
Informatica 33 (2009) 499–509 499

Systematic Construction of Software Architecture Supported by
Enhanced First-Class Connectors

Abdelkrim Amirat1,2 and Mourad Oussalah1

1LINA Laboratory LINA CNRS UMR 6241, University of Nantes, France
2University Center of Souk Ahras, Algeria
E-mail: {abdelkrim.amirat; mourad.oussalah}@univ-nantes.fr

Keywords: logical architecture, physical architecture, first class connector, connection manager, modelling software
architecture, C3 metamodel

Received: November 10, 2008

To provide hierarchical description from different software architectural viewpoints we need more than
one abstraction hierarchy and connection mechanisms to support the interactions among components.
Also, these mechanisms will support the refinement and traceability of architectural elements through
the different levels of each hierarchy. Current methods and tools provide poor support for the challenge
posed by developing system using hierarchical description. This paper describes an architecture-centric
approach allowing the user to describe the logical architecture view where a physical architecture view
is generated automatically for all application instances of the logical architecture.

Povzetek: Prispevek se ukvarja s povezovalnimi mehanizmi za podporo interakcijam med komponentami
na področju programskega inženirstva.

1 Introduction
Modeling and representation of software architectures
are the main phases of the development process of
complex software systems [36]. The representation of an
architecture is based on the concepts of component (loci
of computation), connector (loci of communication), and
configuration (arrangement of components and
connectors, and properties of that arrangement) in order
to describe the structure of the system at a higher level of
abstraction than objects or lines of code. This
representation provides several advantages over the life
cycle of a software [10].

Components have always been considered to be the
fundamental building blocks of software systems. The
ways the components of a system interact are
determinant for establishing the global system properties
that emerge from the way the individual components are
interconnected. Hence, component interactions have been
promoted to first class design entities as well, and
architectural connectors have emerged as a powerful tool
for supporting the design of these interactions [29, 32].

Although the use of connectors is widely accepted at
the conceptual level, their explicit representation at the
implementation level is not always left to be necessary.
For example, the Darwin [14] architecture description
language does not include connectors. However, we feel
that distinct conceptual entities should correspond to
distinct implementation entities, so that they can truly
become first-class and be manipulated as such. In fact, as
argued in [20], the current level of support that ADLs
provide for connector building is still far from the one
awarded to components. For instance, although a
considerable amount of work can be found on several

aspects of connectors [2, 20, 33, 35]. Further steps are
still necessary to achieve a systematic way of
constructing new connectors from existing ones. Yet, the
ability to manipulate connectors in a systematic and
controlled way is essential for promoting reuse and
incremental development, and to make it easier to
address complex interactions.

Certainly, having a representation of the software
architecture allows an easy exchange between the
architect and programmer. Also, during the phases of
maintenance and evolution, this representation helps to
locate defects and reduces the risk of improper assembly
of a new feature in the system. In addition, the distinction
which exists between components and connectors allows
a more explicit representation between the functional
aspects and these of communication and therefore, makes
the system easier to understand and to change. Finally,
architecture-based components are also useful to
facilitate the reuse of certain parts of the system
represented by configurations [1].

In contrast to the industrial world, which offers
components strongly linked to servers, systems or
models owners [30], the academic approach is interested
in formalizing the notion of software architecture (ADL).
The ADLs provide a high level of abstraction for the
specification and development of software systems.
Today, several ADLs are defined, to help in the
development of component-based systems, such as
Rapide [11], SADL [22], UniCon [34], C2 [37], Darwin
[12], MetaH [31], Wright [1], and ACME [9, 10] from
the “first generation” of ADLs and UML 2.0 [5] , AADL
[3], Koala [25], and xADL 2.0 [7] from the “second

500 Informatica 33 (2009) 499–509 A. Amirat et al.

generation” of ADLs. The classification of ADLs in
generations has been introduced by Medvidovic [19].

In this article, we take a step towards this goal by
proposing a metamodel for the description of software
architecture called C3 (three “C” for Component,
Connector, and Configuration). The specificities of this
metamodel are: First, proposing a new structure and new
types of connectors, second, definition and manipulation
of configurations as first classes entities and third,
description of architectures from two different views, a
model architecture view (logical architecture) created by
the architect and an application architecture view
(physical architecture instances of the logical
architecture) generated automatically which serves as
support to maintain the consistency and the evolution of
the application architectures.

After this introduction, the remainder of this article
is organized as follows: Section 2 provides the
motivations of our research. In section 3 presents the
concept of a logical architecture with the key elements of
the proposed metamodel. The physical architecture is
defined in section 4. The last section concludes this work
with a summary of our ongoing research.

2 Motivations
Our main motivation is to propose a metamodel to
maintain the consistency of an architecture using new
types of connectors with a richer semantics. Using these
connectors, systems are built like a Lego Blocks (Puzzle)
by assembling components and connectors, where each
element can be only placed in the right place in the
architecture puzzle. We find in most existing ADLs and
notation languages that:
 The definition and instantiation of connectors are

often merged in a single operation.
 The management of connectors does not take into

account the semantic composition hierarchies when
positioning and establishing links between
components and their composites.

