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To provide hierarchical description from different software architectural viewpoints we need more than 
one abstraction hierarchy and connection mechanisms to support the interactions among components. 
Also, these mechanisms will support the refinement   and traceability of architectural elements through 
the different levels of each hierarchy. Current methods and tools provide poor support for the challenge 
posed by developing system using hierarchical description. This paper describes an architecture-centric 
approach allowing the user to describe the logical architecture view where a physical architecture view 
is generated automatically for all application instances of the logical architecture.

Povzetek: Prispevek se ukvarja s povezovalnimi mehanizmi za podporo interakcijam med komponentami 
na področju programskega inženirstva.

1 Introduction
Modeling and representation of software architectures 
are the main phases of the development process of 
complex software systems [36]. The representation of an 
architecture is based on the concepts of component (loci 
of computation), connector (loci of communication), and 
configuration (arrangement of components and 
connectors, and properties of that arrangement) in order 
to describe the structure of the system at a higher level of 
abstraction than objects or lines of code. This 
representation provides several advantages over the life 
cycle of a software [10]. 

Components have always been considered to be the 
fundamental building blocks of software systems. The 
ways the components of a system interact are 
determinant for establishing the global system properties 
that emerge from the way the individual components are 
interconnected. Hence, component interactions have been 
promoted to first class design entities as well, and 
architectural connectors have emerged as a powerful tool 
for supporting the design of these interactions [29, 32].

Although the use of connectors is widely accepted at 
the conceptual level, their explicit representation at the 
implementation level is not always left to be necessary. 
For example, the Darwin [14] architecture description 
language does not include connectors. However, we feel 
that distinct conceptual entities should correspond to 
distinct implementation entities, so that they can truly 
become first-class and be manipulated as such. In fact, as 
argued in [20], the current level of support that ADLs 
provide for connector building is still far from the one 
awarded to components. For instance, although a 
considerable amount of work can be found on several 

aspects of connectors [2, 20, 33, 35]. Further steps are 
still necessary to achieve a systematic way of 
constructing new connectors from existing ones. Yet, the 
ability to manipulate connectors in a systematic and 
controlled way is essential for promoting reuse and 
incremental development, and to make it easier to 
address complex interactions.

Certainly, having a representation of the software 
architecture allows an easy exchange between the 
architect and programmer. Also, during the phases of 
maintenance and evolution, this representation helps to 
locate defects and reduces the risk of improper assembly 
of a new feature in the system. In addition, the distinction 
which exists between components and connectors allows 
a more explicit representation between the functional 
aspects and these of communication and therefore, makes 
the system easier to understand and to change. Finally, 
architecture-based components are also useful to 
facilitate the reuse of certain parts of the system 
represented by configurations [1].

In contrast to the industrial world, which offers 
components strongly linked to servers, systems or 
models owners [30], the academic approach is interested 
in formalizing the notion of software architecture (ADL). 
The ADLs provide a high level of abstraction for the 
specification and development of software systems. 
Today, several ADLs are defined, to help in the 
development of component-based systems, such as 
Rapide [11], SADL [22], UniCon [34], C2 [37], Darwin 
[12], MetaH [31], Wright [1], and ACME [9, 10] from 
the “first generation” of ADLs and UML 2.0 [5] , AADL 
[3], Koala [25], and xADL 2.0 [7] from the “second 
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generation” of ADLs. The classification of ADLs in 
generations has been introduced by Medvidovic [19].

In this article, we take a step towards this goal by 
proposing a metamodel for the description of software 
architecture called C3 (three “C” for Component, 
Connector, and Configuration). The specificities of this 
metamodel are: First, proposing a new structure and new 
types of connectors, second, definition and manipulation 
of configurations as first classes entities and third, 
description of architectures from two different views, a
model architecture view (logical architecture) created by 
the architect and an application architecture view 
(physical architecture instances of the logical 
architecture) generated automatically which serves as 
support to maintain the consistency and the evolution of 
the application architectures.

