x)) < 4R+ 1forallxz € X. O

Proof of Theorem 1.5. Let X have infinite motion and pick z € X so that S, has infi-
nite geometric motion; Lemma 2.1 ensures that we can choose Y so that z € Y. Us-
ing Lemma 3.5 and Proposition 3.8, we construct a coloring ¢: X — {0,1} extending
1 and such that ¢ is distinguishing. Since X has infinite motion, Corollary 3.3 yields
f(Y) =Y forevery f € Aut(X,v). Moreover, Lemma 3.6 and the fact that ¢ is distin-
guishing show that f|y = idy, so Aut(X,¢) C S,. Since gm(S,) = oo by hypothesis,
gm(Aut(X,¢)) = co. But Y is a 2R-coarsely dense subset and is fixed pointwise by
every automorphism f, so the triangle inequality yields d(z, f(z)) < 4Rforallz € X, a
contradiction. O
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4 Growth estimates

In this section we assume that X is a graph with symmetric growth. We will derive Propo-
sition 3.7 from the following result:

Proposition 4.1. For R large enough, we have Hf:3(ox (r)+1) > (A=1)[B(4R+1))?
forallxz € X.

Proof. First, note that this result is trivial in the case where X is a graph of symmetric
subexponential growth. Indeed, since X is infinite, we have o, (r) > 1 forall z € X,

r >0, so
R

1
[T(on(r) +1) > 2772 = _eftios2, @.1)
r=3

Using Lemma 2.6, we have that, for R large enough,

BodR+1) < — L clnsosao o 1

- (Rlog2)/2 42
8(A—1) =30 -1)° (42)

for every x € X. Combining now (4.1) and (4.2), we get

(A=1)[B(4R+1)]* <

co| =

R
ef1082 < TT(0u(r) + 1),
r=3

as desired. So, for the purposes of this proof, we will assume from now on that X is a
graph with symmetric exponential growth.

In order to obtain lower bounds for the function Hf’:g(al.(r) + 1), let us consider the
following optimization problem: given A, @, R € N with

A > 2, R >3, Q>A*+R-1, 4.3)
minimize the function "
flar,....ag) = [J(ai + 1) (4.4)
i=3
fora = (ay,...,ar) € (Z*)% satisfying
a; < A, (ChH
a; < ai—1(A-1), (C2)
R
i=1
fortr=1,...,R.
Claim 4.2. The above problem has a minimizer (a1, .. .,aR) satisfying:

(1) a1 = A, andas = A(A —1).

(i) There is 0 < I < R — 2 such that the sequence as, . ..,as 1 is increasing and
a; <AA=1)fori>2+1.
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(i) For3 <i <241 wehavea; +1 > (a;_1 —1)(A—1).

Suppose that (a1, .. .,ar) is a minimizer that does not satisfy (i), let n € {1, 2} be the
first index such that a,, < A(A — 1)"~!, and let m > 3 be such that a,,, = max{a; | i >
3}. Conditions (C1) and (C2) yield

ar+az <A+AA-1) =A% 4.5)

If a; = 1forall7 > 3, then

R R
Zai:a1+a2+2ai§A2+R—2<Q—1

i=1 i=3
by (4.3), contradicting (C3); this shows that a,,, > 1. The sequence (a}, ..., a’s) given by
a; +1 fori=n,
a;=<a;—1 fori=m,
a; otherwise.

still satifies (C1)-(C3), and clearly f(a,...,a%s) < f(a1,...,ar) since the index n does
not appear in (4.4). It follows that every minimizer has to satisfy (i).

Let us prove that we can obtain a minimizer satisfying both (i) and (ii). Let (a1, ...,ar)
be a minimizer, and let s be a permutation of {1, ..., R} so that s(1) = 1, s(2) = 2, and
(a‘/lv B a/R) = (as(l)v s 7as(R))

satisfies (ii); it is obvious that such a permutation always exists. Since s leaves the subset
{3, ..., R} invariant and the function f is symmetric in those indices, (a], ..., a’;) is also
a minimizer if it satisfies (C1)—(C3).

Let us prove that (a}, . . ., ay) satisfies (C1)—(C3): Condition (C1) holds because s(1) =
1. In order to prove (C2), we begin by showing the following claim.