 Few models allow reuse connectors (for example
through inheritance) and to define new connectors
by their reuse.

 There is no direct and automatic correspondence
between architectures (models) and applications built
following these architectures (instances).

In order to overcome these shortcomings we propose in
this paper, a metamodel (C3) for describing hierarchical
software architecture, based on the definition of two
types of architecture. A logical architecture defined by
the user and a physical architecture built by the system
and conforms to the logical architecture. The metamodel
will make its contribution towards the following
objectives:
O1: Provide a higher abstraction level for connectors in

order to make them more generic and more
reusable.

O2: Take into account the semantics of several types of
relationships. In our case; we explore the

association relationship between components, the
composition relationship among architectural
elements, and the propagation relationship to
describe software systems at different levels of
details.

O3: Promote the maintenance and the evolution of
architectures by the possibility of adding, deleting
and substitution of different elements in the
architecture.

O4: The principle of reuse should be widely exploited.
New components and connectors can be defined by
combining already existing elements through
inheritance and/or composition mechanisms.
Basically, we have defined a set of generic, reusable
connectors and extensible to support new structural
and behavioural relations among components.

O5: Explicit connectors must be preserved through a
declarative interface that hides the management
mechanism of the inside glue-protocol.

O6: Using the physical and the logical architecture, we
can separate the functional aspects of architectural
elements and the non-functional aspects related to
the management of their consistency.

3 Logical Architecture (LA)
Our approach is based on the description of software
architecture following two architectural views. The first
one is a logic view defined by the architect by
assembling the compatible elements available in the
library of element types and the second one is a physical
view constructed automatically by the system and serves
as a support for user applications built in accordance with
the logical architecture.

The large majority of ADLs consider components as
entities of first class. So, they make a distinction between
component-types and component-instances. However,
this is not the case with other concepts such as
connectors and configurations. In our metamodel we
consider each concept recognized by the C3 metamodel
as an architectural element of the first class citizen. So,
each architectural element may be positioned on one of
the three abstraction levels defined in the following
section. We believe that it is necessary to reify the core
architectural elements in order to be able to represent and
manipulate them and let them evolve easily.

3.1 Abstraction levels
In our approach, software architectures are described in
accordance to the first three levels of modelling defined
by the OMG [23, 24]. The application level (A0) which
represents the real word application (an instance of the
architecture), the architecture level (A1) which represents
the architecture model and meta-architecture level (A2)
which represents the meta-language for the description of
the architecture. The three abstraction levels are defined
as follows (on Figure 1).

SYSTEMATIC CONSTRUCTION OF SOFTWARE… Informatica 33 (2009) 499–509 501

3.1.1 Meta-architecture level (A2)
In this level we find the standard definition of any
architectural element proposed by a large set of ADLs to
describe software architectures. We consider the most
common elements namely components, connectors, and
configurations. Section 3.2 will summarize the
description of the core elements of the C3 metamodel.

3.1.2 Architecture level (A1)
This level is used to describe any architecture model
using one or more instances of architectural building
blocks defined at the meta-architecture level (A2). Figure
1 shows a client/server architecture configuration
(CSconfig) type which is defined using the following
three components types: client component type, server
component type and data base component type; and two
variants of RPC connector types: N1 between the client
type and the server one, and N2 between the server type
and the data base type.

3.1.3 Application level (A0)
At this level (implementation level) one or more
applications can be built according to the architecture
described at the above level (A1). Each architectural
element of the implementation level is an instance of an
element-type of the architecture model. For example we
can build from the previous client/server architecture the
application SCapp (Figure 1) which is an instance of the
CSconfig configuration assembled from C1 and C2

instances of the client component; DBOracle instance the
Data base component; S1 instance of the server
component; N11 and N12 instances of connector type N1

and finally N21 instance of connector type N2. This figure
shows only one application architecture (CSapp), more
application architectures could be instantiated.

We have presented in this section the concept
software architecture through its core concepts and its
various abstraction levels. We have focused on the

important concepts to address the key issue of connectors
in software architecture description.

3.2 Basic concepts of C3 metamodel

3.2.1 Architectural elements
In our metamodel described in Figure 2, an architectural
element may be a component, a connector or
architectural configuration1. A configuration represents a
graph of components and connectors. A component or a
connector is a composite when it is composed of other
internal architectural elements. A component or
connector is primitive when it is atomic (without internal
structure).

An architectural element may have several properties
as well as constraints on these properties, as it may have
one or more possible implementations. The interaction
points of each architectural element with its environment
are the interfaces. Each architectural element is defined
by its interfaces through which they publish its required
and provided services to and from its environment. Each
service may use one or more ports. We approach in the
following sections with more detail the most important
concepts of our C3 metamodel.

