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0  INTRODUCTION

Lung cancer is a malignant disease of the bronchial 
tubes. The progress of the disease is usually rapid in 
cases of symptomatic small-cell and non-small-cell 
lung carcinomas. Early detection of the malignant and 
precancerous lesions is mandatory for a successful 
treatment. Autofluorescence bronchoscopy (AFB) is 
used for the detection of degenerated tissue on the 
inner surfaces of the bronchial tubes [1]. In cases of a 
positive AFB finding, a laboratory analysis of a tissue 
sample is used to confirm or reject the result. 

AFB was developed from white-light 
bronchoscopy (WLB), which was used as a diagnostic 
tool. In contrast to WLB, AFB utilizes blue light 
(wavelengths of 380 nm to 460 nm) [2] to [4]. 
Precancerous (early-stage) lesions are differentiated 
from healthy bronchial tissue based on the differences 
between the fluorescent light that is reflected. In 
the subsequent pathophysiological examination, 
dysplastic lesions, metaplastic lesions, and 
carcinomas in situ are characterized by more layers 
of cells, with diameters ranging from micrometers 

to millimeters. They are differentiated from healthy 
tissue in a pathological examination by the formation 
of veins under the basal membrane [1] and different 
concentrations of fluorophores. AFB utilizes the 
difference in the fluoroscopic properties of malignant 
and nonmalignant tissues to detect malignancy, 
making it a superior diagnostic procedure to WLB. 
In AFB, a healthy mucus membrane emits more 
green than red light, and unhealthy tissue emits more 
red than green. Only a little blue light is reflected, 
either from the healthy or unhealthy tissue. Different 
implementations of stimuli and sensors can add their 
particularities to the general picture of fluorescent 
bronchoscopy.

Many clinical studies have confirmed the utility 
of AFB in the detection of cellular changes in early-
stage lung cancer, with noninvasive neoplastic lesions, 
small lesions, preneoplastic lesions, and neoplastic 
changes in tissue detected using state-of-the-art 
AFB diagnostic systems. Although such detection is 
possible using WLB, its performance is not as good as 
that of AFB [2], [5] to [7]. In addition to its utilization 
of changes in fluorescence in the detection of 
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precancerous cells, the superior performance of AFB 
is attributed to its utilization of algorithms in image 
characterization. A number of studies showed that 
AFB significantly outperformed WLB in the detection 
of preneoplastic and early neoplastic lesions [2], [3] 
and [8]. 

However, AFB suffers from a lack of specificity 
when compared to WLB, with larger numbers of 
false positives (FPs). According to some studies, 
the incidence of FPs was as high as 30 % [2], 
[6], [8] to [10]. Inflammation and other non-life-
threatening conditions, which result in changes in 
cell fluorescence, contribute to the high FP rate in 
AFB. Thus, to confirm the AFB findings, a biopsy is 
needed. Biopsies are time consuming and costly and 
can be distressing for the patient [2] and [10]. Thus far, 
none of the commercial AFB diagnostic systems (e.g., 
AFB system LIFE®, Karl Storz®, D-light®, Pentax 
SAFE 3000®, and DAFE®) have managed to resolve 
the FP problem.

AFB is designed to produce images in the 
Red Green Blue (RGB) color space. However, the 
fluorescent emissions contain only the R and G 
component. Thus, the image has to be transformed 
into a grey-scale image, where one of the two colors 
is represented by the minimum intensity and the other 
color is represented by the maximum intensity [11].

Although a number of studies have described 
the use of advanced technologies in diagnosis and 
treatment [12] to [14], only a few studies have focused 
on improving the specificity of AFB [15] to [17]. In 
one study of the spectra of autofluorescent light, the 
authors added endoscopic optical spectroscopy to 
AFB to improve its specificity [17]. Bard et al. [15] 
reported a real-time analysis of the autofluorescent 
spectrum while manipulating the tissue. The procedure 
was prone to tissue bleeding. Zeng et al. [16] and 
Terčelj et al. [17] used experimental apparatuses 
consisting of an AFB machine and a laboratory 
spectrometer in noncontact tissue examinations. 
However, modifications to AFB machines add to their 
complexity, and as a result, operators need to develop 
additional skills. Furthermore, the examination 
times are longer because the patient has to remain 
intubated, and this should be restricted to the shortest 
possible duration. Goujon et al. [18] and Qu et al. 
[19] described the use of follow-up, off-line analyses 
of spectral images in AFB to reduce the FP results. 
Other authors reported numerical manipulations of 
the red and green emissions, combined with different 
methods for thresholding the images into true positive 
and FP groups [18] and [20]. They reported a reliability 
of 79 % using these methods. They also reported that 