Claim 4.3. Foreveryi € {3,..., R} with a; > ag, there is some j € {2,... R} such that
j#tand az < aj < a; < (A —1)aj,.

Let [ be an integer to be determined later, we are going to define a sequence of indices
mi,...,m;in{2,..., R}. Let

my =inf{i€{2,...,R}|a; > a;forall2<j <R},

and assume a,,,, > ag, since otherwise the claim is vacuously true. Suppose now that, for
i > 1, we have defined m; for 1 < j < i. If a,,, , = a, thenlet! =14 — 1, so that m;_;
is the last element in the sequence. If a,,, , > a2, then let

m; =1inf{i € {2,...,mi_1} | a; > a;forall2 <j<m;_4}.

The claim is again vacuously true if [ = 1, so assume [ > 2. It follows easily from the
definition of m; that am,;—1 = @y, , forall 1 < ¢ <, and thus (C2) yields

A, < (A =1Dam,—1 = (A =1D)ap,.,- (4.6)
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Observe that, for every i € {3,..., R} such that ay < a;, thereissome j € {1,...,l —1}
such that ey < @ < Ay, which combined with (4.6) gives

amj+1 S a; S amj S (A - 1)am,_7~+1~
This concludes the proof of Claim 4.3.

We resume the proof of (C2), so let I be the largest non-negative integer so that
ay,...ah, ; is increasing. Recall that a) = ag, and let 3 < i < 2+ I. If aj = aj,
then a}_, = a5 = a}, so (C2) is satisfied. If a} > aj, then by Claim 4.3 there is some
Jj € {2,...,R} such that ay < a; < as;) < (A —1)a;. Since a; > az, we have

2 < s71(j) < 2+ I by (ii). Also, the sequence aj, . . . , a5 7 is increasing, so a; < aj_;
and therefore a < (A —1)a;_,. Thus Condition (C3) is satisfied because the sum 2?:1 a;
is invariant by permutations, and we have obtained a minimizer (af, ..., a’;) that satis-
fies (i) and (ii).

Finally, suppose that (a1, ..., ag) is a minimizer satisfying (i) and (ii), but not (iii). Let
n be an index such that3 <n < R—1land a, + 1 < (ap—1 — 1)(A — 1), then one can
easily check that the solution (af, ..., as) given by

a;—1 fori=n—1,
a;=1<a;+1 fori=n,

a; otherwise.

still satifies (C1)—(C3). Furthermore, a,, 1 > a, implies (a,+1 + 1)(a, — 1) < ans1an,
so f(ai,...,aR) < f(a1,...,ar), contradicting the assumption that (a1,...,ar) was a
minimizer. This completes the proof of Claim 4.2.

One can easily check that, for every graph X of bounded degree A, every z € X, and
every R > 3, the sequence (0,(1),...,0,(R)) satisfies (C1)~(C3) for @ = S, (R). Then
Claim 4.2 shows that, for every x € X, there is a sequence (a1, ..., 0, r) satisfying
Claim 4.2(i)—(iii) for Q = . (R) and such that

R R

[T +1) > [[(arr+1) @7

r=3 r=3

Fix such a sequence a,, , for every point x € X. Now (4.5) and Claim 4.2(ii) yield

241 R R 2
Z Qg r = Z Qg oy — Z Ay — Z Qg r
r=3 r=1 r=34+1 r=1
> B.(R)— (R—2 - DA(A—1) - A7
> B.(R) = RA(A —1) — (A - 1)% 4.8)

By (C2), we have ay 04y < az2(A—1)"forr=1,...,1,s0

e ! r (A B 1)1 -1 I
D tar <Y ara(A—1)" = ap2(A - ) =K~y Se2A(A-1)
r=3 r=1

<A3A -1 4.9
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Since X has symmetric exponential growth, by Lemma 2.5 we have
RA(A —1) + (A —1)® < B,(R)/2
for R large enough and all x € X, so

2+1

> s, > Be(R)/2 (4.10)
r=3
by (4.8), and now (4.9) and (4.10) yield
(A—1)" > By (R)/2A% (4.11)
From Claim 4.2(iii) we obtain by induction the following inequality forr =1, ..., 1.