3.2.2 Component
A generally accepted view of a software component is
that it is a software unit with provided services and
required services. The provided services are operations
performed by the component. The required services are
the services needed by the component to produce the
provided services. The interface of a component consists
of the specifications of its provided and required
services. It should specify any dependencies between its
provided and required services. To specify these
dependencies precisely, it is necessary to match the
required services to the corresponding provided services.
Services are carried using ports. Thus, we can define a
generic interface of a component type as follows:

Component typeName (requiredInterf , provideInterf);

3.2.3 Connector
Connectors are architectural building blocks used to
model the interactions between components and rules
that govern these interactions. They correspond to lines
in box-line descriptions. Examples are pipes, procedure
call, method in-vocation, client-server protocol, and SQL
link between database and application. Unlike
components, connectors may not correspond to
compilation entities. However, the specifications of
connectors in an ADL may also contain rules to
implement a specific type of connectors. In general
connectors have been developed without regard to reuse
or extension. Current ADLs can be classified into three
different kinds: 1- ADLs without connectors, ADLs with

1

“Architectural configuration” will, at various times in this paper, be
referred to simply as “graph” or “topology”.

Legend: Required Port, Provided Port

Figure 1: Architecture abstraction levels.

C1

Client

Configuration

Component Connector…

Server

A2

DataBase

CSconfig

S1 DBOracle

CSapp
C2

Instance-Of

Instance-Of

…

N1 N2

N11
N21

N12

A1

A0

C3 Metamodel

502 Informatica 33 (2009) 499–509 A. Amirat et al.

predefined set of connectors, and ADLs with explicit
connector types.
 ADLs with implicit connectors. There are ADLs

that prefer the absence of connector because they
distort the compositional nature of software
architectures. Some ADLs, such as Darwin [13],
Leda [6], and Radipe [11] do not consider connectors
as first class citizens. However these ADLs make
difficult the reusability of components because they
have the coordination process tangled with the
computation inside them, and they are aware of the
coordination process that has to happen in order to
communicate with the rest. The notion of connector
emerges from the need to separate the interaction
from the computation in order to obtain more
reusable and modularized components and to
improve the level of abstraction of software
architecture description [18]. Mary Shaw [32]
presents the need for connectors due to the fact that
the specification of software systems with complex
coordination protocols is very difficult without the
notion of connector. Hence, connector provides not
only a high level of abstraction and modularity to
software architectures, but also an architectural view
of the system instead of the object-oriented view of
compositional approaches. So, it is important to
defend the idea of considering connectors as first-
order citizens of ADLs.

 ADLs with predefined set of connectors. UniCon
[33, 34] is a typical representative of ADLs
supporting a predefined set of built-in connector
types only. The semantics of built-in connector types
are defined as part of the language, and are intended
to correspond to the usual interaction primitives
supported by underlaying operating system or
programming language. A connector in the UniCon
language is specified by its protocol. A connector’s
protocol consists of the connector’s type, specific set
of properties, and a list of typed roles. Each role
serves as a point through which the connector is
connected to a component. UniCon currently
supports seven built-in connector types which
represent the basic classes of interactions among
components: Pipe, FileIO, Procedure Call, Remote
Procedure Call, Data Access, RT Scheduler, and PL
Bundler. These connectors cannot be instantiated nor
evolved. Composite connectors are composed only
from connectors.

 ADLs with explicit connector types. Most ADLs
provide connectors as first order citizens of the
language such as: ACME [10], Aesop [8], C2 [15,
16, 17], SADL [21], Wright [1], ArchWare’s π-ADL
[26, 27], xADL [7], AADL [3] etc. All of these
languages go a step forward with regard to the
previous kind of ADLs. They improve the
reusability of components and connectors by
separating computation from coordination.
In our approach we opt for the third category of

connectors (explicit connector types). So, in the C3
metamodel we present some explicit and generic types of

connectors that the user can specialize following her/his
needs in each application field. We will focus with
details on this concept in section 3.3.

3.2.4 Configuration
A configuration represents a graph of components

and connectors. Configuration specifies how components
are connected with connectors (Figure 3). This concept is
needed to determine if the components are well
connected, whether their interfaces agree, and so on. A
configuration is described by an interface which enables
the communication between: the configuration and its
external environment, and the configuration and its
internal components.

Configuration typeName (requiredInterf, provideInterf);

The following UML diagrams (Figure 2 and 3)
represent the main elements of C3 metamodel. For clarity
reason, these diagrams present a simplified version of our
metamodel. In the rest of this article we will only deal
with connectors with more detail as they represent the
mainstream of our research topic in this paper. In
addition, the relationship connector-configuration and
connector-component will be highlighted in the text.

Figure 2: Structure of an architectural element in C3.

Figure 3: Component, connector, and configuration in C3.

3.3 Connector in C3
A connector is mainly represented by an interface and a
glue specification [28]. Basically, the interface shows the
necessary information of the connector, including the
number of interaction points, service type that a
connector provides (communication, conversion,

