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0  INTRODUCTION 

The prediction of the frequency responses of complex 
systems in frequency bands is required in many 
industrial applications, like car or aerospace acoustics.  
Since the complex matrix of the finite element is 
wavenumber dependent, the computation of the 
vibrational solution often involves the resolution of 
the problem at each frequency of the frequency band, 
then leading to a prohibitive computational cost. This 
is particularly true in the mid-frequency regime, where 
the solutions are sensitive to frequency, requiring a 
very refined frequency discretization. The definition 
of advanced numerical strategies for predicting the 
acoustic response of complex systems in the mid-
frequency ranges is the subject of this work. It uses the 
combination of the variational theory of complex rays 
(VTCR) [1] and the proper generalized decomposition 
(PGD) [2]. 

The VTCR has been introduced in [3] and 
is dedicated to the resolution of mid-frequency 
problems. It is a Trefftz method which uses oscillating 
waves to expand the field variables. It is based on 
an original variational formulation designed such 
that the approximations within the substructures are 
totally independent, which means that any kind of 
approximation can be used, even those which have a 
strong physical content, giving to the strategy a strong 
flexibility, and hence efficiency. It has already been 
developed for plates, [4] shells [5] acoustics in 2D [6] 
or 3D [1], vibration problems, and also for transient 
applications [7]. It distinguishes itself from the other 
Trefftz techniques [8] to [13] by the type of selected 

shape functions and the treatment of the boundary 
conditions. 

The PGD is a model order reduction technique. 
Introduced in [2], it has already been successfully 
utilized for the resolution of multi-parametric 
problems (problems which depend on many 
parameters such as the space and time problems, or the 
space and uncertain problems, etc.) [14] to [16]. The 
resolution of the vibration problem (with the VTCR) at 
many frequencies is such a multi-parametric problem. 
Therefore, a combination of PGD and the VTCR is 
an obvious choice to handle frequency problems in 
medium frequency bands. 

The VTCR has already been extended to 
frequency band applications [17] and [18]. In these 
works, the authors proposed new algorithms for the 
calculation of multiple frequency solution, either 
by using a set of parameters to derive a discrete 
approximation of the frequency-dependent quantities 
within the VTCR matrix, or by expanding the VTCR 
matrix into series with respect to the frequency. In 
this work, we propose a new path to determine the 
frequency response of a system at many frequencies. 
It is based on a combination of the VTCR, used 
to find the solution of the vibration problem at a 
fixed frequency, and the PGD, used to find the best 
separated variable representation of this solution over 
a frequency band. Power type algorithms are proposed 
to find it in an efficient way. A 2-D numerical 
illustration on a car cavity is proposed to see the 
benefits of such an approach.
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1 THE REFERENCE ACOUSTICAL PROBLEM TO SOLVE

Consider a fluid comprised in a bounded domain 
Ω. This fluid is characterized by its speed of sound 
c0  and its density ρ0. We study the steady-state 
vibration response of the fluid in the frequency band  
I = [ω0 – Δω/2; ω0 + Δω/2] where ω0 is the central 
frequency and Δω the frequency bandwidth. The 
reference problem to solve is: find the pressure  
p(x, ω), (x, ω) ∈  Ω×I, such that:
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In Eq. (1), k = (1 – iη) ω / c0 is the wave number 
(η is the absorption coefficient), pd is a prescribed 
pressure, Z is a prescribed velocity, hd a given 
impedance and  a given function. The operator Lv is 
such that Lv(p) = (i/ρ0ω) (∂p/∂n). ∂pΩ, ∂vΩ and ∂zΩ are 
the parts of the boundary of Ω where the pressure, 
the velocity and the Robin conditions are prescribed. 
The uniqueness of the solution is ensured by a strictly 
positive η. If Ω is paritioned in nel non-overlapping 
elements Ωe, one must also consider the additional 
continuity equation at the common boundary  
Γe,e' = Ωe ∩ Ωe' :
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2  THE VTCR FORMULATION OF THE REFERENCE PROBLEM

The VTCR forumulation of an acoustic problem 
can be found in [6]. It necessitates the definition 
of the space of functions which exactly satisfy the 
governing equation (first equation of Eq. (1)) over the 
subdomains Ωe:

 S p p k p Ie e e e e= + = ×{ }; .∆ 2 0 over Ω  (3)

Problem (Eqs. (1) and (2)) can then be formulated 
as: find p p p S S Snel nel1 2 1 2, ..., ...,( )∈ × × ×   such that:
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where pde, vde and hde are the boundary conditions 
defined in Eq. (1) but restricted to ∂Ωe. The 
overline designates the complex value quantity. The 
equivalence between Eqs. (1) and (4) car be found in 
references on the VTCR. Eq. (4) can be written: find  
p ∈  S such that:

 a p p l p p S, ,δ δ δ( ) = ( ) ∀ ∈  (5)

where a and l are the bilinear and the linear part of 
Eq. (4). 