After this introduction, the remainder of this article 
is organized as follows: Section 2 provides the 
motivations of our research. In section 3 presents the 
concept of a logical architecture with the key elements of 
the proposed metamodel. The physical architecture is 
defined in section 4. The last section concludes this work 
with a summary of our ongoing research. 

2 Motivations
Our main motivation is to propose a metamodel to 
maintain the consistency of an architecture using new 
types of connectors with a richer semantics. Using these 
connectors, systems are built like a Lego Blocks (Puzzle) 
by assembling components and connectors, where each 
element can be only placed in the right place in the 
architecture puzzle. We find in most existing ADLs and 
notation languages that: 
 The definition and instantiation of connectors are 

often merged in a single operation.
 The management of connectors does not take into

account the semantic composition hierarchies when 
positioning and establishing links between 
components and their composites.

 Few models allow reuse connectors (for example 
through inheritance) and to define new connectors 
by their reuse.

 There is no direct and automatic correspondence 
between architectures (models) and applications built 
following these architectures (instances).

In order to overcome these shortcomings we propose in 
this paper, a metamodel (C3) for describing hierarchical 
software architecture, based on the definition of two 
types of architecture. A logical architecture defined by 
the user and a physical architecture built by the system 
and conforms to the logical architecture. The metamodel 
will make its contribution towards the following 
objectives:
O1: Provide a higher abstraction level for connectors in 

order to make them more generic and more 
reusable.

O2: Take into account the semantics of several types of 
relationships. In our case; we explore the 

association relationship between components, the 
composition relationship among architectural 
elements, and the propagation relationship to 
describe software systems at different levels of 
details.

O3: Promote the maintenance and the evolution of 
architectures by the possibility of adding, deleting
and substitution of different elements in the 
architecture.

O4: The principle of reuse should be widely exploited. 
New components and connectors can be defined by 
combining already existing elements through 
inheritance and/or composition mechanisms.
Basically, we have defined a set of generic, reusable 
connectors and extensible to support new structural 
and behavioural relations among components.

O5: Explicit connectors must be preserved through a 
declarative interface that hides the management 
mechanism of the inside glue-protocol. 

O6: Using the physical and the logical architecture, we 
can separate the functional aspects of architectural 
elements and the non-functional aspects related to 
the management of their consistency.

3 Logical Architecture (LA)
Our approach is based on the description of software 
architecture following two architectural views. The first 
one is a logic view defined by the architect by
assembling the compatible elements available in the 
library of element types and the second one is a physical 
view constructed automatically by the system and serves 
as a support for user applications built in accordance with 
the logical architecture.

The large majority of ADLs consider components as 
entities of first class. So, they make a distinction between 
component-types and component-instances. However, 
this is not the case with other concepts such as 
connectors and configurations. In our metamodel we 
consider each concept recognized by the C3 metamodel 
as an architectural element of the first class citizen. So, 
each architectural element may be positioned on one of 
the three abstraction levels defined in the following 
section. We believe that it is necessary to reify the core 
architectural elements in order to be able to represent and 
manipulate them and let them evolve easily.

3.1 Abstraction levels 
In our approach, software architectures are described in 
accordance to the first three levels of modelling defined 
by the OMG [23, 24]. The application level (A0) which 
represents the real word application (an instance of the 
architecture), the architecture level (A1) which represents 
the architecture model and meta-architecture level (A2) 
which represents the meta-language for the description of 
the architecture. The three abstraction levels are defined 
as follows (on Figure 1).
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3.1.1 Meta-architecture level (A2)
In this level we find the standard definition of any 
architectural element proposed by a large set of ADLs to 
describe software architectures. We consider the most 
common elements namely components, connectors, and 
configurations. Section 3.2 will summarize the 
description of the core elements of the C3 metamodel.