ArchitecturalElement

+name

implementation

realised by

1

1..*

Constraints

1
0..*

Properties
1 0..*

composed of

0..*

1

Interface

1

1..*

Port Service

RequiredService ProvidedService

Use

RequiredPort ProvidedPort

ArchitecturalElement

Configuration

+name

Component

+name

Connector

+name1..*1..*

ECCCCDC

CCCDC ECC

SYSTEMATIC CONSTRUCTION OF SOFTWARE… Informatica 33 (2009) 499–509 503

coordination, facilitation), connection mode
(synchronous, asynchronous), transfer mode (parallel,
serial) etc. In C3 interaction points of an interface are
called Ports. A port is the interface of a connector
intended to be tied to a component interface (a
component’s port). In the context of the frame, a port is
either a provided port or a required port. A provided port
serves as entry point to a component interaction
represented by a connector type instance and it is
intended to be connected to the required port of a
component (or to the required port of another connector).
Similarly, a require port serves as the outlet point of a
component interaction represented by a connector type
instance and it is intended to be connected to the provide
port of a component (or to the provide role of another
connector). The number of ports within a connector
denotes the degree of a connector type. For example, in
client-server architecture a connector type representing
procedure call interaction between client and server
entities is a connector with degree two. More complex
interactions among three or more components are
typically represented by connector types of higher
degrees. Consequently, the interface is the visible part of
connector; hence it must contain enough information
regarding the service and the type of this connector. By
doing this, one can decide whether or not a given
connector suits its qualifications by examining its
interface only.

The glue specification describes the functionality
that is expected from a connector. It represents the
hidden part of a connector. The glue could be just a
simple protocol links ports or it could be a complex
protocol that does various operations including linking,
conversion of data format, transferring, adapting, etc. in
general the glue of a connector represents the connection
type of that connector. Connectors can also have an
internal architecture that includes computation and
information storage. For example a connector would
execute an algorithm for converting data from format A
to format B or an algorithm for compressing data before
it transmits them. Hence, the service provided by
connectors is defined by its glue; the services of a
connector could be either communication service,
conversion service, coordination service, or facilitation
service.

In case of composite connectors the sub-connectors
and sub-components of the composite connector must be
defined in the glue, as well as the binding among the sub-
connectors and sub-components.

The general signature form of the connector interface
is a follows:

Connector typeName (requiredInterf, provideInterf);

3.3.1 Connector structure
Our contribution at this level consists in enhancing the
structure of connectors by encapsulating the attachment
links (figure 4). So, the application builder will have to
spend no effort in connecting connectors with its

compatible components and/or configurations.
Consequently, the task of the developer consists only in
choosing from the library the suitable type of connectors
where its interfaces are compatible with the interfaces of
component/configuration types of which are expected to
be assembled.

Figure 4: Connector structure.

In order to illustrate the properties of C3 metamodel
and the associated connector definition, a case study is
going to be used throughout the paper. The case study
is a client-server configuration (CS-config) organized
around a client-server relationship. In this
configuration we have a client and a server. The server
component itself is defined by a configuration (S-
config) whose internal components are Coordinator
(Coor.), securityManager (SM) and dataBase (DB).
These elements are interconnected via connector
services that determine the interactions that can occur
between the server and client on one hand and between
the server and its internal elements on the other hand.
These connectors are represented in Figure 5 by solid-
lines.

Figure 5: Client–Server Architecture.

In Figure 6.a we describe the structure of the RPC
connector used to connect the client component (C) with
the server component (S). In this new structure the RPC
connector encapsulates attachments that represent links
between the client and server.

Figure 6.a: Connector structure in C3.

Connector

Interface Connection Glue

PortService Role

 Connector (RPC)

Glue
Server (S)Client (C)

Attachment
New structure
of a connector

Old structure of
a connector

Legend: Required Port Provided Port
 Required Role Provided Role

Link

 CS-Config.

 S-Config.

Client

DBSM Coor.

Server

504 Informatica 33 (2009) 499–509 A. Amirat et al.

Figure 6.b: Connector description in C3.

Figure 6.b represents the signature specification of
the connector RPC. Inside this connector type we have
the glue code which describes how the activities of the
client and server are coordinated. It must indicate that the
activities should be sequenced in a well defined order:
the customer asks for a service, the server processes the
request, the server provides the result and the customer
gets the result.

So, by encapsulating attachments inside connectors and
having well defined connector interfaces with previously
known element types to be connected by each connector
type components and/or configurations are assembled in
an easy and coherent way in the form of an architectural
puzzle (Lego Blocks) without any effort to describe links
among components and connectors or between
configurations and connectors. Consequently, this
approach accelerates the development of component-
based systems, improves their evolution, coherence,
maintainability and promotes component markets [4].

3.3.2. Connector taxonomy
In C3 we have defined three connector types as

illustrated in Figure 3: the connection connector type
(CC), the composition decomposition connector type
(CDC), and expansion compression connector type
(ECC). Each type has its own semantic and has the
following signature form:

Connector typeName (requiredInterf, providedInterf);

Where requiredInterf represents all required ports
and services and providedInterf represents all provided
ports and services of a connector. Obviously each
interface also contains services, but in the following
definitions we focus only on structural aspect of the
interface (ports). The functional aspect (services) will not
be addressed in this paper and therefore they will not be
specified in the descriptions that follow. Consider that
each service can use one or more ports of the same
interface. In the following we give the exact function of
each type of connector in C3 metamodel.

Connection connector (CC)

CC connector type is used to connect components and /
or configurations belonging to the same level of
decomposition (the same abstraction level) as illustrated
by Figure 7.a. The ports of this type of connector can be

“required” or “provided”. Thus, through these ports
elements can exchange services between them.