the addition of the results of WLB slightly improved 
the findings. In other AFB studies, Bountris et al. [21] 
and [22] transformed the original color space (RGB) 
to a more suitable color model (hue saturation value 
(HSV)) for the purpose of tissue examinations. They 
reported that the resulting image textures, aided by 
neural networks, minimized the FP results. Using this 
approach, it was possible to distinguish between the 
malignant and the inflamed tissue in the processed 
images. Haritou et al. [23] developed a computer tool 
for the off-line classification of AFB images. They used 
the HSV color space and performed a texture analysis 
in which sets of characteristic features were defined, 
depending on the classification type of the image. The 
texture features they used were Laws’ texture energy 
(TE) and first- and second-order statistics of the data 
in gray-level co-occurrence matrices (GLCMs). They 
combined these classification methods with feature-
selection methods to develop a reliable and efficient 
classification method. The final result was a color 
texture vector consisting of 10 features, which was 
evaluated for irregularities (malignancy/disease) 
using a custom neural network. The off-line tool was 
developed for a procedure evaluation and suggestions 
for refinements by physicians.

In the present paper we describe the development 
of a method for the detection of suspicious lesions 
(regions of interest (ROI)) on AFB images and 
the classification of these areas into malignant/
nonmalignant tissue. First, we created and evaluated 
the method for the detection of the ROI in comparison 
with a human expert (see Section 3.1). Next, we 
extracted a set of image features based on a classifier, 
which we used to classify the ROI into malignant/
nonmalignant tissue. Subsequently, we evaluated 
the performance of the classifier by comparing its 
findings with ground-truth data, which were based on 
the findings (histological analysis) of a tissue biopsy. 
Finally, we compared the performance of our approach 
with that of the method developed by Bountris et al. 
[21] and [22].

1  METHODS

1.1  Data Acquisition

AFB images obtained from patients who attended 
the Department of Lung Disease and Allergy at the 
University Clinical Center in Ljubljana, Slovenia 
were included in the study. All the patients underwent 
WLB. In cases where malignancy was suspected, AFB 
(LIFE®) images were obtained. The LIFE® system 
consists of a light source, a light fiber, and a camera 
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with an optical coating. The camera was calibrated 
before each AFB examination. Using this system, 
a healthy mucous membrane appears green on the 
image, and malignant and premalignant lesions appear 
red or red-brown due to the different fluorescence 
properties of non-healthy tissue. In all suspicious 
cases, a biopsy was performed, and the samples were 
histologically analyzed. The biopsy site was based on 
the findings of the AFB examination (i.e., abnormal 
fluorescence properties of the tissue). 

The following data were obtained: images and 
videos of AFB and WLB examinations of 50 patients, 
results of histological tissue analyses, and other non-
relevant study data. No personal data were collected 
from the database. The study was approved by the 
Medical Ethics Committee in Slovenia. 

The exclusion criteria were the absence of 
histological data and blurred images due to various 
causes (e.g., the presence of blood and mucus 
resulting from intubation, pinching the tissue while 
obtaining the biopsy sample, and excessive tissue 
pathology). The final study consisted of 44 images. A 
distinct area of suspicion and abnormal fluorescence 
was present in at least one area in each image. The 
results of the histological analysis of the biopsy tissue 
samples revealed 22 cases of malignant changes and 
22 cases of inflammation (Table 1).

On the WLB images, medical experts marked the 
ROI (i.e., suspected area of malignancy).

Table 1.  Image database

Malignant tissue  
changes

Other  
irregularities

Number of images 22 22

1.2  Procedure for Machine-Supported AFB Reading

Developments in software design, embedded systems, 
and workstations have had dramatic influences on 
most aspects of modern life. AFB needs to exploit 
these modern technologies in diagnostic processes.