3.1.2 Architecture level (A1)
This level is used to describe any architecture model 
using one or more instances of architectural building 
blocks defined at the meta-architecture level (A2). Figure
1 shows a client/server architecture configuration 
(CSconfig) type which is defined using the following 
three components types: client component type, server
component type and data base component type; and two
variants of RPC connector types: N1 between the client 
type and the server one, and N2 between the server type 
and the data base type.

3.1.3 Application level (A0)
At this level (implementation level) one or more 
applications can be built according to the architecture 
described at the above level (A1). Each architectural 
element of the implementation level is an instance of an 
element-type of the architecture model. For example we 
can build from the previous client/server architecture the
application SCapp (Figure 1) which is an instance of the 
CSconfig configuration assembled from C1 and C2

instances of the client component; DBOracle instance the 
Data base component; S1 instance of the server 
component; N11 and N12 instances of connector type N1

and finally N21 instance of connector type N2. This figure 
shows only one application architecture (CSapp), more 
application architectures could be instantiated.

We have presented in this section the concept 
software architecture through its core concepts and its
various abstraction levels. We have focused on the 

important concepts to address the key issue of connectors 
in software architecture description.

3.2 Basic concepts of C3 metamodel

3.2.1 Architectural elements
In our metamodel described in Figure 2, an architectural 
element may be a component, a connector or 
architectural configuration1. A configuration represents a 
graph of components and connectors. A component or a 
connector is a composite when it is composed of other 
internal architectural elements. A component or 
connector is primitive when it is atomic (without internal 
structure).

An architectural element may have several properties 
as well as constraints on these properties, as it may have 
one or more possible implementations. The interaction 
points of each architectural element with its environment 
are the interfaces. Each architectural element is defined 
by its interfaces through which they publish its required 
and provided services to and from its environment. Each 
service may use one or more ports. We approach in the 
following sections with more detail the most important 
concepts of our C3 metamodel.

3.2.2 Component
A generally accepted view of a software component is 
that it is a software unit with provided services and 
required services. The provided services are operations 
performed by the component. The required services are 
the services needed by the component to produce the 
provided services. The interface of a component consists 
of the specifications of its provided and required 
services. It should specify any dependencies between its 
provided and required services. To specify these 
dependencies precisely, it is necessary to match the 
required services to the corresponding provided services. 
Services are carried using ports. Thus, we can define a 
generic interface of a component type as follows:

Component typeName ( requiredInterf , provideInterf);

3.2.3 Connector
Connectors are architectural building blocks used to 
model the interactions between components and rules 
that govern these interactions. They correspond to lines 
in box-line descriptions. Examples are pipes, procedure 
call, method in-vocation, client-server protocol, and SQL 
link between database and application. Unlike 
components, connectors may not correspond to 
compilation entities. However, the specifications of 
connectors in an ADL may also contain rules to 
implement a specific type of connectors. In general 
connectors have been developed without regard to reuse 
or extension. Current ADLs can be classified into three 
different kinds: 1- ADLs without connectors, ADLs with 

                                                          
1

“Architectural configuration” will, at various times in this paper, be 
referred to simply as “graph” or “topology”.

Legend:      Required Port,   Provided Port

Figure 1: Architecture abstraction levels.
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predefined set of connectors, and ADLs with explicit 
connector types. 
 ADLs with implicit connectors. There are ADLs 

that prefer the absence of connector because they 
distort the compositional nature of software 
architectures. Some ADLs, such as Darwin [13], 
Leda [6], and Radipe [11] do not consider connectors 
as first class citizens. However these ADLs make 
difficult the reusability of components because they 
have the coordination process tangled with the 
computation inside them, and they are aware of the 
coordination process that has to happen in order to 
communicate with the rest. The notion of connector 
emerges from the need to separate the interaction 
from the computation in order to obtain more 
reusable and modularized components and to 
improve the level of abstraction of software 
architecture description [18]. Mary Shaw [32] 
presents the need for connectors due to the fact that 
the specification of software systems with complex 
coordination protocols is very difficult without the 
notion of connector. Hence, connector provides not 
only a high level of abstraction and modularity to 
software architectures, but also an architectural view 
of the system instead of the object-oriented view of 
compositional approaches. So, it is important to 
defend the idea of considering connectors as first-
order citizens of ADLs. 