Connector CC ({Xi.requiredPort}, {Yj.providedPort})

where Xi , Yj {component, configuration},
 Xi , Yj Lk ; // the same hierarchical level (Lk),
 Xi.Level = Yj.Level, with
 i = 1, 2, .., M ; j = 1, 2, .., N, k = 1, 2, .., R.

Where (M+N) is the maximum number of elements
which can be linked by CC connector. Hence, CC may
have to (M+N) ports. The mapping between the inputs
and outputs is described by an exchange protocol called
glue defined inside of the connector. The various
possibilities of links that a connection connector can
have are depicted in Figure 7.a.

Figure 7.a: Possible links of CC Connector

Figure 7.b represents CC1 a connection connector
type used to link a client component with s-config
configuration of the previous example. This type
connector has two ports: portC1 in client side and portS1
in server side. Hence, the interface CC1 will be defined as
follows:

Connector CC1 (portC1, portS1);

Figure 7.b: Connector CC1 in client-server architecture

Composition / decomposition connector (CDC)

CDC connector type is used to realize a top-down
refinement (i.e. to link a configuration with its internal
elements) also we call this relationship a decomposition
model. Likewise CDC connector can be used to realize
bottom-up abstraction (i.e. to link a set of elements to
their container or configuration) also we call this
relationship a composition model. However, this type of
connectors can play two semantic roles with two
different glue protocols. The first one is the
decomposition process of a configuration and the second
one is composition process of a configuration.

CC

Configur ationComponent

from1
to2

to1

from3/to4 from4/to3

from2

CC1Client S-Config

portS1portC1

Legend: Component Connector
 Required Port Provided Port

Connector RPC (C.P1, S.P1) // Connector interface
{
 Proprieties = { List of properties };
 Constraints = { List of constraints };
 Services = { List of services };

 HierarchicalLevel = (C.Level = S.Level); //decomposition level
 Glue = {Roles ={{R1 , R2}; R1 = R2 }}; // simple case of a glue
 Attachments = { R1 to C.P1, R2 to S.P1 }; //attachments

}

SYSTEMATIC CONSTRUCTION OF SOFTWARE… Informatica 33 (2009) 499–509 505

 Decomposition of a configuration X to its internals

 Connector CDC(X.requiredPort, { Yi .providedPort});

 Composition of Yi elements to constitute a configuration X

 Connector CDC({Yi.requiredPort}, X.providedPort);

where X is a configuration,
 Y {component, configuration}, i =1,2,..,N ,

 X Lk and Yi Lk-j (i.e. X.Level > Yi.Level)
 Lk is the hierarchical level.

Thus, a CDC connector will have (N+1) ports, where
N is the number of internal elements in the corresponding
configuration. This type of connector has the following
interests: first it allows us to shape the genealogical tree
of the different elements deployed in an architecture,
second it enables a configuration to spread information to
all these internal elements without exception (to-down
propagation) and inversely (i.e. it allows any internal
element to send information to its configuration).
Therefore, when designing this type of connector we can
choose to define the glue corresponding to the
decomposition function or that corresponding to the
composition function. Also, we can define glue
corresponding to the two functions together in the same
connector type. Figure 8.a represents the possible links
that a CDC connector type may have in a given
architecture.

Figure 8.a: Possible links of CDC Connector

Figure 8.b represents CDC1 a decomposition
composition connector type used to link client-server
configuration (CS-config) defined at the hierarchical
level (L2) with its internals namely client component
(Client) and server configuration (s-config) defined at the
lower hierarchical level (L1). Consequently, the interface
of CDC1 connector type will be specified as follows:

Connector CDC1 (portCS2, portC2, portS2);

Where portC2, portS2, and portCS are respectively
used to connect CDC1 with the client component, the
server configuration, and client-server configuration (CS-
config).

Figure 8.b: Possible links of CDC1 connector

Expansion/compression connector (ECC)

The ECC is used to establish a service link between
a configuration and its internal elements. Also, ECC can
be used as an expansion operator of services to several
sub-services and it can be used in reverse as a
compression operator of set of services to a global
service. The CDC may have an interface for expansion
and another for compression. So, these interfaces are
defined as follows:

 Expansion role

Connector ECC (X.requiredPort , { Yi.providedPort }
) ;

 Compression role

Connector ECC ({ Yi.requiredPort } , X.providedPort
) ;

where X is a configuration,
 Y {component, configuration},

 i =1,2,..,N, and N ≤ number of internal elements.
 X Lk et Yi Lk-1 ; (i.e. X.Level > Yi.Level)

 L is the hierarchical level.

ECC connector type can be implemented using either
single glue for one function (expansion or compression)
or using two separate glues for expansion and
compression functions. This will depend on the design
decision.

Figure 9.a represents the various possibilities of
connections that an ECC connector type can have in a
given architecture. So, in this case the configuration
config0 contains two components (comp1 , comp2) and
two configurations (config1 , config2) but config0 have
only two service relationships with comp1 and config1

and no service relationship with comp2 and config2.