A machine-supported AFB system autonomously 
annotates suspicious areas on an image. An expert then 
interprets the image reading and makes a diagnosis. 
Machine support makes the work less stressful, 
decreases the likelihood of errors, and increases the 
productivity. Machine-supported AFB reading can be 
designed to work in real-time or off-line. The latter 
is easier to implement. A major benefit of machine-
supported reading is that it improves the specificity of 
the AFB readings. 

Fig. 1 depicts the steps involved in machine-
supported AFB reading. The steps are briefly 
described in the following subsections.

Fig. 1.  Flowchart of AFB machine reading

1.2  Preprocessing of AFB Images

Preprocessing is carried out to standardize the image 
quality (parameters) and produce uniform images for 
further processing. During preprocessing, the color 
intensity, contrast, and image sharpness are modified. 
To improve the homogeneity of the pixel intensity, 
border-intensity enhancement, morphological closing, 
and Gaussian low-pass filtering (BCG) are employed 
[24].

1.2.1  BCG Method

Gaussian BCG low-pass filtering involves border 
intensity enhancement, morphological closing, and 
Gaussian low-pass filtering [24]. The border intensity 
enhances the contrast where the borders between 
different textures are detected. Morphological closing 
involves dilation, followed by erosion of the surfaces, 
based on a predefined set of rules with the purpose 
of image structuring on defined surfaces. As a result, 
the border lines between the surfaces are smoothened, 
small spots are integrated into the surfaces, and straits 
are withdrawn. Gaussian low-pass filtering reduces 
the contrast among the different surfaces of the image. 

The background and defined objects (ROI) are 
processed separately using different settings. The 
background is processed for uniformity, and the ROI 
is processed for detail enhancement. 

In the present study, the BCG parameters were: 
the projected size of the surface in morphological 
closing, projected surface size deviation σ, window 
size Ω, and targeted smoothness in the Gaussian core. 
Small changes in intensity were considered to denote 
the inhomogeneity. Consequently, the surfaces should 
not be small compared to the whole image. 

Fig. 2 presents a flowchart of the AFB image-
preprocessing steps. 
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Following the preprocessing of the AFB image, 
suspicious areas were detected using the BCG method. 
Alternatives to the BCG method are the N3 method 
[25], homomorphic filtration [26], border closing 
fuzzy C-means [27] and the method of Li et al. [28]. 
The practical advantages of the BCG method include 
its computational efficiency, thereby increasing the 
speed of the operation, as well as its robustness to 
noise and a dynamic range of possible inputs. The 
method is particularly useful for processing database 
images produced in similar environments.

1.3  Image Segmentation and Definition of the ROI

The intensity of the fluorescence light in AFB is 
influenced by the excitation wavelength λ, the 
absorption, the scattering, and the distance [29] as well 
as the different fluorescence properties of malignant 

and non-malignant tissue. The latter is used to 
discriminate malignant and non-malignant tissue.

During the imaging, the intensity of each image 
was calibrated for different distances. The definition 
of the ROI was based on the preprocessed AFB 
image. All non-healthy tissue was included in the 
ROI. Malignant changes, inflammation, bruises, and 
the excessive age degeneration of the tissue appeared 
similar on the image and needed to be investigated 
in detail. Once defined, the ROI was compared with 
the WLB image and the results of the physician’s 
observation. 

The R/G intensity ratio of the surface of the image 
was calculated, and the results were presented in a 
gray image, followed by filtering. The signal-to-noise 
(S/N) ratio was increased by lowering the noise while 
taking care to preserve the edges. Different filters 
were used: simple averaging, Gaussian filtering, and 

Fig. 2.  Flowchart of preprocessing for an AFB image

Fig. 3.  Assessment of the different preprocessing steps for an AFB image



Strojniški vestnik - Journal of Mechanical Engineering 63(2017)12, 685-695

689Classification of Malignancy in Suspicious Lesions Using Autofluorescence Bronchoscopy 

anisotropic diffusion filtering, and the last of these 
yielded the best results.

