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Abstract

In this paper, we first introduce a new product of finite graphs as a generalization of
the X-join of graphs. We then give necessary and sufficient conditions for a graph to be
isomorphic to a generalized X-join. As a main result, we give necessary and sufficient
conditions under which the full automorphism group of a generalized X-join is equal to the
generalized wreath product of the automorphism groups of its factors.
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1 Introduction
One of the main problems in the theory of graphs, known as the König problem, asks for a
concrete characterization of all automorphism groups of graphs. In particular, the problem
of computing a generating set of the automorphism group is equivalent to the graph isomor-
phism problem [9]. The automorphism groups of many graphs can be expressed in terms of
the automorphism groups of their subgraphs. For instance, in most cases the automorphism
groups of the graphs which are the lexicographic product of graphs are expressed in terms
of the automorphism groups of their factors. The lexicographic product of graphs is one of
the important products of graphs, defined by Harary in [7]. Sabidussi in [11] showed that
under some conditions the automorphism group of the lexicographic product of two graphs
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Γ and Γ′ can be expressed as the wreath product of the automorphism groups of Γ and Γ′.
An important generalization of the lexicographic product is the X-join. It was introduced
by Sabidussi as the graph formed from a given graph Γ = (V,R) by replacing every vertex
v of Γ by a graph Bv and joining the vertices of Bv with those of Bu whenever uv ∈ R
[11]. Note that the graphs Bv , v ∈ V , need not be mutually isomorphic. Hemminger in
[8] gave necessary and sufficient conditions for the automorphism group of the X-join of
graphs {Bv}v∈V to be the natural ones, i.e., those that are obtained by first permuting the
graphs Bv , v ∈ V , according to a permutation of subscripts by an automorphism of Γ
and then performing an arbitrary automorphism of each Bv . Note that Hemminger did not
determine the structure of the automorphism group of the X-join of {Bv}v∈V in terms of
automorphism groups of Bv , v ∈ V . It should be mentioned that the above results have
been generalized to directed color graphs in [3]. If for a color digraph C = (V,R) and a
collection of color digraphs {Dc | c ∈ V }, each vertex c of C is replaced by a copy of Dc

and all possible arcs of color k from Dc to Dc′ are included, if and only if there is an arc
of color k from c to c′ in C, we get the C-join of these color digraphs. The wreath product
of two color digraphs C and D is the C-join of {Dc | c ∈ V } where Dc

∼= D for every
c ∈ V . In [3], all automorphism groups of digraphs that can be written as a wreath product
have been determined.

In this paper we first give a generalization of the X-join of graphs (see Definition 2.1).
This generalization, as a new operation on finite graphs, is a natural generalization of the
X-join of graphs (a more algebraic way was considered by Weisfeiler [12, page 45] as
the wreath product of a family of stable graphs with another stable graph). Also this new
graph product generalizes the generalized wreath product of circulant digraph which de-
fined in [2] (see Remark 2.9). It is also closely related with the wedge product of association
schemes introduced and studied in [10] (see Remark 2.8). In Section 2 we give necessary
and sufficient conditions under which a graph is isomorphic to a generalized X-join (see
Theorem 2.4). But the main result of this paper deals with the connections between the au-
tomorphism group of a generalized X-join and the automorphism groups of its factors. For
computing the automorphism group of the generalized X-join of graphs, we need a general-
ization of the wreath product of permutation groups. Recently, such a generalization, called
the generalized wreath product, has been given in [1, 5]. We first show that under some
conditions the automorphism group of the generalized X-join of graphs contains the gen-
eralized wreath product of the automorphism groups of their factors (Theorem 4.1). As a
main result, we then give necessary and sufficient conditions under which the full automor-
phism group of the generalized X-join of graphs is equal to the generalized wreath product
of the automorphism groups of their factors (Theorem 4.2). In particular, we determine the
structure of the natural automorphism group of the X-join of graphs (Corollary 4.7).