 ADLs with predefined set of connectors. UniCon 
[33, 34] is a typical representative of ADLs 
supporting a predefined set of built-in connector 
types only. The semantics of built-in connector types 
are defined as part of the language, and are intended 
to correspond to the usual interaction primitives 
supported by underlaying operating system or 
programming language. A connector in the UniCon 
language is specified by its protocol. A connector’s 
protocol consists of the connector’s type, specific set 
of properties, and a list of typed roles. Each role 
serves as a point through which the connector is 
connected to a component. UniCon currently 
supports seven built-in connector types which 
represent the basic classes of interactions among 
components: Pipe, FileIO, Procedure Call, Remote 
Procedure Call, Data Access, RT Scheduler, and PL 
Bundler. These connectors cannot be instantiated nor 
evolved. Composite connectors are composed only 
from connectors.

 ADLs with explicit connector types. Most ADLs 
provide connectors as first order citizens of the 
language such as: ACME [10], Aesop [8], C2 [15, 
16, 17], SADL [21], Wright [1], ArchWare’s π-ADL 
[26, 27], xADL [7], AADL [3] etc. All of these 
languages go a step forward with regard to the 
previous kind of ADLs. They improve the 
reusability of components and connectors by 
separating computation from coordination. 
In our approach we opt for the third category of 

connectors (explicit connector types). So, in the C3 
metamodel we present some explicit and generic types of

connectors that the user can specialize following her/his 
needs in each application field. We will focus with
details on this concept in section 3.3.

3.2.4 Configuration
A configuration represents a graph of components 

and connectors. Configuration specifies how components 
are connected with connectors (Figure 3). This concept is 
needed to determine if the components are well 
connected, whether their interfaces agree, and so on. A 
configuration is described by an interface which enables 
the communication between: the configuration and its 
external environment, and the configuration and its 
internal components.

Configuration typeName (requiredInterf, provideInterf);

The following UML diagrams (Figure 2 and 3) 
represent the main elements of C3 metamodel. For clarity 
reason, these diagrams present a simplified version of our 
metamodel. In the rest of this article we will only deal 
with connectors with more detail as they represent the 
mainstream of our research topic in this paper. In 
addition, the relationship connector-configuration and 
connector-component will be highlighted in the text.

Figure 2:  Structure of an architectural element in C3.

Figure 3: Component, connector, and configuration in C3.

3.3 Connector in C3
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coordination, facilitation), connection mode 
(synchronous, asynchronous), transfer mode (parallel, 
serial) etc. In C3 interaction points of an interface are 
called Ports. A port is the interface of a connector 
intended to be tied to a component interface (a 
component’s port). In the context of the frame, a port is 
either a provided port or a required port. A provided port
serves as entry point to a component interaction 
represented by a connector type instance and it is 
intended to be connected to the required port of a 
component (or to the required port of another connector). 
Similarly, a require port serves as the outlet point of a 
component interaction represented by a connector type 
instance and it is intended to be connected to the provide 
port of a component (or to the provide role of another 
connector). The number of ports within a connector 
denotes the degree of a connector type. For example, in 
client-server architecture a connector type representing 
procedure call interaction between client and server 
entities is a connector with degree two. More complex 
interactions among three or more components are 
typically represented by connector types of higher 
degrees. Consequently, the interface is the visible part of 
connector; hence it must contain enough information 
regarding the service and the type of this connector. By 
doing this, one can decide whether or not a given 
connector suits its qualifications by examining its 
interface only.