1.3.1  Anisotropic Filtering

Anisotropic filtering for image processing was 
performed in accordance with the anisotropic 
diffusion method of Perona and Malik [30]. Using this 
method, a line (or curve) of filtering is first defined, 
which is then performed along this line. The filter is 
used to preserve the edges and smooth out the surfaces 
[31]. The process is iterative and semi-reversible. The 
differential equations used in anisotropic diffusion 
filtering have been described earlier [31].

The requirements are:
• causality: Iterations must not produce new (false) 

features;
• at a minimum, edge sharpness and position must 

be preserved;
• intra-region filtering is prohibited;
• edges should ideally be enhanced.

Filtering is described by Eq. (1):

     ∂ = ∇ = ∆ +∇ ∇tu div g x y t u g x y t u g u( ( , , ) ) ( , , ) ,  (1)

where u is the intensity of the image element, and 
g(x, y, t) is the diffusion coefficient (function of 
position and time). As filtering intensifies with the 
number of iterations, the diffusion coefficient g was 
small (0) on the edges and large (1) within the 
surfaces. The brightness gradient | ( , , ) |∇u x y t  was 
used for g modulation. The diffusion coefficient g was 
a non-negative, monotonously decreasing function of 
the intensity gradient ∇u , with the boundary 
condition g(0) = 1. Shaping g changed the diffusion 
rate. When g = 1, the diffusion became linear, and the 
properties of the image had no effect on the filtering.

To enhance the edges while smoothing out the 
surfaces, Eqs. (2) or (3) was used:
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Eq. (2) was used to enhance the contrast intensity, 
and Eq. (3) was used to enhance the filtering on wide 
surfaces and modulate g [32].

The parameters were the number of iterations n 
and the spatial scaling factor λ of the gradient u. Noisy 
images require a larger λ, and iterations n wipe out the 
image details while preserving well-defined edges. 

A numerically similar application, solving the 
Fourier law of heat flow, was speed optimized for 
implementation in an embedded system [33]. The 
author reported that this method was 110 times 
faster than the existing commercial solutions. The 
mathematics employed in the present study are 
similar to those used in the method described in [33]. 
Thus, verified guidelines for the speed optimization 
of filtering for real-time, machine-supported AFB 
diagnostics exist.

1.3.2  Canny Algorithm for Edge Detection

The Canny algorithm proceeds as follows. First, a 
Gaussian filter is used for moderate filtering of an 
AFB image [34]. Parameter σ (standard deviation of 
the Gaussian distribution) modulates the filtering 
intensity. The diffusion coefficient g is calculated 
by Eq. (4), and the angle of searching for an edge is 
calculated by Eq. (5).

 g x y G Gx y( , ) ,= +2 2  (4)

 α ( , ) arctan ,x y
G
G
y

x

=  (5)

Gx and Gy are calculated using the Sobel, Prewitt 
or Roberts’s operator. The edge points determined in 
Eq. (4) give rise to edges with the magnitude of the 
image gradient. The algorithm then tracks the top of 
these edges, and any pixels that are not on the top of 
the edge are set to zero to produce a thin line in the 
output. This is known as non-maximal suppression. 
The edge pixels are then thresholded by hysteresis 
thresholding, which is based on the use of two 
thresholds: T1 and T2, and T1 > T2. Edge pixels with 
values greater than T2 are considered strong edge 
pixels, and edge pixels with values between T1 and 
T2 are considered weak edge pixels. Values below T1 
form surfaces.

A flowchart of the Canny algorithm is presented 
in Fig. 4. As shown in the figure, as the Gaussian filter 
lowered the noise level, the S/N ratio increased. The 
horizontal (x axes) and vertical (y axes) gradients of 
the image element intensities were calculated. The 
gradient magnitude was calculated using Eq. (4). 
Local maxima were found. All the other gradients 
were set to 0. 

The threshold filter separates the edge pixels 
from the background. The inbuilt hysteresis in the 
filter allows for a distinction between the edges and 
the background. Pixels with intensities below the 
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lower threshold form the background, and those with 
intensities above the upper threshold form edges. 
Pixels in-between these thresholds represent edges if 
they have edge-neighbors; otherwise, they form the 
background.

