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Abstract: The paper addresses a broad readership in information technology, computer science and related areas, introducing reconfigurable comput-
ing, and its impact on classical computer science. It points out trends driven by the mind set of data-stream-based computing.

Racunanje na osnovi podatkovnih tokov: modeli in
arhitekturna sredstva

lzvle€ek: Prispevek naslavija bralce s podrodja informacijske tehnologije, raunalnistva in sorodnih podroéij z uvedbo pojma rekonfiguracijsko radunanje
in njegovega vpliva na klasié¢no radunalnistvo. Poudarja predvsem trende, katerih gonilo je racunanje na osnovi podatkovnih tokov.

1.  Introduction

An alternative general purpose platform. The dominance
of the instruction-stream-based procedural mind set in com-
puter science stems from the general purpose properties of
the ubiguitous von Neumann (vN) microprocessor. Because
of its RAM-based flexibility no costly application-specific sil-
icon is needed. Throughput is the only limitation by its se-
quential nature of operation (von Neumann bottleneck). Now
a second RAM-based computing paradigm is heading for
mainstream: morphware, electrically reprogrammable by
reconfiguration of its structure /1/. This is a challenge to
CS curricula innovators, also an occasion to reconsider crit-
icism of the von Neumann culture /2/ /3/ /4/ /5/.

CS to explore new horizons. From this starting point Com-
puting Sciences (CS) are slowly taking off to explore new
horizons: a dichotomy of two basic computing paradigms,
removing the blinders from the still dominant von-Neumann-
only mind set, which is still ignoring the impact of Reconfig-
urable Computing (RC). It has been predicted, that by the
year 2010 more than 90% of all programmers will imple-
ment applications for embedded systems, where a proce-
dural / structural double approach is a pre-requisite. Cur-
rently programmers do not yet have the background required
for this new labor market. This challenge can be met only by
the dichotomy of machine paradigms within CS.

The education gap can be bridged. Arich supply of tools
and research results is available to adapt fundamental
courses, lab courses and exercises /6/. There are a lot of
similarities between both branches, like between matter
and anti matter. But also some challenges are waiting. Our
basic curricula do not teach, that hardware and software
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are alternatives, and, how hardware / software partition-
ing is carried out. E. g. some urgently needed new direc-
tions of algorithmic cleverness are not yet taught. For in-
stance, how to implement a high performance application
for low power dissipation on 100 processors running at
200 MHz, rather than on one processor running at 20 GHz.
A curricular revision is overdue /7/.

2. Reconfigurable computing

In morphware application the lack of algorithmic clev-
erness is an urgent educational problem.

Advancing maturity is indicated by a growing consensus
on terminology (fig. 1). Occupied by other areas. the term
“dataflow machine” /8/ and the acronym DSP should not
be used. So this paper uses the term anti machine.
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Fig. 1:  Platform categories
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language category vN language (like ¢. g. C) anti machine language

state register program counter data counter(s)

sequencing read next ingtruction, read next data item,

operation goto (instruction address), goto (data address),

examples jump (fo instruction address), |jump (to data address),

escapes,
no parallel loops,

instruction loop, loop nesting |data loop, loop nesting,
instruction stream br anchmg, data stream bl‘anc}mlg,

escapes,
parallel loops,

sequencing primitives|control flow

data stream management

other primitives data manipulation none d—
address computation |memory cycle overhead overhead avoidable
instruction fetch memory cycle overhead no fetch at run time

Fig. 2: Traditional Software languages versus Flowware languages.

The dichotomy of fundamental models. More impor-
tant is the terminology from a global point of view (figure 1
a). Whereas classical CS deals with software (SW) run-
ning on hardware (HW), the new branch deals with flow-
ware (FW) /9/ running on HW, or, configware (CW) /10/
and FW “running” on morphware (MW) /11/,. This paper
gives introductions for a broad readership mainly with a
CS background..
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Fig. 3: llustration of basic machine paradigms: a) von
Neumann, b) data-streambased anti machine
with simple DPU, ¢} with rDPU and distributed
memory architecture, d) w. DPU array (DFA or
rDPA).