r—1
g4 > Az 2(A—=1)" =12 (A - 1)’
i=1

> (A1) (as — 5 og) L
Since az 0 = A(A —1) > 2/(A —2)+ 1, we have
Azotr > (A—=1)".
Letting C' = 1/2A3, (4.11) yields
R 241 I
[Tar +1) = [ (s +1) = JTA =17 = ((a - 1)f*H)"2
r=3 r=3 r=1

> [CB,(R)|1o8a-1 CB(R)/2 (4 12)

Since X has symmetric exponential growth, by Lemma 2.5 there are k,l, m € N such
that k5, (In) > e™ forallx € X and n > m. So, if R > Im, then (4.12) yields

R
H(amr + 1) > (Ck—le\_R/lJ)(I_R/lj+long71)/2.
r=3

Since (Ck~lelB/1)(LR/1+108 Ck™")/2 grows faster than ASR+7, we can assume that R is

large enough so that
R

H(%w + 1) > A8R+7
r=3

for all x € X. Noting that (A — 1)? > 3, equations (2.4) and (4.7) yield
R R
[(e2(r) + 1) = [[(awr + DA(A = 1)*FF32 > (A = D)[B(4R+ 1)]>. O

r=3 r=3
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Proof of Proposition 3.7. The definitions of A and B in (3.2) yield

R
[Tea(r)+1) = |[[(ea(r) + D[ [[](o=(r)+1)]. (4.13)
r=3 reA recB
We have r — 1 € B forevery r € A, so
[Te)+1) <A =1) [](o=(r)+1) (4.14)
rcA reB

because 0, (r) < (A — 1)o,(r — 1) by (2.2). The combination of (4.13) and (4.14) then
yields

H (oz(r)+1) > \/Hf_ggm_(rl) + 1)7

reB
and the result follows from Proposition 4.1. O

S5 Examples
5.1 A connected, locally finite graph with no coarsely distinguishing 2-coloring

Forn € Z*,let I,, = {vg,...,v,} be a graph with edges {v,,, Vm11} form =0,...,n—
1, and let X = {u;,, }°_; be a graph with edges {wy,, Un,+1} for m € ZT. For every
n € Z*, take 2™ + 1 copies of I,, and denote them by

I' ={v' |i=0,...,n}, i=1,...,2" +1.

For every n and i, glue the graph I’ to X by identifying the points u,, and v}; denote the
resulting graph by Y (see Figure 2), and let Y,, be the full subgraph whose vertex set is the
image of | J; I, i by the quotient map.

Figure 2: A graph without coarsely distinguishing 2-colorings

Let ¢ be an arbitrary 2-coloring of Y. Since we have 2" + 1 copies of I,, glued to u,,
(n € Z7), by the pigeonhole principle there are at least two indices i(n) # j(n) such that
the restrictions of ¢ to Ifl(") and I,];(") are equal. So there exists an isomorphism f,, of Y,,
that preserves ¢ and maps 75 to 12 and therefore a(f (vfl(”)), vff")) = 2n. Choose
such an isomorphism f,, for every n € Z*, and combine them into an isomorphism f of Y’
preserving ¢. Since d(f(vil(")), vfl(n)) = 2n for all n € Z*, the map f is not close to the
identity. Note that the vertex u,, has degree 4 + 2", so deg Y = oo and hence Y does not
have symmetric growth.
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5.2 Graphs with infinite motion but finite geometric motion

Perhaps the simplest example of a connected locally finite graph X with m(X) = oo and
gm(X) < oo is shown in Figure 3. This graph has symmetric linear growth. The only
non-trivial automorphism f is the obvious one interchanging the horizontal rays starting at
y and z, and it is easy to check that d(z, f(x)) < 1 forall z € X.

y

Figure 3: Example of a graph X with m(X) = oo and gm(X) < oo

We can modify this example to obtain graphs with infinite motion, finite geometric
motion, and faster growth. For example, let 75 be the regular tree of degree 4, and let
¢: T3 — {0, 1} be an distinguishing coloring. Substitute each edge in T3 by a “gadget”
depending on the colors of the incident vertices (see Figure 4). In this way we obtain a
graph Y with Aut(Y) = {idy } and symmetric exponential growth. Moreover, we can
identify T3 with the subset Y of Y consisting of vertices of degree 4. Gluing one copy of
X to each vertex y € Y by identifying it with =, we obtain a graph with infinite motion,
finite geometric motion, and exponential (but not symmetric) growth.