CDC

Component

Configuration1

to1

from2from1

Configuration2

to2

CS-Config

S-ConfigClient

L2

L1

portCS2

p
ortS2

portC2

Legend: Component Connector Configuration
 Required Port Provided Port

L

L

506 Informatica 33 (2009) 499–509 A. Amirat et al.

Figure 9.a: Possible links of ECC connector

Figure 9.b illustrates the connector type ECC1 which
allows exchange of information between the server
configuration (s-config) and the coordinator component
(Coor.). Thus, to achieve a bidirectional communication
between the server and coordinator, ECC1 must have the
following ports:

portS3 and portCo1 are used to ensure the expansion
function from the server to coordinator. The portCo2 and
portS4 are used to ensure compression function. The
interface of this ECC1 type will be as follows:

Connector ECC1 (portS3, portCo1, portS4, portCo2) ;

Figure 9.b: Possible links of ECC1 connector in
client-server architecture

4 Physical Architecture (PA)
The physical architecture is a memory image of the
application instance of the logical architecture. This
image is built in the form of a graph whose nodes are
instances of a connections manager. Each instance
created corresponds to a component or a configuration
instanced to construct the real application. Nodes of this
graph are connected by arcs. We have three types of arcs.
Each type of arc corresponds to specific type of
connector. The physical architecture is built to serve as
support for updating and evolution operations of the
application instance like addition, removal, and
replacement of elements in the application instance.

4.1 Connections Manager (CM)
The physical architecture is described using only two
levels of abstractions; model or type level and level
instance level as illustrated in Figure 9.a. In the type
level we have the connections manager type represented
by a class that encapsulates all different link of
information on the links that a component or a
configuration may have with its environment.

Figure 10.a: Abstraction levels in physical architecture

Each CM is identified by a name and has four
attributes as indicated in Figure 10.b.

Figure 10.b: Structure of a connections manager

• ElementName: represents the name of the
architectural element associated with this CM (i.e. the
name of the component or the configuration
corresponding);

• CC_Links: list of connection connector names
connected to the element associated with this CM;

• CDC_link: the name of the composition
decomposition connector connected to the element
associated with this CM;

• ECC_Link: the name of the expansion compression
connector connected to the element associated with this
CM;

4.2 Operations on Connections Manager
The possible operations on the connections manager are:

• Instantiation: the connection manager is
instantiated at the instance level (A0) of the physical
architecture. Whenever a configuration or component is
instantiated at the application level the associated CM is
automatically created in the physical architecture.

• Installation: each time a connector is installed at
the application level between a set of element instances,
so the attributes of the associated CMs are updated with
the necessary information about this connector instance.

connectorManager Name
{
 ElementName : string ;
 CDC_Link : string ;
 CC_Links : list ;
 ECC_Link : string ;
}

Instance level
(A0)

Type level
(A1)

Link

Instance-Of

CM2CM1

Connections Manager

ECC
1

S-Config

Coor.

portS3

portCo1
portS4

portCo2

Compression

Expansion

Expansion

Compression

Legend: Component Connector Configuration
 Required Port Provided Port

Li-1

config0

comp1 config1

from

comp2 config2

ECC

to

Li

SYSTEMATIC CONSTRUCTION OF SOFTWARE… Informatica 33 (2009) 499–509 507

• Propagation: the mechanism of propagation is
used to update information about links needed between
CMs. These links are published by the interface of the
connector installed at the application level.

The physical architecture corresponding to the
application instance of client-server architecture is
illustrated in Figure 11. In this application we assume
having two clients connected to a single server.

Figure 11: Physical architecture of client-server
application .

Once the application is built by the user, the
corresponding physical architecture is also built in
parallel. Thereafter if we need to intervene on the
application to maintain or evolve it we must locate the
concerned elements on the physical architecture using
graph searching routines and graph updating operations
like add (node), delete (node) or replace (node).

Finally we can represent the logical architecture
(LA) and the physical architecture (PA) and their
relationship by an architecture model described in C3
metamodel. Thus, the LA and the PA are represented by
two components and the relationship between them by a
connection connector (Figure 12). Any action performed
at the LA level causes a sending a message to the PA
level. This message will be interpreted as an action to be
performed by the PA. Exchanged messages (services)
between these two types of architectures are:

 A component instantiation at the LA level causes
sending a message “CM_creation” from LA

interface (LI) to PA. When this message is received
by the PA interface (PI) a connection manager
instance will be created to represent this component
at the PA level.

 A connector instantiation at the LA level causes
sending a message “CM_connection” from LA to
PA. When this message is received by the PA a set
of links are created to link CM instances
corresponding to all components connected by this
connector instance.

 Any updating action at the LA level causes sending a
message “CM_update” from LI to PI. When this
message is received by the PA a set of updating
operations are performed to rearrange links among
the corresponding CMs.

5 Conclusion
In this article we have presented the core elements of

C3 metamodel and how to describe software architecture
using C3. The elements defined by C3 are assembled
through their interfaces to build software architectures.
So, we must ensure syntactic checks by checking the
compatibility of interfaces types of various elements
assembled in the architecture and are in interaction with
each other.

Mainly, our approach is defined by two types of
architectures. A logical architecture described by the
architect. And a physical architecture generated
automatically by the system. The logical architecture
uses architectural concepts most commonly accepted by
all ADLs namely components, connectors and
configurations.

We found interesting to give a new structure for
connectors in which attachments are encapsulated within
the definition of connectors. Hence, the interface
connector is now a set of services and ports. This new
structure allows us to assemble connectors only with
elements that are defined in its interface.