Terminology and notation: Throughout this paper, by a graph Γ = (V,R) we mean
a finite undirected graph without multiple edges with the vertex set V = V (Γ) and the
edge set R = E(Γ). We denote the complement of Γ by Γ. If all pairs of vertices of
a subgraph Γ′ of Γ that are adjacent in Γ are also adjacent in Γ′, then Γ′ is an induced
subgraph. For X ⊆ V we write Γ[X] for the subgraph of Γ induced by X and we also
denote by Γ(X) the graph with vertices X and edge set E(Γ[X]) ∪ {(x, x) | x ∈ X}.
For two graphs Γ = (V,R) and Γ′ = (V ′, R′), by a graph homomorphism f : Γ → Γ′ we
mean a mapping f : V → V ′ such that (f(u), f(v)) ∈ R′ whenever (u, v) ∈ R. In the
case when f : V → V ′ is surjective, f : Γ → Γ′ is called a graph epimorphism. More-
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over, if f : V → V ′ is a bijection and f−1 : Γ′ → Γ is also a graph homomorphism, then
f : Γ → Γ′ is called a graph isomorphism. Two graphs Γ and Γ′ are called isomorphic if
there exists a graph isomorphism between Γ and Γ′. In this case we write Γ ≃ Γ′. When
Γ = Γ′ every graph isomorphism f : Γ → Γ is called a graph automorphism of Γ. The
set of all graph automorphisms of Γ is denoted by Aut(Γ) and is called the automorphism
group of Γ.

If Π is a partition of the vertices of a graph Γ, then the quotient graph Γ/Π is a graph
with vertex set Π, for which distinct classes X,X ′ ∈ Π are adjacent if some vertex in X is
adjacent to a vertex of X ′.

Let Γ = (V,R) be a graph. The X-join of a set of graphs {Bx = (Yx, Ex) | x ∈ V }
with Γ, denoted by Γ[Bx]x∈V , is a graph W = (Y,E) where Y =

⋃̇
x∈V Yx and

E = {(yx, y′x′) ∈ Yx × Yx′ | (x, x′) ∈ R, or else x = x′ and (yx, y
′
x) ∈ Ex}.

If B = (Y ′, E′) and Bx = B for every x ∈ V , we can identify
⋃̇
x∈V Yx with Y ′ × V and

then the X-join of {Bx = (Yx, Ex) | x ∈ V } is the lexicographic product of Γ and B and
is denoted by Γ ◦B.

We denote by Kn a complete graph with n vertices. For the graph theoretical terminol-
ogy and notation that are not defined here, we refer the reader to [6].

For a finite set V , we denote by Sym(V ) the group of all permutations of V . Every
subgroup of Sym(V ) is called a permutation group on V . For F ≤ Sym(V ) and ∆ ⊆ V ,
the setwise stabilizer of ∆ in F is F{∆} = {f ∈ F | ∆f = ∆} and the pointwise stabilizer
of ∆ in F is F(∆) = {f ∈ F | xf = x, ∀x ∈ ∆}. We say that two permutation groups
F ≤ Sym(V ) and F ′ ≤ Sym(V ′) are permutation isomorphic if there exist a bijection
λ : V → V ′ and a group isomorphism η : F → F ′ such that for every f ∈ F and v ∈ V
we have λ(vf ) = λ(v)η(f).

By a system of blocks Π for a permutation group F ≤ Sym(Ω) we mean

(1) Π is a partition of Ω;

(2) for every ∆ ∈ Π and every f ∈ F , ∆f ∩∆ = ∅ or ∆f = ∆.

If Π is a system of blocks for F and ∆ ∈ Π, by F∆ we mean the group induced by the
action of F{∆} on ∆. Then F∆/F(∆) ≤ Sym(∆) is a permutation group.

2 A generalization of the X-join of graphs
In this section we first introduce a new product of graphs, called the generalized X-join of
graphs. Then we give necessary and sufficient conditions under which a graph is isomor-
phic to a generalized X-join.

Definition 2.1. Let Γ = (V,R) be a graph and Π be a partition of V . Suppose that for every
X ∈ Π we are given a graph BX = (YX , EX) and a graph epimorphism πX : YX → X

from BX onto Γ(X). Put Y =
⋃̇
X∈ΠYX and π =

⋃̇
X∈ΠπX where for every y ∈ YX ,

π(y) := πX(y). We define a graph W with vertex set Y and edge set E such that (y, y′) ∈
E if and only if

(1) either (y, y′) ∈ EX , for some X ∈ Π;

(2) or (y, y′) ∈ π−1
X (x)× π−1

X′ (x′) where X ̸= X ′ and (x, x′) ∈ R.
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We call the graph W = (Y,E) the generalized X-join of Γ and {BX}X∈Π with respect to
π, and we denote it by Γ ◦π {BX}X∈Π. (See Figure 1.)

Figure 1: The generalized X-join of Γ and {BX}X∈Π.

In the following we show that the X-join of graphs is a special case of the generalized
X-join of graphs.