Figure 4: Substituting each edge in T4 by a graph

5.3 Diestel-Leader graphs

The Diestel-Leader graphs DL(p1, . .., p,) are defined for n, p1, ..., p, > 2. For the sake
of simplicity, however, we will restrict our attention to the case n = 2; at any rate, the
following discussion can be easily adapted to include the case n > 2. In order to define
DL(p, ¢), let T}, and T, be the regular trees of degree p + 1 and ¢ + 1, respectively. For
i = p,q, choose a root 0; € T; and fix an end w; of T;. These choices induce height or
Busemann functions b, : T; — 7, and then

DL(p,q) := { (2,y) € Tp x Ty | hy() +by(y) =0}

Let us write (z,y) € DL(p, q) as zy for the sake of clarity, and let = F;y denote that « and
y are adjacent in T}, then the graph structure E in DL(p, q) is defined by

zyEx'y’ ifandonlyif zE,z’ and yE.y'.
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This yields

dpr(p,g)(2y,2'y") > max{dr, (z,2"),dr, (y,y)}
> max{| h(z) — b(2')],| b(y) — by} (5.1)

For i = p, ¢, let Aff(T}) be the subgroup of automorphisms of T; that fix w;. For every
f € Afi(T;), the quantity h(f(z)) — () is independent of = € T}, and we will denote it

by h(f). Let
Apg ={(f,[') € AME(T,) x AfE(Ty) | b,(f) +by(f) =0}

Lemma 5.1 ([5, Theorem 2.7.], [6, Prop. 3.3]). Ifp # q, then Aut(DL(p, q)) = A, 4. For
p = q, the group Aut(DL(p, p)) is generated by A, ,, and the map o : xy — yz.

Let us prove that DL(p, ¢) satisfies the hypothesis of Theorem 1.5.

Lemma 5.2. The group Aut(DL(p, q)) has infinite motion, and the stabilizer S, o, has
infinite geometric motion.

Proof. Leta = (f, ') € A, 4. If a # id, then at least one of f, f’ is non-trivial, say f.
Therefore f is a non-trivial automorphism of a regular tree, hence m(f) = m(a) = oo.
If moreover a € S,,,,, then f(0,) = 0,, and therefore gm(f) = oo when considered
as an automorphism of T}, (it is elementary to check that stabilizers in regular tres have
infinite geometric motion). Now (5.1) yields gm(a) = oo, proving the result when p # ¢
by Lemma 5.1.

If p = g, then every automorphism which is not in A, ; can be written as oa, where
a=(f,f) € A, and o is the map xy — yz. Since f(o,) = f'(0p) = 0p, we have
H(f) = b(f’) = 0. Let 2,,,, be a sequence in DL(p, p) with b,(z,) = —b,(yn) = n.
Then

(T Yn, 0a(Tnyn)) = d(TnYn, fl(yTL)f(xn)) > | hp(xn) - bp(f/(y’ﬂ))‘
= b, (2n) = b, (yn) — b, (f)]
> 2n — b,(f),

so gm(a) = m(a) = co. O

5.4 Graphs with bounded cycle length

A cycle of length n € N in a graph is a path o of length n with ¢(0) = o(n) and o (i) #
o(j) for 0 < i < j < n. A graph X has bounded cycle length if there is L € N such
that every cycle in X has length < L. It is not difficult to prove that all graphs of bounded
cycle length are hyperbolic in the sense of Gromov. There are in the literature several
non-equivalent definitions of the free product of graphs, see e.g. [7]; one can easily check,
however, that the following result holds for any of the definitions: The free product of a
finite family of graphs of bounded cycle length has bounded cycle length. In particular, the
free product of a finite family of finite graphs has bounded cycle length.

Lemma 5.3 (Cf. [16, Lemma 3.6]). Let X be a connected locally finite graph with infinite
motion, let x € X, and let f € S,. Then there is a ray v: N — X such that v(0) =

f(7(0)) and im(v) Nim(f o) = {7(0)}.
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Proof. See the proof of [16, Lemma 3.6]. O

Proposition 5.4. If X has infinite motion and bounded cycle length, then every vertex
stabilizer has infinite geometric motion.