3 THE APPROXIMATED SOLUTION  
OF THE REFERENCE PROBLEM

The only thing to do in order to get an approximated 
solution of the reference problem Eqs. (1) and (2) is to 
satisfy Eq. (5) in a subspace S Sh ⊂ . As one can see, 
S is defined such that the approximations in Se can be 
independant of one another. As a consequence, any 
kind of approximated solution can be selected to span 
Sh, as soon as it satisfies the governing equation (first 
equation of Eq. (1)) in Ωe. The VTCR approximation 
uses propagating waves inside the acoutics domains, 
and consider all of them. For instance, in the 2-D 
modeling, we have:

     p x S p x X e de e
ikex, , , ,ω ω θ ω θ( )∈ ⇔ ( ) = ( )∫  (6)

where ke is the wavenumber of the vibration problem 
in Ωe. Corresponding 3-D modeling can be found 
in [1]. Xe(θ,ω) corresponds to the amplitudes of the 
waves, and is the unknown of the problem. Different 
approximations of Xe(θ,ω) can be used (see [19]). If 
the Fourier approximation is used, we expand Xe(θ,ω) 
on a Fourier series in order to define the subspace Sh:

 X X X ee e
h

e
n inθ ω θ ω ω θ, , .( ) ( ) = ( )∑  (7)

As a consequence, the subspace Se
h  is spanned by 

the shape functions φ ω θθ
e
n in ikexx e e d( , ) = ∫  and, for a 

fixed frequency, Xe
h ω( )  are the VTCR unknowns 

of the problem Eqs. (1) and (2) and are related to the 
amplitudes of the waves which propagates inside Ωe. 
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The substitution of Eqs. (6) and (7) into Eq. (5) leads 
to the frequency band matrix system :

 K(ω) X(ω) = F(ω),  (8)

where K(ω) and F(ω) are the projection of the 
bilinear and the linear forms of Eq. (5) onto the space 
generated by the functions φe

n . In the following, N 
will designate the size of X(ω).

4  THE COMBINATION OF THE PGD AND THE VTCR  
TO SOLVE THE FREQUENCY BAND PROBLEM

The problem given by Eq. (8) defined on the frequency 
band I is a multiparametric problem: the solution 
X(ω) contains information related to the direction 
of propagation of the waves and to the frequency. 
Solving this problem has already be considered in 
previous works on the VTCR either by using a set 
of parameters to derive a discrete approximation of 
the frequency-dependent quantities within the VTCR 
matrix or by expanding the VTCR matrix and the 
right-hand side of the system into series with respect to 
the frequency [17] and [18]. Here, we propose a new 
path to solve this, based on a model order reduction 
technique through a separated variable representation 
of the physical data. Today, the common name, which 
designates a decomposition of the physical data in a 
separated representation of the variables, is the proper 
generalized decomposition (PGD) (see [20] for a 
general review on PGD). With such a decomposition, 
any physical variable can be decomposed into a 
separated variable decomposition:

u x x u x x u x u xR
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M being the order of the approximation. As a 
consequence, the strategy used to solve Eq. (8) on I is 
to search the solution X(ω) in the form:

 X X XM
m mω ω λ ω( ) ( ) = ( )∑ ,  (9)

where Xm are constant vectors in N  and λm(ω) 
frequency functions in T, space of functions whose 
square integration on I is finite. 

Of course, neither Xm or λm(ω) are known. Then 
the key questions are: (i) how can we define the 
optimal decomposition; (ii) how can we compute it? 
If the solution X(ω) is known, it suffices to minimize 
the distance between this solution and the best 
approximation:
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according to a given norm on N  and T. But here, we 
want to build a decomposition Eq. (8) of the solution 
X(ω) without knowing this solution a priori. Notice 
that neither λm nor Xm are uniquely defined, as any 
other decomposition which multiplies λm by a constant 
factor and divide Xm by the same factor works also. 
Therefore, without loss of generality, we can prescribe 
the normalization of Xm according to the euclidean 
norm on N .