Example 2.2. Let Γ = (V,R) be a graph and Π be a partition of V such that for every
X ∈ Π, X = {x} for some x ∈ V . Suppose that {Bx = (Yx, Ex) | x ∈ V } is a
set of graphs. Define a graph epimorphism πx : Yx → X from Bx onto Γ(X) such that
πx(yx) = x for every yx ∈ Yx. Then the generalized X-join of Γ and {Bx}x∈Π with
respect to π =

⋃̇
x∈V πx is a graph with vertices Y =

⋃̇
x∈V Yx and the edge set E such

that (yx, y′x′) ∈ E if and only if

(1) either x = x′ and (yx, y
′
x) ∈ Ex;

(2) or x ̸= x′ and (x, x′) ∈ R.

One can see that in this case Γ ◦π {Bx}x∈V = Γ[Bx]x∈V , the X-join of graphs {Bx}x∈V .

Example 2.3. Let Γ = (V,R) be the graph in Figure 2. Consider the partition Π =
{X,X ′, X ′′} of V where X = {1, 2}, X ′ = {3, 4}, and X ′′ = {5, 6}. Suppose that
BX = (YX , EX), BX′ = (YX′ , EX′), and BX′′ = (YX′′ , EX′′) are the graphs in Figure 2
with vertices YX = {a, b, c}, YX′ = {d, e, f}, and YX′′ = {g, h, i, k}, respectively.

Now define the graph epimorphisms πX : BX → Γ(X), πX′ : BX′ → Γ(X ′), and
πX′′ : BX′′ → Γ(X ′′) as follows:{

πX(a) = πX(b) = 1

πX(c) = 2{
πX′(e) = πX′(d) = 3

πX′(f) = 4
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Figure 2: Graph Γ and set of graphs {BX}X∈Π.

{
πX′′(g) = πX′′(h) = 5

πX′′(i) = πX′′(k) = 6.

Then the generalized X-join of Γ and {BX , BX′ , BX′′} with respect to π is the graph
in Figure 3.
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Figure 3: Graph W = Γ ◦π {BX , BX′ , BX′′}.

Let Γ = (V,R) be a graph and let A,B ⊆ V . We say that A is externally related with
respect to B, if every vertex v ∈ B that is adjacent to at least one element in A is adjacent
to all vertices of A. Moreover, if B is also externally related with respect to A, we say that
A and B are externally related to each other.

Suppose that W = (Y,E) is the generalized X-join of Γ = (V,R) and {BX =
(YX , EX) | X ∈ Π} with respect to π. Then we can define two equivalence relations
E0 and E1 on Y as follows:

(u, v) ∈ E0 ⇔ u, v ∈ π−1
X (x), for some X ∈ Π and x ∈ X; (2.1)

(u, v) ∈ E1 ⇔ u, v ∈ YX , for some X ∈ Π. (2.2)

Clearly, E0 ⊆ E1. In the following we give a characterization of the generalized X-join of
graphs in terms of the equivalence relations E0 and E1.

Theorem 2.4. A graph W = (Y,E) is a generalized X-join of graphs if and only if there
exist two equivalence relations E0 and E1 on Y such that



6 Ars Math. Contemp. 24 (2024) #P2.06

(i) E0 ⊆ E1;

(ii) for every equivalence class P of E0 which is contained in a equivalence class Q of
E1, P is externally related with respect to every equivalence class of E0 which is not
in Q.

Proof. Suppose that W = (Y,E) is the generalized X-join of Γ and {BX}X∈Π with re-
spect to π. Then as we saw above, there are two equivalence relations E0 and E1 on Y
such that E0 ⊆ E1. Since for every x ∈ X and x′ ∈ X ′ where X ̸= X ′, π−1

X (x) and
π−1
X′ (x′) are externally related to each other, it follows that condition (ii) holds.

Now suppose that there exist two equivalence relations E0 and E1 on Y such that
conditions (i) and (ii) hold. Let Y/E0 and Y/E1 be the sets of the equivalence classes of
E0 and E1 on Y , respectively. Let Γ be the quotient graph W/E0. Moreover, for every
U ∈ Y/E1, let U0 be the equivalence classes of E0 which are contained in U and BU0 be
the subgraph of W induced by U . Since E0 ⊆ E1, {U0 | U ∈ Y/E1} gives a partition
Π on Y/E0. Then for every U ∈ Y/E1 we can define a graph epimorphism πU0

from the
graph BU0

onto Γ(U0). Suppose that W ′ is the generalized X-join of Γ and {BU0
}U0∈Π

with respect to π. Then V (W ′) = Y and it follows from condition (ii) that the set of edges
ofW andW ′ are the same. ThusW =W ′ and soW is a generalized X-join of graphs.