Fig. 4.  Flowchart of AFB image preprocessing

1.4  Feature Extraction

The surface-classification method of Bountris et 
al. [21] and [22] was used. This method is based on 
a feature study. Ideally, only a few features with lots 
of content are identified. The presence of multiple 
features increases the noise level, which interferes 
with the efficiency of the surface classification. 
Excessive image preprocessing prior to the feature 
search can potentially result in the depletion of TE. To 
preserve TE, we repeated the feature search using a 
combination of 25 Laws’ image filters [21] and first- 
and second-order statistics. Each ROI was mapped 
from the RGB to the HSV color space. Component H 
was used in the analysis. The combination of 25 Laws’ 
image filters and the results of the ROI mapping 
yielded 25 TE images. Seven first-order statistics 
were calculated for each image, resulting in 175 TE 
features. The calculation of GLCM (d = 1, θ = 45°), 
and 22 first-order statistics produced an additional 550 
TE features. Each ROI was characterized by 725 TE 
features, which were ordered into feature vectors. The 
dimension of each feature vector was impractically 
high. Information-rich features are mandatory for 
differentiating between the malignant and FP areas. 
Therefore, we employed principal component analysis 
(PCA) to generate a reduced number of information-
rich features.

1.5  Feature Reduction

PCA was performed to reduce the data into smaller 
numbers of information-enriched features [35] and 
[36]. These features (inputs to the method) were then 
mapped into a space with fewer dimensions. The 
data variance in lower-dimensional space needs to 
be high to guarantee a high correlation between the 
image properties and the corresponding image feature. 
Thus, PCA was performed to transform the correlated 
(linearly dependent) features into uncorrelated 
(linearly independent) features. The resulting features 
were orthogonal and formed the base of the feature 
space. 

The features were ranked according to their 
information relevance, with features having higher 
variance considered more important in the image. 
The most important features were used in the image 
analysis, and the least important features were 
considered noise [35]. PCA was also applied to the 
feature vectors. A subset of the resulting features 
was then used to build a machine-learning model for 
the classification of the samples into malignant and 
nonmalignant cases. In the iterative PCA, which was 
run using different settings, we selected the setting 
that resulted in the best classification models. 

1.6  Image Classification

The bronchial images were classified using a 
combination of machine learning and calculation 
and the classification of information-rich features, all 
of which were implemented using computationally 
efficient algorithms. The following supervised-
learning classification algorithms were tested in 
the creation of the classification models: naive 
Bayes classifier, K-nearest-neighbor (K-NN), and 
support vector machines with dot-kernel-type 
classifier (SVM). The dot kernel used was defined by 
k(x, y) = x × y [37].

1.7  Assessment

To access the performance of the classification model, 
we computed an accuracy sensitivity and specificity 
measure and then compared the results with those of 
other studies [21] and [22]. As the number of images 
was small, we applied the procedure of uniform 
sampling, with exchange (bootstrap) [38] to assess the 
efficiency of the machine learning.
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2  PROPOSED NOVEL METHOD  
FOR FEATURE EXTRACTION

The method for extracting the texture features 
draws on the work of Bountris et al. [21] and [22]. 
These texture features and an image histogram were 
used to produce the FOS. The histogram (HSV 
space) graphically showed the distribution of the 
color intensity and provided direction on additional 
information that was needed to improve the image 
reading.

In our approach, we created features by plotting 
the red (R) and green (G) channel histogram of a ROI 
in one graph. A fixed area within a ROI was chosen 
and analyzed in all cases. Both the R and G histograms 
of the ROI showed bell-type distributions. Fig. 5 
presents an example of a histogram where the x axis 
shows the channel intensity (0 to 255, 8-bit resolution) 
and the y axis shows the number of corresponding 
intensity pixels within the ROI. The histograms of both 
channels were then approximated using the Gaussian-
approximation function. The function (see Eq. 6) for 
each channel was defined by the values of the mean 
μ, the standard deviation of σ, and the peak value M. 
The computed Gaussian approximation of the red and 
green channels of the selected image is also shown in 
Fig. 5. The histograms of all the images were similar. 
In all cases, although μ, σ, and M differed, a semi-
normal distribution was always present.

Fig. 5.  Histogram of the R and G plane in an AFB image

Eq. (6) is the scaled Gaussian function that was 
used to model the R and G histograms in Fig. 5. 
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The parameters of the Gaussian functions (μ, σ, 
and M) and the cross-section of the two curves then 
served as features for the machine-learning model. 
Fig. 6 shows a flowchart of the feature extraction.