This paper does not deal with fine grain morphware (FPGAs,
using single bit wide CLBs) already being mainstream. Recon-
figurable Computing (RC) uses coarse grain morphware plat-
forms: rDPUs (reconfigurable data path units), which, similar to
AlUs, have major path widths, like 32 bits, for instance - or
even rDPAs (rDPU arrays). Important applications are derived
from the decay of “general purpose” vN computer architecture
/2/ /3/ /4/ and its performance limits /5/, creating a de-
mand for accelerators. For very high throughput requirements
RC is the drastically more powerful and more area-efficient and
energy-efficient programmable alternative /5/ / 12/ to FPGAs
(fig. 8), also providing a massive reduction of configuration mem-
ory and time needed for configuration /13/.

AM  anti machine (DS machine)

asM autosequencing Memory

rAM r econfigurable AM

CPU “central” processing unit: DPU and instruction
sequencer (vN)

CS Computing Sciences, Computer Science

CW  configware

DPU data path unit without sequencer

rDPU reconfigurable DPU

DPA data path array (DPU array)

rDPA reconfigurable DPA

DS data stream

DSM data stream processing machine

EE  Electrical Engineering

ESW embedded SW

FW  flowware

HW  hardware

[SP  instruction stream processor

MW  morphware

RC  reconfigurable computing

SW  software

vN von Neumann (machine paradigm)

Fig. 4: Some acronyms.
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Commercial architectures. In application areas like mul- ha [ d
timedia, wireless telecommunication, data communication WIr ed
and many others, the throughput requirements are grow-
ing faster than Moore’s law, along with growing flexibility
requirements due to unstable standards and multi-stand-
ard operation /14/. Currently the requirements can be met
from commercial sources only by rDPAs from a provider
like PACT /15/ /16/ /17/ /18/ /19/ (fig. 11).

Fig. 5:  Flowware.,

Domain-specific approach. A a currently viable solution
appears the domain-specific approach /13/, where a de-
sign space explorer may help to derive within a short time
an optimum (r)DPU and (NDPA architecture from a bench- b) ﬂexm
mark or domain-typical set of applications /20/ /21/.

Fig. 6:  Energy efficiency and performance vs. flexibility
incl. Reconfigurable Computing.
3. Data-stream-based computing

Traditional instruction-stream-based informatics is based serves scheduling the instructions for execution (fig. 9).
on computing in the time domain, where a program de- Classical basic structures and principles in computing are
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Fig. 7. CW/ SW Co-Compilation: a) CoDe-X partitioning Co-Compiler, b) DPSS details, c) anti machine target.
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von-Neumann-centric, which are instruction-stream-based,
where instruction sequencer and datapath are in the same
CPU (fig. 3 a). Due to reconfigurable a second basic mod-
el has emerged, so that we now have a dichotomy of mod-
els: instruction-stream-based computing vs. data-stream-
based computing. There is a lot of similarities, so that each
of the 2 models is a kind of mirror image of the other mod-
el - like with matter and antimatter.

expression tree

DPU library
data scheduler

expression tree

wrapper

[ instruction scheduler

o
)software P i—

hardware configware
routing &
placement

b)

flowware
Fig. 8 Compilation: a) von-Neumann-based, b) for anti
machines

Data counters replace the program counter.
Datastream-based computing, the counterpart of instruc-
tion-stream-based von Neumann computing (fig. 9), how-
ever, uses one or more data counters instead of a single
program counter (example in fig. 3 b). However, there are
some asymmetries, like predicted by Paul Dirac for anti-
matter. Figure 7 b shows the block diagram of data-stream
machine with 16 autosequencing memory banks. The ba-
sic model allows the machine to have 16 data counters,
where as a von Neumann machine cannot have more that
one program counter. The partitioning scheme of the data-
stream machine model assigns a sequencer (address gen-
erator) always to a memory bank, never to a DPU. This
modelling scheme goes fully conform with the area of
embedded distributed memory design and management
(see section on Embedded Memory).