The glue specification describes the functionality 
that is expected from a connector. It represents the 
hidden part of a connector. The glue could be just a 
simple protocol links ports or it could be a complex 
protocol that does various operations including linking, 
conversion of data format, transferring, adapting, etc. in 
general the glue of a connector represents the connection 
type of that connector. Connectors can also have an 
internal architecture that includes computation and 
information storage. For example a connector would 
execute an algorithm for converting data from format A 
to format B or an algorithm for compressing data before 
it transmits them. Hence, the service provided by 
connectors is defined by its glue; the services of a 
connector could be either communication service, 
conversion service, coordination service, or facilitation 
service. 

In case of composite connectors the sub-connectors 
and sub-components of the composite connector must be 
defined in the glue, as well as the binding among the sub-
connectors and sub-components. 

The general signature form of the connector interface 
is a follows:

Connector typeName (requiredInterf, provideInterf);

3.3.1 Connector structure
Our contribution at this level consists in enhancing the 
structure of connectors by encapsulating the attachment 
links (figure 4). So, the application builder will have to 
spend no effort in connecting connectors with its 

compatible components and/or configurations. 
Consequently, the task of the developer consists only in 
choosing from the library the suitable type of connectors 
where its interfaces are compatible with the interfaces of 
component/configuration types of which are expected to 
be assembled. 

Figure 4: Connector structure.

In order to illustrate the properties of C3 metamodel 
and the associated connector definition, a case study is 
going to be used throughout the paper. The case study 
is a client-server configuration (CS-config) organized 
around a client-server relationship. In this 
configuration we have a client and a server. The server
component itself is defined by a configuration (S-
config) whose internal components are Coordinator 
(Coor.), securityManager (SM) and dataBase (DB). 
These elements are interconnected via connector 
services that determine the interactions that can occur 
between the server and client on one hand and between 
the server and its internal elements on the other hand. 
These connectors are represented in Figure 5 by solid-
lines.

Figure 5: Client–Server Architecture.

In Figure 6.a we describe the structure of the RPC 
connector used to connect the client component (C) with 
the server component (S). In this new structure the RPC 
connector encapsulates attachments that represent links 
between the client and server.

Figure 6.a:  Connector structure in C3.
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Figure 6.b:  Connector description in C3.

Figure 6.b represents the signature specification of 
the connector RPC. Inside this connector type we have 
the glue code which describes how the activities of the 
client and server are coordinated. It must indicate that the 
activities should be sequenced in a well defined order: 
the customer asks for a service, the server processes the 
request, the server provides the result and the customer 
gets the result. 

So, by encapsulating attachments inside connectors and 
having well defined connector interfaces with previously 
known element types to be connected by each connector 
type components and/or configurations are assembled in 
an easy and coherent way in the form of an architectural 
puzzle (Lego Blocks) without any effort to describe links 
among components and connectors or between 
configurations and connectors. Consequently, this 
approach accelerates the development of component-
based systems, improves their evolution, coherence, 
maintainability and promotes component markets [4].

3.3.2. Connector taxonomy
In C3 we have defined three connector types as 

illustrated in Figure 3: the connection connector type 
(CC), the composition decomposition connector type 
(CDC), and expansion compression connector type 
(ECC). Each type has its own semantic and has the 
following signature form:

Connector typeName (requiredInterf, providedInterf);

Where requiredInterf represents all required ports 
and services and providedInterf represents all provided 
ports and services of a connector. Obviously each 
interface also contains services, but in the following 
definitions we focus only on structural aspect of the 
interface (ports). The functional aspect (services) will not 
be addressed in this paper and therefore they will not be 
specified in the descriptions that follow. Consider that 
each service can use one or more ports of the same 
interface. In the following we give the exact function of 
each type of connector in C3 metamodel.

Connection connector (CC)

CC connector type is used to connect components and / 
or configurations belonging to the same level of 
decomposition (the same abstraction level) as illustrated 
by Figure 7.a. The ports of this type of connector can be 

“required” or “provided”. Thus, through these ports 
elements can exchange services between them.