In order to build the best approximation, 
without knowing X, let us first write the problem in 
a variational formulation. Solving Eq. (8) on I can be 
written: find X(ω) ∈  N  ⊗  T such that:

 B X Y L Y Y TNω ω ω ω( ) ( )( ) = ( )( ) ∀ ( )∈ ⊗, ,  (11)

where,
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(the superscript T stands for the complex transpose 
vector definition). Moreover, let us define the inner 
product <<.,>> on N  ⊗  T by:
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where H Hhω ω( ) = ( )
  ( H  being the constant matrix 

of the mean value of K(ω) over I and h ω( )  the 
frequency dependent function of the mean value of 
the diagonal part of K(ω)). This choice provides some 
optimal convergence properties [21] by preserving a 
relation to the initial problem to solve, and moreover 
ensures we have the inner product separation property
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, where <.,>N  
is a norm on N  and <.,>T a norm on T. Finally, 
we introduce the functional AM(X, Y ,λ ,γ) defined on  
N ×N  × T × T  by:
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According to the Petrov Galerkin PGD approach 
introduced in [21], we define the best representation 
Eq. (9) of the solution of the problem Eq. (8) defined 
on I by the following minimax problem:
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Problem (Eq. (14)) can be interpreted as a pseudo 
eigen problem, corresponds to the definition of the 
best rank-one separated representation of X – XM–1 

and is a generalization of the proper generalized 
decomposition (POD)  [21].

According to Eq. (14), we can see that the 
best separated representation makes stationary the 
functional AM(X, Y ,λ ,γ) with respect to X, Y, λ and γ. 
These stationary conditions write:

  B X X Y L Y YM
M M M M

N− +( ) = ( )∀ ∈1 λ γ γ, ,' ' '   (15)

    B X X Y L Y TM
M M M M

− +( ) = ( )∀ ∈1 λ γ γ γ, ,' ' '  (16)

B X Y X X XM M M M M M
Nλ γ λ λ' ' ', , ,( ) =<< >> ∀ ∈ (17)

  B X Y X X TM M M M M Mλ γ λ λ λ' ' ', , .( ) =<< >> ∀ ∈  (18)

Then, according to the combination of the 
PGD and the VTCR, the best separated variable 
representation Eq. (9) of the reference problem Eqs. 
(1) and (2) is simply the solution of Eqs. (15) to (18).

5  POWER TYPE ALGORITHM FOR THE CONSTRUCTION  
OF THE APPROXIMATION

We have seen that the best representation Eq. (9) of 
problem (Eq. (8)) defined on I must verify Eqs. (15) 
to (18). As these equations are coupled, a natural 
approach to find the solution is to build solutions 
X, Y, λ and γ one after the other, which is the 
strategy adopted in power iterative algorithms. As a 
consequence, we can define the Algorithm 1, which 
looks at the solution of Eqs. (15) to (18):

Algorithm 1
for m = 1 to M do
  Initialize λ(ω) and γ(ω)
  for q = 1 to Q do

    Compute Xm
q( )  and Ym

q( ) by using Eqs. (15) and (17)

    Normalize Xm
q( )  and Ym

q( ) and 

    Compute λm
q( )  and γm

q( )  by using Eqs. (16) and (18)

    Set X Xm m m
q

m
q, ,λ λ( ) = ( )( ) ( )

    Compute  q( ) , the distance between 

      X Xm
q

m
q

m
q

m
q( ) ( ) −( ) −( )( ) ( ), ,λ λand 1 1

    if  q
Q

( ) <  then 
      break
    end if
  end for 

  Set Xm = Xm–1 + λmXm
  Compute  m , the error between KXm and F
  if  m

M<  then 
    break
  end if
end for 

The first loop corresponds to the recursive 
construction of couples (λmXm). This loop begins 
with the initialization of λ(ω) and γ(ω). We always 
prescribe:

 KX F KX Fm T m− −−( ) −( )1 1 , 

as an initialization value, in order to begin the 
algorithm with a relation to the target problem. The 
second loop is the alternate construction of the pairs 
(Xm, λm) and (Ym, γm) and is based on a power iterative 
technique to find the stationary point defined by 
Eqs. (15) to (18). The normalization of the vectors, 
discussed before, is done in this loop. We introduce 
a stopping criteria inside the loop to see if the power 
iterative technique has converge or not. This criteria 
is based on the relative norm between the pair 
X Xm
q

m
q

m
q

m
q( ) ( ) −( ) −( )( ) ( ), ,λ λand 1 1 , over the frequency 

band. If the solution at iterationis (q) is closed to 
the solution at iteration (q–1), the second loop is 
stopped, because the power iterative technique has 
converged toward the stationary point of Eqs. (15) 
to (18). As soon as the second loop has finished, we 
actualize the solution (Xm,  λm). Finally, we compute 
the error indicator  m  = || KXm – F || / || F || to assess the 
precision of the approximation Eq. (9).