The vN microprocessor is indispensable. But because
of its monopoly our CS graduates are no more profes-
sionals.

Flowware. Data streams have been popularized by systo-
lic arrays /22/ /23/ /24/ (fig. 5), the super systolic array
/25/, and more recently by projects like SCCC /26/,
SCORE /27/ /28/, ASPRC /29/, BEE /30/ /31/ /32/,
the KressArray Xplorer /20/ /21/ and many other projects.
In a similar way like instruction streams can be programmed
from SW sources, also data streams can be programmed,
but from FW sources. High level programming languages
for flowware /33/ and for software join the same language
principles and have a lot in common, no matter, wether
finally the program counter or a data counter is manipulat-
ed. Figure 8 illustrates the basic semantic principles of flow-
ware by 12 data streams associated with the 12 ports of a
DPA. The data schedule generated from a flowware source
determines, which data object has to enter or leave which
DPA port (or DPU port) at which time. This way flowware
can be used to program the 12 autosequencing memory
banks (asM) of the embedded distributed memory to gen-
erate the expected data streams.

3 instruction se (b.c) data stream processor
machine category @) ",l?mé:l.‘o') set -
processor (b) hardwired i (¢) morphware
machine paradigm von Neumara (vN) anti machine
reconfigurability support no no yes
st no structugal (st[lpell'
N instruction- “mstruction” fetch)
programming procedural
data scheduling
flowware &
AT SIS sofhwar wWware -
Program source software flowware configware
“instruction” fetch at run time at fabrication time before run time
execution at run time instruction schedule data schedule
operation spin nstruction flow data streamy(s)
) Ccru DPU, or, DPA DPU. or, tDPA
operation resources - -
hardwired hardwired reconfigurable
pavallelisin only by multiple by single machine or muitiple machines
machines
state register single program one or more data counter(s)
counter
. . oultside DPU or DPA: [ outside 1DPU or rDPA:
state register Jocated within CPU — -
vithin asM (aulosequencing memory banks)

Fig. 9: Asymmetry between machine and anti machine
paradigmes.

Two programming sources. Figure 7 a, Figure 8 a and
Figure 10 d illustrate, why a von Neumann machine needs
just software as the only programming source, since the
resource part being hardwired is not programmable. Fig-
ure 7 b, Figure 8 b and Figure 10 e show, why a reconfig-
urable data-stream-based machine needs two program-
ming sources: configware to program (to reconfigure} the
operational resources, and, flowware to schedule the data
streams. Figure 10 f shows why hardwired anti machines
need only a single program source: flowware only. Figure 7
¢ illustrates the structure of the compiler (DPSS /25/) gene-
rating the code of both sources from a high level program-
ming language source (here a C subset /25/): phase 1
performs routing and placement to configure the rDPA, and
phase 2 generates the flowware code to program the au-
tosequencing distributed memory, so that the data streams
fit to the routing and placement result from phase 1.

The same model for hardware and morphware. There
is in principle no difference, whether a data-stream-based
DPAs is hardwired or reconfigurable. The only important
difference is binding time of placement and routing: be-
fore fabrication, or, after fabrication (compare fig. 9 b).

Embedded Distributed Memory. Together with applica-
tion-specific embedded memory architecture synthesis
also flowware implementation (for memory management
strategies) is subject of performance and power optimiza-
tion /34/, also by loop transformations /35/. Good flow-
ware may be also obtained after optimized mapping an
application onto rDPA /20/, where both, data sequenc-
ers and the application can be mapped (physically, not con-
ceptually) onto the same rDPA /13/. '

Memory bandwidth. To solve the memory communica-
tion bandwidth problem the anti machine paradigm (da-
tastream-based computing) is much more efficient than
“von Neumann”. There are alternative embedded memory
implementation methodologies available /34/ /36/ /37/
/38/, either specialized memory architecture using syn-
thesized address generators (e. g. APT by IMEC /34/),
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or, flexible memory architectures using programmable gen-
eral purpose address generators /39/ /40/. Performance
and power efficiency are supported especially by sequenc-
ers, which do not need memory cycles even for complex
address computations /34/, having been used also for a
smart memory interface of an early anti machine architec-
ture /41/ /42/.