We have defined a set of generic, reusable
connectors and extensible to support new structural and
behavioural relations among components and we have
identified three types of connectors. Connection
Connectors (CC) which refer to the links among
components belonging to the same level of
decomposition. Composition / Decomposition
Connectors (CDC) which refer to the links between a
configuration and its internal components and
connectors. Expansion/Compression connectors (ECC)
which refer to the links used to realize any
transformation of information or data exchanged between
a configuration and its internal components.

Also, we have defined a physical architecture as a
graph whose nodes are connections managers associated
with architectural elements and arcs represent links that
correspond to the connectors. The physical architecture
reflects the application architecture which is an instance
of the logical architecture and serves as a support for
maintenance and evolution operations applied on
architecture of the application.

Legend: : CDC : ECC : CC

CM_CS

CMserverCMclient1

CM
coordinator

CM
securityManager

CM
dataBase

CMclient2

Legend: LI: logical interface, PI: physical interface

Figure 12: Architectures relationship.

Logical Architecture

A0 Level

A1 Level

A2 Level
ConnectionLI P

I

Physical Architecture

Instance Level

System Level

Global Architecture of C3 System

508 Informatica 33 (2009) 499–509 A. Amirat et al.

As extension for this work, we planned to define
more than one hierarchical view to describe component-
based architectures. Among those hierarchies we will use
a structural hierarchy to develop the structural aspects of
any architecture described according to C3 metamodel, a
behaviour hierarchy to make explicit functional aspects
of the system, a conceptual hierarchy to clarify the
relationships between different elements types developed
by the architects and stored in libraries, and
metamodeling hierarchy to define the core elements of
our C3 metamodel and locate its position in the pyramid
of abstraction levels defined by OMG’s standards.
Obviously, we will focus also on the relationship
between these hierarchies, and the different connection
mechanisms used to enable interactions between
elements from different hierarchy views.

References
[1] Allen R.J. A Formal Approach to Software

Architecture. PhD thesis, School of Computer
Science, Carnegie Mellon University, 1997.

[2] Allen R., and Garlan, D. A Formal Basis for
Architectural Connection, ACM Transactions on
Software Engineering and Methodology. Volume 6,
issue 3, pp. 213-249, July 1997.

[3] Allen R., Vestal S., Lewis B., and Cornhill D.
Using an architecture description language for
quantitative analysis of real-time systems. In
Proceedings of the Third International Workshop
on Software and Performance, ACM Press, Rome,
Italy, pp. 203–210, 2002.

[4] Amirat A., Oussalah M., and Khammaci T.,
Towards an Approach for Building Reliable
Architectures. In Proceeding of IEEE IRI’07. Las
Vegas, Nevada, USA, pp. 467-472, August 2007.

[5] Booch G., Rumbaugh J., and Jacobson I. The
Unified Modeling Language User Guide. Second
Ed., Addison-Wesley Object Technology Series,
Addison-Wesley Professional Reading,
Massachusetts, 2005.

[6] Canal C., Pimentel E., and Troya J. M.
Specification and Refinement of Dynamic Software
Architectures. In Software Architecture, Kluwer
Academic Publishing, pp. 107–126, San Antonio,
Texas, February 1999.

[7] Dashofy E., Hoek A.v.d., Taylor R.N. A
comprehensive approach for the development of
Modular Software Architecture Description
Languages. ACM Transactions on Software
Engineering Methodology. Volume 14, issue 2,
pages 199–245, 2005.

[8] Garlan D., Allen R., and Ockerbloom J. Exploiting
Style in Architectural Design Environments. In
SIGSOFT’94: Foundations of Software
Engineering. pages 175–188, New Orleans,
December 1994.

[9] Garlan D., Monroe R.T., and Wile D. ACME: An
Architecture Description Interchange Language. In
Proceedings of the CASCON ’97. IBM Center for

Advanced Studies, pages 169–183,Toronto,
Ontario, Canada, November, 1997.

[10] Garlan D., Monroe R.T., and Wile D. Acme:
Architectural Description Component-Based
Systems. Foundations of Component-Based
Systems. Cambridge University Press, pages 47-68,
2000.

[11] Luckham D.C. Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial
Ordering of Events. In Proceedings of the DIMACS
Partial Order Methods Workshop IV, Princeton
University, July, 1996.

[12] Magee J. N., Dulay N., Eisenbach S., and Kramer
J. Specifying Distributed Software Architectures In
Proceeding of the Fifth European Software
Engineering Conference (ESEC). Barcelona, 1995.

[13] Magee J., and Kramer J. Dynamic Structure in
Software Architectures. In Proceedings of ACM
SIGSOFT’96: Fourth Symposium on the
Foundations of Software Engineering (FSE4).
pages 3-14, San Francisco, CA, October 1996.

[14] Magee J., Kramer J., and Giannakopoulou D.
Behaviour analysis of software architectures. In
Software Architecture. Kluwer Academic
Publishers, pages 35–50, 1999.