Proof. Let x € X and let f € S,. By Lemma 5.3, there is a ray -y such that, if we let
v = f(v), thenv(0) = +/(0) and im(y)Nim(y’) = {7(0)}. Forn € Z*, choose geodesic
paths o, from y(n) to 7'(n). Let m,, be the largest integer such that o,,(m,,) € im~, and
let m/, be the least integer such that o, (m.,) € im~’; clearly m,,, m, < d(y(n),~y'(n)).
The triangle Z,, with sides

(7(0), ..., 7(8) = a(ma)),
(o(my),oc(my +1),...,0(ml)), and
(' (4) = a(my,), ’(J )7--~,7’(0))

determines a cycle of length > 2n — 2d(y(n),~'(n)). Now the assumption that X has
bounded cycle length yields lim d(v(n),~'(n)) = d(v(n), f(y(n)) = oo, and the result
follows. =

5.5 Symmetric growth and the distinct spheres condition

In this section we show, using examples and a short argument, that all four possible Boolean
combinations of the conditions “having symmetric growth” and “satisfying the DSC” can
be realized in very simple graphs. Recall that X satisfies the DSC if there is a vertex v € X
such that, for all distinct u, w € X,

dv,u) =d(v,w) = S(u,n)# S(w,n) for infinitely many n. (5.2)

Figure 5: We substitute a vertex « by two copies x1, x2 with the same sphere of radius one

We will begin by showing how to modify a graph X to obtain a similar graph X’ that
does not satisfy the DSC. Let X be any connected graph, and take two different points
z,y € X. Using the substitution shown in Figure 5 on x and y, we can obtain a graph X’
that has two pairs of vertices z;, and y; (2 = 1, 2), instead of x and y, and so that, for any
points u,v € X with u,v # z,y and i € {1,2},

dX/(.TJi,U) = dX(ﬂj,'U/), dX’(yuu) = dX(ZUaU>7 dX/(U,U) = dX(U7’l})7 (53)

where by abuse of notation we are identifying the points of X \ {z,y} with those of
X'\ {z1,22,y1,y2}. It follows immediately from (5.3) that X’ shares the same coarse-
geometric properties of X; in particular, X’ has symmetric growth if and only if X does.
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Let us show that X’ never satisfies the DSC: Let v € X' be arbitrary, then at least one
pair of the new vertices does not contain v, assume v ¢ {z1,2z2}. Now (5.3) yields that
d(v,z1) = d(v,x2), but S(x1,n) = S(ze,n) for every n > 0, so X’ does not satisfy
the DSC. This procedure can be used to obtain examples of graphs of symmetric and non-
symmetric growth that do not satisfy the DSC.

Regarding graphs with symmetric growth that satisfy the DSC, as stated in the intro-
duction, the Diestel-Leader graphs constitute a family of such examples, but even simpler
examples like the Cayley graph of the integers satisfy this conditions.

Finally, as for graphs with non-symmetric growth that satisfy the DSC, let X de-
note the (unmarked, undirected) Cayley graph of Z? with respect to the generating set
{(0,1),(1,0)}, and let Y be a semi-infinite ray; that is, the vertex set of Y is {y;}:°, and
there is an edge y; ~ y;+1 for every @ > 0. It is elementary to check that X satisfies the
DSC. Let Z be the graph obtained by gluing Y to X by identifying yo and (0, 0), and let us
see that Z still satisfies the DSC: Let v = (0, 0), and let u, w be distinct vertices in Z with
d(v,u) = d(v,u). f u,w € X C Z (we can obviously identify X and Y with subsets of
Z), then

S(u,n)NX # S(w,n)NS for infinitely many n

because X satisfies the DSC. If u € X and w = y; € Y for some ¢ > 0, then, for every
n > 0, we have

Yitn € S(w,n) but yi4, & S(u,n)

because d(u,Y) > 0, so Z also satisfies the DSC. Moreover, since Y has linear growth
and X has quadratic growth, it is easy to check that Z has non-symmetric growth.
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