In practice, the alternate minimization procedure 
of the second loop converges very fast. As a 
consequence, we can then classically limit the number 
of iterations Q to 8 or 9. 

6  NUMERICAL ILLUSTRATION

Consider the closed acoustic car cavity defined on 
Fig. 1. This cavity is filled with a fluid close to the air  
(ρ0 = 1.25 kg/m3, c0 = 340 m/s and η = 0.0005). 
Different boundary conditions are prescribed on 
the boundaries of the cavity: prescribed velocity or 
prescribed impedance (see Fig. 1). The black zone 
corresponds to the measure area, where the evaluation 
of the acoustical energy is desired. It corresponds 
more or less to the zone where the hear of the driver 
is located.

The cavity is modeled by the VTCR with 8 sub-
cavities Ωe (see Section 1). These cavities can be 
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seen on Fig. 1 (the continuous black lines make a 
separation between them). In each Ωe, the VTCR uses 
2Ne + 1 shape functions φe

n  (defined in Eq. (7)) such 
that the convergency criteria in [19] is respected. The 
considered central frequency is ω0 = 2π × 2150 rad/s 
and the bandwidth is Δω = 2π  × 300 rad/s. The 
Algorithm 1 described in Section 6 is used to get an 
approximated solution. The parameter  (see Section 5) 
has been retained. For the comparison, the reference 
solution is given by the VTCR strategy solely, with a 
computation at many frequencies.

Fig. 1.  Definition of the closed acoustic car cavity considered in 
Section 6

Fig. 2 shows the error indicator  m  defined in 
Section 5 versus the number of PGD pairs (Xm, λm) 
that are selected. As one can see, this error indicator 
decreases, which illustrates the convergence of 
the Algorithm 1. As  m  quantifies the error in the 
resolution of the VTCR problem (Eq. (8)) on the 
whole frequency band, its convergence simply tells 
us that the PGD-VTCR approximated solution is 
convergent over the whole frequency band.

Fig. 3 shows a comparison between the VTCR 
reference solution and the PGD-VTCR approximation 
at ω0 – Δω / 2, ω0 and ω0 + Δω / 2 (the middle and 
the two extreme circular frequency of the frequency 

band). As one can from the eye-ball norm, the 
solutions are very closed each time. Indeed, for each 
considered case, the localization of the vibrational 
peaks and their amplitude are the same. This illustrates 
that the proposed Algorithm 1 is able to recover the 
reference solution over the whole frequency band. 
This is of course in agreement with the last remark 
on the convergence of the error indicator, whose 
convergence is visible on Fig. 2: this error indicator 
being convergent, the solution is correct over the 
whole frequency band.

Fig. 2.  The error indicator  (see Section 5) versus the number of 
PGD pairs (Xm, λm) selected

Finally, Fig. 4 depicts the acoustical energy in 
the measure area defined in Fig. 1, over the whole 
frequency band. This energy is easy to compute from 
the local response, which is visible on Fig. 3. Again, 
the comparison of this physical quantity computed by 
the PGD-VTCR approximation with the same quantity 
computed on the reference solution shows that the 
proposed approach is able to recover the reference 
solution very well, on the whole frequency band.

Fig. 3.  Comparison between the VTCR reference solution and the VTCR-PGD approximation (with M = 35) for the example considered in 
Section 6 and depicted in Fig. 1; real plot of the pressure: a) 2000 Hz, b) 2150 Hz and c) 2300 Hz
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Fig. 4.  Comparison between the solution given by the PGD 
approximation with  (red color curve) and the VTCR reference 

solution (black color curve) for the example considered in Section 
6 and described in Fig. 1 

7 CONCLUSIONS

We proposed here a new path for solving vibration 
problems on frequency bands. It is based on a 
combination of the VTCR and the PGD. Looking 
for an approximation based on a separated variable 
decomposition solves the VTCR problem, defined 
on a frequency band. The best representation of such 
decomposition has been defined through a minimax 
problem, which is a generalization of the PGD. 
Power type algorithms have been proposed to find the 
solution of the minimax problem. A 2-D numerical 
illustration on a car cavity has been proposed to 
see the benefits of such an approach on complex 
acoustical problems. Future works will be devoted 
to the definition of more efficient algorithms to find 
a separated variable decomposition. The extension of 
this strategy to problems with uncertainties is also a 
work in progress.
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