Data-Stream-based vs. concurrent Computing. Classi-
cal parallelism by concurrent computing has a number of
disadvantages over the parallelism by anti machines hav-
ing no von Neumann bottleneck, what is discussed else-
where /32/ /42/. Amdahls law explains just one of sever-
al reasons of inefficient resource utilization. vN-type proc-
essor chips are almost all memory, because the architec-
ture is wrong. Here the metric for what is a good solution
has been wrong all the time.

4. Configware compilers

Co-Compilation. Using coarse grain morphware (rDPAs)
as accelerators changes the scenario: implementations
onto both, host and accelerator(s) are RAM-based, which
allows turn-around times of minutes for the entire system,
instead of months for hardwired accelerators, and, sup-
porting a migration of accelerator implementation from I1C
vendor to customer, who usually does not have hardware
experts. This creates /43/ a demand for compilers ac-
cepting high level programming language (HLL) sources.
Partly dating back to the 70ies and 80ies know-how is avail-
able from the classical parallelizing compiler scene, like

Nick Tredennick
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fixed variable variable
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Fig. 10: Nick Tredennick’s digital system classification
scheme: a) hardwired, b) programmable in time,
¢) reconfigurable d) von-Neumann-like machine
paradigm e) reconfigurable anti machine
paradigm f) Broderson’s hardwired anti
machine. terminoclogy also from: /5/.
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software pipelining /43/, and, loop transformations /44/
/45/ /46/ /47 / (survey in /48/).

Mapping applications onto rDPAs. Classical systolic ar-
rays could be used only for applications with regular data
dependencies, because at that time linear projections or
algebraic methods had been used for mapping, which yield
only uniform arrays with strictly linear pipes. However, to-
day for DPA synthesis or mapping applications onto rDPAs
simulated annealing is used instead, to avoid the limitation
to regular data dependencies /5/ /25/. This (“super systo-
lic array”) generalization of the systolic array by Kress
/49/ also supports inhomogenous irregular arrays, sup-
porting also any wild shapes of pipes within rDPA pipe net-
works /20/ /21/.

Automatic partitioning. Until recently, not only for hard-
ware / software co-design, but also for software / config-
ware design, the compiler is a more or less isolated tool
used for the host only. But accelerators are still implement-
ed by CAD. Software / configware partitioning is still done
manually /27/ /50/, requiring massive hardware exper-
tise, particularly when hardware description language (HDL)
and similar sources are used. Compilation from HLL sourc-
es /25/ /26/ /43/ /51/ still stem from academic efforts,
as well as the first automatic cocompilation from HLL
sources including automatic software/configware partition-
ing /52/ (fig. 7 a) by identifying parallelizable loops /5/ /
35/, having been implemented for the data-streambased
MoM (Map-oriented Machine) /21/ /39/ /42/.

4.1 Machine paradigms and other general
models

Simplicity of the machine paradigm. Machine paradigms
are important models to alleviate CS education and for
understanding implementation flows or design flows. The
simplicity of the von Neumann paradigm helped a lot to
educate zillions of programmers. Figure 3 a shows the sim-
plicity of the block diagram, which has exactly one CPU
and exactly one RAM module (memory M). The instruction
sequencer and the DPU (datapath unit) are merged to be
encapsulated within the CPU (central processing unit),
whereas the RAM (memory M) does not include any se-
quencing mechanism. Other important attributes are the
RNI mode (read next instruction) and a branching mecha-
nism for sequential operation (computing in the time do-
main.) Figure S compares both machine paradigms. Since
compilers based on the “von Neumann" machine paradigm
do not support morphware we need the datastream-based
anti machine paradigm (sometimes called Xputer paradigm/
52/) for the rDPA side, (based on data sequencer /53/).

The anti machine has no von Neumann bottleneck.