Remark 2.5. The following example shows that unlike the X-join of graphs, a graph can
be represented as a generalized X-join of graphs, but not a unique way. This means that if
W and W ′ are two isomorphic generalized X-join of graphs then it is not necessarily true
that the factors of W and W ′ are isomorphic.

Example 2.6. Consider the graph W = (Y,E) in Figure 4. If we consider two equiva-
lence relations E0 ⊆ E1 such that Y/E0 = {{a}, {b, c}, {d, e, f, g}, {h}} and Y/E1 =
{{a, b, c}, {d, e, f, g, h}}, then one can see that conditions (i) and (ii) of Theorem 2.4
hold. So it follows from Theorem 2.4 that W = Γ ◦π {BX , BX′} where the graphs Γ, BX
and BX′ are shown in Figure 5. On the other hand, consider the graphs Γ′, B′

X and B′
X′

that are shown in Figure 6. Set Π′ = {X = {1, 2, 3}, X ′ = {4, 5}} and define the graph
epimorphisms π′

X : B′
X → Γ′(X) by 

a −→ 1

b, c −→ 2

h −→ 3

and π′
X′ : B′

X′ → Γ′(X ′) by {
d, e −→ 4

f, g −→ 5
.

Then one can see that W is the generalized X-join Γ′ ◦π′ {B′
X , B

′
X′} with respect to π′.

The following lemma that gives a sufficient condition under which two generalized
X-join are isomorphic, is straightforward and therefore left to the reader.

Lemma 2.7. Let W = Γ ◦π {BX}X∈Π and W ′ = Γ′ ◦π′ {BX′}X′∈Π′ . Suppose that the
following conditions hold.
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Figure 5: Graph Γ and set of graphs {BX , BX′}.

(1) There exists a graph isomorphism α : Γ → Γ′ which maps every partition class
X ∈ Π onto a partition class X ′ ∈ Π′;

(2) For every X ∈ Π, there exist graph isomorphisms βXX′ : BX → BX′ with X ′ =
Xα such that the following diagram is commutative.

YX
βXX′−−−−→ YX′

πX

y yπX′

X
α−−−−→ X ′

Then ψ :
⋃̇
X∈ΠYX →

⋃̇
X′∈Π′YX′ defined by yX → βXX′(yX) is a graph isomorphism

between W and W ′.

Remark 2.8. The generalized X-join is closely related with the wedge product of asso-
ciation schemes. The wedge product of association schemes which provides a way to
construct new association schemes from old ones has been given in [10]. In the following
we give the relationship between the relations of a wedge product of symmetric association
schemes and the generalized X-join.
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Suppose (V,G) is an association scheme and E is an equivalence relation on V such
that it is a union of some relations R0, R1, . . . , Rt of G. Put D = {R0, R1, . . . , Rt} and
suppose Σ is the set of equivalence classes of E. For every X ∈ Σ, let DX = {gX | g ∈
D} where gX = g ∩X ×X . Moreover, assume that

(1) there is a set of association schemes {(YX , BX) | X ∈ Σ} such that all YX are
pairwise disjoint and for every X ∈ Σ there exists a scheme normal epimorphism
πX : YX ∪BX → X ∪DX .

(2) for every X,X ′ ∈ Σ, there exists an algebraic isomorphism φXX′ : BX → BX′

such that the diagram

BX
φXX′−−−−→ BX′

πX

y yπX′

DX
εXX′−−−−→ DX′

is commutative, where εXX′(gX) = gX′ .

Put Y :=
⋃̇
X∈ΣYX , π :=

⋃̇
X∈ΣπX and for every b ∈ BX , b̃ =

⋃
X′∈Σ φXX′(bX).

Moreover, for every g ∈ G put

g =
⋃

(x,x′)∈g∩X×X′,
X,X′∈Σ,X ̸=X′

ψ−1
X (x)× ψ−1

X′ (x
′).

Fix Z ∈ Σ. Put B̃Z = {b̃ | b ∈ BZ}. Then it follows from [10, Theorem 2.2] that
the pair (Y, B̃Z ∪ (G \ D)) is an association scheme, is called the wedge product of
(YX , BX), X ∈ Σ, and (V,G). Now let g ∈ G\D and bX ∈ BX such that πX(bX) = gX .
Then one can see that the graph with vertices Y and the edge set g ∪ b̃ is the generalized
X-join of g and {φXX′(bX)}X′∈Σ with respect to π.