[15] Medvidovic N., Oreizy P., Robbins J. E., and
Taylor R. N. Using Object-Oriented Typing to
Support Architectural Design in the C2 Style. In
ACM SIGSOFTˇS96: Fourth Symposium on the
Foundations of Software Engineering (FSE4),
pages 24–32, San Francisco, 1996.

[16] Medvidovic N., Rosenblum D. S., and Taylor R. N.
A Language and Environment for Architecture-
Based Software Development and Evolution. In
21st International Conference on Software
Engineering (ICSE’99). Los Angeles, May 1999.

[17] Medvidovic N. Architecture-Based Specification-
Time Software Evolution. PhD Thesis, University of
California, Irvine, 1999.

[18] Medvidovic N. and. Taylor R.N. A Classification
and Comparison Framework for Software
Architecture Description Languages. IEEE
Transactions on Software Engineering. volume 26,
issue 1, January 2000.

[19] Medvidovic N., Dashofy E., and Taylor R.N.,
Moving Architectural Description from Under the
Technology Lamppost. Information and Software
Technology, volume 49, issue 1, pages 12-31.2007.

[20] Mehta N., Medvidovic N., and Phadke S. Towards
a taxonomy of software connectors. In Proceedings
of the 22nd International Conference on Software
Engineering. ACM, New York, pp. 178–187, 2000.

[21] Moriconi M., Qian X., and Riemenschneider R. A.
Correct Architecture Refinement. IEEE
Transactions on Software Engineering. Volume 21,
issue 4, pp. 356 – 372, April 1995.

[22] Moriconi M., Riemenschneider R.A., Introduction
to SADL 1.0, A Language for Specifying Software
Architecture Hierarchies. Report SRI-CSL-97-01,
1997.

SYSTEMATIC CONSTRUCTION OF SOFTWARE… Informatica 33 (2009) 499–509 509

[23] OMG: Unified Modeling Language Infrastructure.
from http://www.omg.org/docs/ formal/07-02-
06.pdf, 2007.

[24] OMG: Unified Modeling Superstructure. from
http://www.omg.org/docs/ptc/06-04-02.pdf, 2006.

[25] Ommering R.V., Linden F.V.D., Kramer J., and
Magee J. The Koala Component Model for
Consumer Electronics Software. IEEE Computer.
Volume 33, issue 3, pp. 78–85, 2000.

[26] Oquendo F. π-ADL: An Architecture Description
Language based on the Higher-Order Typed π-
Calculus for Specifying Dynamic and Mobile
Software Architectures. ACM Software Engineering
Notes. Volume 29, issue 3, May 2004.

[27] Oquendo F., Warboys B., Morrison R., Dindeleux
R., Gallo F., Garavel H., and Occhipinti C.
ArchWARE: Architecting Evolvable Software. In
Software Achitecture (EWSA 2004). Volume 3047
of Lecture Notes in Computer Science, pp. 257–
271, St Andrews, 2004.

[28] Oussalah M., Smeda A., and Khammaci T. An
Explicit Definition of Connectors for Component-
Based Software Architecture. In Proceedings of the
11th IEEE Conference on Engineering of Computer
Based Systems (ECBS 2004). Brno, Czech
Republic, May 24-27, 2004.

[29] Perry D.E. and Wolf A. Foundations for the Study
of Software Architectures. ACM SIGSOFT Software
Engineering Notes. Volume 17, issue 4, pp. 40–52,
1992.

[30] Pinto M., Fluentes L., and Troya M. A Dynamic
Component and Aspect-Oriented Platform. The
Computer Journal. Volume 48, issue 4, pp. 401-
420, 2005.

[31] Binns P., Englehart M., Jackson M., and Vestal S.
Domain-specific software architectures for
guidance, navigation and control. International
Journal of Software Engineering and Knowledge
Engineering. Volume 6, issue 2, pp. 201–227, 1996.

[32] Shaw M. Procedure Calls Are the Assembly
Language of System Interconnection: Connectors
Deserve First-Class Status. Lecture Notes in
Computer Science. Volume 1078, pp. 17–32, 1993.

[33] Shaw M., DeLine R., Klein D.V., Ross T. L.,
Young D. M., and Zalesnik G. Abstractions for
Software Architecture and Tools to Support Them.
IEEE Transactions on Software Engineering.
volume 21, issue 4, pp. 314–335, April 1995.

[34] Shaw M., DeLine R., Zelesnik G., Abstractions and
Implementations for Architectural Connections.
Proceedings of the 3rd International Conference on
Configurable Distributed Systems. May 1996.

[35] Spitznagel B. and Garlan D., A compositional
approach for constructing connectors. In The
Working IEEE/IFIP Conference on Software
Architecture (WICSA’01). Royal Netherlands
Academy of Arts and Sciences Amsterdam,
Netherlands. 2001.

[36] Szyperski C. Component Software: Beyond Object-
Oriented Programming”. 2nd Edition, Addison-
Wesley, January 2002.

[37] Taylor R. N., Medvidovic N., Anderson K. M.,
Whitehead JR., Robbins J. E., Nies K. A., Oreizy
P., and Dubrow D. L. A component and message-
based architectural style for GUI software. IEEE
Transaction on Software Engineering. Volume 22,
issue 6, pp 390–406, June, 1996.