Fig. 6.  Feature extraction

In total, seven features were extracted from 
each sample. The extracted features were then used 
to build classification models for the discrimination 
of the malignant and nonmalignant cases. Next, we 
tested the performance of the classification models 
containing the extracted features using naive Bayes, 
K-NN, and SVM with dot kernel machine-learning 
algorithms. As a performance parameter, we observed 
the accuracy measure. 

3  RESULTS

3.1  Detection of a Suspicious Area

In each WLB image, a medical expert first selected 
the ROI, marking what he/she considered a suspicious 
area (malignant tissue). The expert-marked ROI was 
then compared with the machine-defined ROI. When 
comparing the machine-defined ROI with the expert-
defined ROI, the former was considered as ground 
truth. In the comparison, each pixel of the machine- 
and expert-defined ROI was compared. 

False-positive errors (FPEs) and false-negative 
errors (FNEs) were recorded. The mean values and 
standard deviations of the FPEs and FNE during the 
image processing were calculated in the RGB and 
HSV color spaces (Table 2). It is clear that the image 
processing in the HSV color space produced slightly 
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better results than the image processing in the RGB 
space.

Table 2.  Comparison of ROI detection methods

FPE [%] FNE [%]
Mean Std. Mean Std.

RGB 11.1 2.4 11.0 3.7
HSV 8.7 2.5 8.4 2.7

3.2  Classification

We compared the classification method of Bountris 
et al. [21] and [22] with our proposed method. As we 
were not able to obtain data from the authors of the 
reported method, we evaluated both approaches based 
on our own data.

The dataset consisted of 44 images, in which a 
ROI was identified. Malignancy was confirmed in 22 
of the images. Irregularities present in the other 22 
images had raised a suspicion of malignancy. These 
were biopsied but found to be nonmalignant. We 
performed randomized, stratified subsampling of 15 
samples from the malignant dataset and 15 samples 
from the nonmalignant dataset. These sample cases 
were then used for learning. The other 14 cases 
(seven from the malignant set and seven from the 
nonmalignant set) were used for testing (Table 3).

Table 3.  Learning and evaluation of the image sets

Malignant tissue Other tissue irregularities
Learning set 15 15
Testing set 7 7
Sum of images 22 22

3.2.1  Generation of Texture Features Using the Method of 
Bountris et al. [21] and [22]

We repeated the feature-extraction method described 
by Bountris et al. [21] and [22]. Fig. 7 outlines the 

process used to produce 25 TE images of the ROI from 
the initial image [23]. The ROI was first defined in the 
AFB image. The area of the ROI, from which a biopsy 
was taken, was the area for machine processing. The 
area was then transformed into HSV color space. The 
H component was used for the convolution with 25 
Laws’ masks. This resulted in 25 TE images. Twenty-
nine texture statistics were then calculated from each 
image, resulting in 725 features per ROI.

Selection of texture features using the method of 
Bountris et al. [21] and [22]

PCA was applied to reduce the feature space. In 
our case, we reduced 725 features to 10 independent 
features. These features were then used for machine 
learning. Several machine-learning algorithms (naive 
Bayes, K-NN, and SVM with dot kernel) were 
tested. The SVM with the dot kernel produced the 
best classification results. The results obtained were 
similar to those reported by Bountris et al. [21] and 
[22], who reported an accuracy of 91.2 % in their 
dataset. Therefore, we believe that we have managed 
to repeat their method accurately.

Proposed Method for Feature-Set Generation
We used the same learning/test dataset to evaluate 

the proposed method of feature extraction. We 
extracted a total of seven features from each ROI. The 
extracted features were Gaussian fitted parameters of 
both the red and green channels and the intersection 
points of both fitting curves. For a description of the 
feature-extraction method, please see Section 2. Naive 
Bayes, K-NN, and SVM with dot-kernel machine-
learning algorithms were tested and used in the 
creation of the model.

3.3  Classification Results

The classification results obtained using the proposed 
method were evaluated by comparing them with 
the results obtained using the methods of Bountris 

Fig. 7.  Process of texture-feature selection
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et al. [21] and [22]. The results of both methods are 
presented in Table 4.