The Anti Machine Paradigm for morphware /42/ /55/
and even for hardwired anti machines the data-streambased
anti machine paradigm is the better counterpart (fig. 3 b)
of the von Neumann paradigm (fig. 3 a). Instead of a CPU

the anti machine has only a DPU (datapath unit) without
any sequencer, or a rDPU (reconfigurable DPU) without a
sequencer. The anti machine modellocates data sequenc-
ers on the memory side (fig. 3 b). Anti machines do not
have an instruction sequencer. Unlike “von Neumann” the
anti machine has no von Neumann bottleneck by allowing
multiple data counters (fig. 3 ¢) to support multiple data
streams from/to multiple autosequencing memory banks
{fig. 3 c) aliowing multi-port operational resources much
more powerful than ALU or simple DPU: major DPAs or
rDPAs (fig. 3 d).

General purpose anti machine. The anti machine is as
universal as the von Neumann machine. The anti program-
ming language is as powerful as von-Neumann-based lan-
guages. But instead of a “control flow” sublanguage a “data
stream” sublanguage like MoPL /33/ recursively defines
data goto, data jumps, data loops, nested data loops, and
parallel data loops. For the anti machine paradigm all exe-
cution mechanisms are available to run such an anti lan-
guage. Its address generator methodology includes a varie-
ty of escape mechanisms needed to interrupt data streams
by decision data or tagged control words inserted in the
data streams /55/. Figure 9 compares both paradigms.

Architectural resources, conform with the discipline
of embedded distributed memory. The anti machine
model, where the DPUs are transport-triggered by arriving
data, goes conform with the new and rapidly expanding
R&D area of embedded distributed memories /34/ /37/
/37/, including the architectural ressources, like applica-
tion-specific or programmable data sequencers ( see /40/

/53/ /54/).

5. Turning PC into PS (Personal
Supercomputer)

Many application areas. There is a number of HPC ap-
plication areas, where the desired performance is hard to
reach by “traditional” high performance computing. For
instance, the gravitating n-body-problem is one of the grand
challenges of theoretical physics and astrophysics /56/.
Also hydrodynamic problems fall in the same category,
where often numerical modeling can be used only on the
fastest available specialized hardware. Analytical solutions
exist only for a limited number of highly simplified cases.
For interpretation of dense centers of galactic nuclei ob-
served with the Hubble Space Telescope to unite the hy-
drodynamic and the gravitational approach within one nu-
merical scheme. Until recently this limited the maximum
particle number to about a 105 even on largest supercom-
puters available. The situation improved by the GRAPE
special purpose computer /57/. To improve the flexibility
a hybrid solution has been introduced with AHAGRAPE,
which includes auxiliary morphware (FPGA-based proc-
essors) /58/. Another morphware usage example is cel-
lular wireless communication, where the performance re-
quirements grow faster than Moore's law /59/ /60/.
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6. Conclusions

The paper has given an introductory survey on reconfig-
urable iogic and reconfigurable computing, and its impact
on classical computer science. It also has pointed out fu-
ture trends driven by technology progress and innovations
in EDA. It has tried to highlight, that deep submicron al-
lows SoC implementation, and the silicon IP business re-
duces entry barriers for newcomers and turns infrastruc-
tures of existing players into liability. The paper tried to il-
lustrate, why many system-level integrated future products
without reconfigurability will not be competitive. Instead of
technology progress better architectures by reconfigura-
ble platform usage will be the key to keep up the current
innovation speed beyond the limits of silicon. The paper
advocates that it is time to revisit past results from mor-
phware-refated R&D to derive promising commercial solu-
tions, and, that curricular updates in basic CS education
are urgently needed. The exponentially increasing of CMOS
mask costs demands urgently adaptive and re-usable sili-
con area, which can be efficiently realized by integrating
(dynamically) reconfigurable hardware parts on different gran-
ularities into sSoCs with great potential for short time-to-
market (-> risk minimization), multipurpose/-standard fea-
tures incl. comfortable application updates within product
life cycles (-> volume increase: cost decrease). This results
in the fact that several major industry playersare currently
integrating reconfigurable cores/datapaths into their proc-
essor architectures and system-on-chip solutions.
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