Connector CC ( {Xi.requiredPort}, {Yj.providedPort} )

where  Xi , Yj   {component, configuration},
            Xi , Yj     Lk ;   //  the same hierarchical level (Lk),
            Xi.Level = Yj.Level,  with 
            i = 1, 2, .., M ;   j = 1, 2, .., N, k = 1, 2, .., R.

Where (M+N) is the maximum number of elements 
which can be linked by CC connector. Hence, CC may 
have to (M+N) ports. The mapping between the inputs 
and outputs is described by an exchange protocol called 
glue defined inside of the connector. The various 
possibilities of links that a connection connector can
have are depicted in Figure 7.a.

Figure 7.a:  Possible links of CC Connector

Figure 7.b represents CC1 a connection connector 
type used to link a client component with s-config
configuration of the previous example. This type 
connector has two ports: portC1 in client side and portS1
in server side. Hence, the interface CC1 will be defined as 
follows:

Connector CC1 (portC1, portS1);

Figure 7.b:  Connector CC1 in client-server architecture

Composition / decomposition connector (CDC) 

CDC connector type is used to realize a top-down 
refinement (i.e. to link a configuration with its internal 
elements) also we call this relationship a decomposition 
model.  Likewise CDC connector can be used to realize 
bottom-up abstraction (i.e. to link a set of elements to 
their container or configuration) also we call this 
relationship a composition model. However, this type of 
connectors can play two semantic roles with two 
different glue protocols. The first one is the 
decomposition process of a configuration and the second 
one is composition process of a configuration.
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Connector  RPC ( C.P1, S.P1  )     // Connector interface
{   
    Proprieties = { List of  properties };
    Constraints = { List of  constraints };  
   Services = { List of services };

   HierarchicalLevel = (C.Level = S.Level); //decomposition level
    Glue = {Roles ={{R1 , R2}; R1 = R2 }};  // simple case of a glue
    Attachments = { R1 to C.P1, R2 to S.P1 }; //attachments

}
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 Decomposition of a configuration X to its internals 

    Connector  CDC( X.requiredPort, { Yi .providedPort} );

 Composition of Yi elements to constitute a configuration X

    Connector  CDC( {Yi.requiredPort}, X.providedPort ); 

where   X is a configuration,
             Y  {component, configuration}, i =1,2,..,N ,

       X    Lk and Yi    Lk-j (i.e. X.Level > Yi.Level)
            Lk is the hierarchical level.

Thus, a CDC connector will have (N+1) ports, where
N is the number of internal elements in the corresponding 
configuration. This type of connector has the following 
interests: first it allows us to shape the genealogical tree 
of the different elements deployed in an architecture, 
second it enables a configuration to spread information to 
all these internal elements without exception (to-down 
propagation) and inversely (i.e. it allows any internal 
element to send information to its configuration). 
Therefore, when designing this type of connector we can 
choose to define the glue corresponding to the 
decomposition function or that corresponding to the 
composition function. Also, we can define glue 
corresponding to the two functions together in the same 
connector type. Figure 8.a represents the possible links 
that a CDC connector type may have in a given 
architecture.

Figure 8.a:  Possible links of CDC Connector

Figure 8.b represents CDC1 a decomposition 
composition connector type used to link client-server 
configuration (CS-config) defined at the hierarchical 
level (L2) with its internals namely client component
(Client) and server configuration (s-config) defined at the 
lower hierarchical level (L1). Consequently, the interface 
of CDC1 connector type will be specified as follows:

Connector CDC1 ( portCS2, portC2, portS2);

Where portC2, portS2, and portCS are respectively 
used to connect CDC1 with the client component, the 
server configuration, and client-server configuration (CS-
config). 