Table 4.  Comparison of both methods

Method of Bountris et 
al. [21] and [22]

Proposed  
method

Classifier Accuracy [%] Accuracy [%]
K-NN 90.7 90.9
Naive Bayes 90.4 91.5
SVM with dot kernel 92.1 95.8
Average accuracy 91.1 92.7

Accuracy was considered as the most important 
parameter in the assessment of both methods. Other 
parameters that were assessed are presented in Table 
5. The naive Bayes classifier was used to obtain the 
data in Table 5. The proposed approach yielded better 
results, with substantially less computing time than 
the method proposed by Bountris et al. [21] and [22].

Table 5.  Comparison of other measures in the assessment of the 
methods (according to the naive Bayes classifier) 

NB
Bountris et al. method 

[21] and [22]
Proposed  
method

Sensitivity [%] 81.82 95.45

Specificity [%] 90.91 86.36

Accuracy [%] 93.33 88.33

Recall [%] 83.33 95.00

AUC 0.883 0.958

Wilcoxon’s signed-rank test was used to compare 
the performance of both methods. To validate the null 
hypothesis that both methods would produce similar 
results, using a statistical confidence level of α = 0.05. 
The results of Wilcoxon’s signed-rank test are shown 
in Table 6. 

Table 6.  Results of Wilcoxon’s signed-rank test of both methods

Accuracy Recall AUC

p 0.0112 0.0052 0.00063323

4  DISCUSSION AND CONCLUSION

We implemented and successfully tested a novel 
approach to the detection and classification of 
malignant tissue in AFB images. Using the proposed 
approach, we were able to successfully discriminate 
malignant and nonmalignant tissue in AFB images in 
borderline cases. 

In the proposed approach, a suspicious area 
on an image was identified using the BCG method. 
Suspicious areas detected by an expert were then 
compared with those identified using the proposed 
algorithm. The algorithm produced usable results. 
It detected the ROI, performing slightly better when 
used in the HSV color space.

From each suspicious area (ROI), a tissue biopsy 
sample was obtained. This tissue sample was sent 
for histological analysis, and the results were used 
as ground truth when determining whether a tissue 
sample was malignant or nonmalignant. From the 
determined ROI and ground-truth data, a test/learn 
dataset was created for the classification of each ROI 
as malignant/nonmalignant. 

We tested two approaches to tissue classification. 
We repeated the approach described by Bountris et 
al. [21] and [22] and compared it with our approach. 
The main difference between the two approaches was 
the different set of features that were extracted from 
the AFB images. The method of Bountris et al. [21] 
and [22] is based on texture features, whereas our 
approach is based on the difference in the fluoroscopic 
properties of malignant and nonmalignant tissue. We 
discriminated between the two types of tissue based on 
the red and green distributions in the histogram of the 
AFB image. We modeled the red and green channel 
histograms using a Gaussian fitting function and 
used the fitted parameters as features to discriminate 
between the two types of tissue.

Using the proposed approach, we obtained similar 
results to those reported by Bountris et al. [21] and 
[22]. Therefore, we believe that our implementation of 
their approach was accurate. The proposed approach 
yielded better accuracy than that reported by Bountris 
et al. [21] and [22]. They achieved an accuracy of 92.1 
%. With our approach, using the SVM algorithm with 
the dot kernel, we achieved an accuracy of 95.8 %. 
In addition, our approach is computationally more 
efficient, as the number of features used for the 
modeling is small (n = 7). In contrast, a large number of 
features (n = 725) is used in the approach of Bountris 
et al. [21] and [22]. The relatively small number of 
features enabled us to create a classification model 
based on a relatively small sample set. Furthermore, 
over-fitting did not occur due to the small number of 
features compared to the number of samples.

We should stress that we tested other schemes 
in the validation of the models’ performance (cross-
fold validation). We omitted one scheme (data 
not reported). We achieved similar and consistent 
performance results with these tests.
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The results of this study show that it is possible 
to partially automate the detection and classification 
of malignancy in suspicious areas during AFB 
examinations. However, the final interpretation of 
suspicious areas depends on the decision of an expert 
in the field. 
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