Figure 8.b:  Possible links of CDC1 connector

Expansion/compression connector (ECC)

The ECC is used to establish a service link between 
a configuration and its internal elements. Also, ECC can 
be used as an expansion operator of services to several 
sub-services and it can be used in reverse as a 
compression operator of set of services to a global 
service. The CDC may have an interface for expansion 
and another for compression. So, these interfaces are 
defined as follows:

 Expansion role

Connector  ECC ( X.requiredPort , { Yi.providedPort } 
) ; 

   

 Compression role

Connector  ECC ({ Yi.requiredPort } , X.providedPort  
) ; 

where   X is a configuration, 
             Y  {component, configuration}, 

      i =1,2,..,N,  and N ≤ number of internal elements.
        X    Lk et  Yi    Lk-1 ; (i.e. X.Level > Yi.Level)

            L is the hierarchical level.

ECC connector type can be implemented using either 
single glue for one function (expansion or compression) 
or using two separate glues for expansion and 
compression functions. This will depend on the design 
decision.

Figure 9.a represents the various possibilities of 
connections that an ECC connector type can have in a 
given architecture. So, in this case the configuration 
config0 contains two components (comp1 , comp2) and 
two configurations (config1 , config2) but config0 have 
only two service relationships with comp1 and config1

and no service relationship with comp2 and config2.
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Figure 9.a:  Possible links of ECC connector

Figure 9.b illustrates the connector type ECC1 which 
allows exchange of information between the server 
configuration (s-config) and the coordinator component 
(Coor.). Thus, to achieve a bidirectional communication
between the server and coordinator, ECC1 must have the 
following ports: 

portS3 and portCo1 are used to ensure the expansion 
function from the server to coordinator. The portCo2 and 
portS4 are used to ensure compression function. The 
interface of this ECC1 type will be as follows:

Connector ECC1 (portS3, portCo1, portS4, portCo2) ;

Figure 9.b:  Possible links of ECC1 connector in
client-server architecture

4 Physical Architecture (PA)
The physical architecture is a memory image of the 
application instance of the logical architecture. This 
image is built in the form of a graph whose nodes are 
instances of a connections manager. Each instance 
created corresponds to a component or a configuration 
instanced to construct the real application. Nodes of this 
graph are connected by arcs. We have three types of arcs. 
Each type of arc corresponds to specific type of 
connector. The physical architecture is built to serve as 
support for updating and evolution operations of the 
application instance like addition, removal, and 
replacement of elements in the application instance.

4.1 Connections Manager (CM)
The physical architecture is described using only two 
levels of abstractions; model or type level and level 
instance level as illustrated in Figure 9.a. In the type 
level we have the connections manager type represented 
by a class that encapsulates all different link of
information on the links that a component or a 
configuration may have with its environment.

Figure 10.a: Abstraction levels in physical architecture

Each CM is identified by a name and has four
attributes as indicated in Figure 10.b.

Figure 10.b: Structure of a connections manager

• ElementName: represents the name of the 
architectural element associated with this CM (i.e. the 
name of the component or the configuration 
corresponding);

• CC_Links: list of connection connector names 
connected to the element associated with this CM;

• CDC_link: the name of the composition
decomposition connector connected to the element 
associated with this CM;

• ECC_Link: the name of the expansion compression 
connector connected to the element associated with this 
CM;

4.2 Operations on Connections Manager 
The possible operations on the connections manager are:

• Instantiation: the connection manager is 
instantiated at the instance level (A0) of the physical 
architecture. Whenever a configuration or component is 
instantiated at the application level the associated CM is 
automatically created in the physical architecture. 

• Installation: each time a connector is installed at 
the application level between a set of element instances, 
so the attributes of the associated CMs are updated with 
the necessary information about this connector instance.

connectorManager  Name
{
       ElementName : string ;
       CDC_Link : string ;
       CC_Links : list ;
       ECC_Link : string ;
}
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• Propagation: the mechanism of propagation is 
used to update information about links needed between 
CMs. These links are published by the interface of the 
connector installed at the application level.

The physical architecture corresponding to the 
application instance of client-server architecture is 
illustrated in Figure 11. In this application we assume 
having two clients connected to a single server.

Figure 11: Physical architecture of client-server 
application .

Once the application is built by the user, the 
corresponding physical architecture is also built in 
parallel. Thereafter if we need to intervene on the 
application to maintain or evolve it we must locate the 
concerned elements on the physical architecture using 
graph searching routines and graph updating operations 
like add (node), delete (node) or replace (node).

Finally we can represent the logical architecture 
(LA) and the physical architecture (PA) and their 
relationship by an architecture model described in C3 
metamodel. Thus, the LA and the PA are represented by 
two components and the relationship between them by a 
connection connector (Figure 12). Any action performed 
at the LA level causes a sending a message to the PA 
level. This message will be interpreted as an action to be 
performed by the PA. Exchanged messages (services)
between these two types of architectures are:

 A component instantiation at the LA level causes 
sending a message “CM_creation” from LA 

interface (LI) to PA. When this message is received 
by the PA interface (PI) a connection manager 
instance will be created to represent this component 
at the PA level. 

 A connector instantiation at the LA level causes 
sending a message “CM_connection” from LA to 
PA. When this message is received by the PA a set 
of links are created to link CM instances 
corresponding to all components connected by this 
connector instance.

 Any updating action at the LA level causes sending a 
message “CM_update” from LI to PI. When this 
message is received by the PA a set of updating 
operations are performed to rearrange links among 
the corresponding CMs.

5 Conclusion
In this article we have presented the core elements of 

C3 metamodel and how to describe software architecture 
using C3. The elements defined by C3 are assembled 
through their interfaces to build software architectures.
So, we must ensure syntactic checks by checking the 
compatibility of interfaces types of various elements 
assembled in the architecture and are in interaction with 
each other.

Mainly, our approach is defined by two types of 
architectures. A logical architecture described by the 
architect. And a physical architecture generated 
automatically by the system. The logical architecture 
uses architectural concepts most commonly accepted by 
all ADLs namely components, connectors and 
configurations. 

We found interesting to give a new structure for 
connectors in which attachments are encapsulated within 
the definition of connectors. Hence, the interface 
connector is now a set of services and ports. This new 
structure allows us to assemble connectors only with 
elements that are defined in its interface.

We have defined a set of generic, reusable 
connectors and extensible to support new structural and 
behavioural relations among components and we have 
identified three types of connectors. Connection
Connectors (CC) which refer to the links among 
components belonging to the same level of 
decomposition. Composition / Decomposition 
Connectors (CDC) which refer to the links between a 
configuration and its internal components and 
connectors. Expansion/Compression connectors (ECC) 
which refer to the links used to realize any 
transformation of information or data exchanged between 
a configuration and its internal components. 

Also, we have defined a physical architecture as a 
graph whose nodes are connections managers associated 
with architectural elements and arcs represent links that 
correspond to the connectors. The physical architecture 
reflects the application architecture which is an instance 
of the logical architecture and serves as a support for 
maintenance and evolution operations applied on 
architecture of the application.
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As extension for this work, we planned to define 
more than one hierarchical view to describe component-
based architectures. Among those hierarchies we will use 
a structural hierarchy to develop the structural aspects of 
any architecture described according to C3 metamodel, a 
behaviour hierarchy to make explicit functional aspects
of the system, a conceptual hierarchy to clarify the 
relationships between different elements types developed 
by the architects and stored in libraries, and 
metamodeling hierarchy to define the core elements of 
our C3 metamodel and locate its position in the pyramid 
of abstraction levels defined by OMG’s standards. 
Obviously, we will focus also on the relationship 
between these hierarchies, and the different connection 
mechanisms used to enable interactions between 
elements from different hierarchy views.
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