Remark 2.9. The generalized wreath product of Cayley digraphs on abelain groups was
first introduced in [2] and an entire section of the recent book [4, Section 5] is devoted
to their study. A Cayley digraph Cay(G,S) of G with connection set S is a generalized
wreath product if there are subgroups 1 < K ≤ L < G such that S \L is a union of cosets
of K. In the following we show that the generalized X-join generalizes the generalized
wreath product. To see this, let Cay(G,S) be a generalized wreath product on abelian
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group G such that 1 ̸∈ S and S = S−1. Let V = {g1, . . . , gt} be a set of left coset
representatives of K in G and Γ be the subgraph of G induced on V . Suppose that {a0 =
1, a1, . . . , am} is a set of left coset representatives of L in G. For every 0 ≤ i ≤ m, let
Xi = {gj ∈ V | gj ∈ aiL}. Then Π = {X0, X1, . . . , Xm} is a partition of V . Put
B0 = Cay(L,L ∩ S) and for every 1 ≤ i ≤ m, let Bi = ϕi(B0) where ϕi : B0 → Bi
is a graph isomorphism defined by ϕi(l) = ail for every l ∈ L. Then there is the graph
epimorphism πi : Bi → Γ(Xi) such that πi(gjK) = gj . Now let W = (G,E) be the
generalized X-join of Γ and {B0, B1, . . . , Bm} with respect to π where π =

⋃̇m

i=0πi. We
show that for every x, y ∈ G, xy ∈ E if and only if xy−1 ∈ S. Clearly, if x, y ∈ aiL,
then xy ∈ E if and only if xy−1 ∈ S ∩ L. If x ∈ grK ⊆ aiL and y ∈ gsK ⊆ ajL where
i ̸= j, then xy−1 ∈ grg

−1
s K. Then xy ∈ E if and only if grg−1

s ∈ S \ L if and only if
grg

−1
s K ⊆ S \ L, since S \ L is a union of cosets of K. So in this case xy ∈ E if and

only if xy−1 ∈ S \L. Thus we conclude that W = (G,E) = Cay(G,S). This means that
Cay(G,S) is a generalized X-join.

3 Generalized wreath product, definition and construction
The generalized wreath product of permutation groups has been defined in [1, 5]. Since in
the next section we need to construct the generalized wreath product of the automorphism
group of graphs, here we have a look at the definition of this product which has been given
in [1].

Let Γ = (V,R) be a graph and F = Aut(Γ). Suppose that Π is a system of blocks for
F . Moreover, suppose that we are given a set of graphs {BX = (YX , EX) | X ∈ Π} such
that the following conditions hold.

(G1) If for some f ∈ F , Xf = X ′, then BX ≃ BX′ ,

(G2) If ∆ is an orbit of F on Π, then for some X ∈ ∆, there exists a graph epimorphism
πX : YX → X fromBX onto Γ(X) and there exists an epimorphism ηX : Aut(BX)
→ FX/F(X) such that

πX(yl) = (πX(y))ηX(l), ∀y ∈ YX , l ∈ Aut(BX).

By condition (G1), if there exists fXX′ ∈ F such that XfXX′ = X ′, we have a graph
isomorphism ϕXX′ : YX → YX′ from graph BX onto BX′ . Then ψXX′ : Aut(BX) →
Aut(BX′) defined by

ψXX′(α) = ϕXX′αϕ−1
XX′ , ∀ α ∈ Aut(BX),

is an isomorphism from Aut(BX) onto Aut(BX′).
Moreover, by condition (G2), ΛX = {π−1

X (x) | x ∈ X} is a system of blocks for
Aut(BX),

ηX : Aut(BX)/KX → FX/F(X)

is an isomorphism, and Aut(BX)/KX ≤ Sym(ΛX) and FX/F(X) ≤ Sym(X) are per-
mutation isomorphic where KX = ker(ηX).

Lemma 3.1. Let X ′ ∈ ∆ with X ′ ̸= X . Then
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(1) there exists a graph epimorphism πX′ from BX′ onto Γ(X ′) such that the following
diagram is commutative, where ξXX′ : X → X ′, given by ξXX′(x) = xfXX′ for
every x ∈ X.

YX
ϕXX′−−−−→ YX′

πX

y yπX′

X
ξXX′−−−−→ X ′

(2) there exists an epimorphism ηX′ : Aut(BX′) → FX
′
/F(X′) such that the follow-

ing diagram is commutative, where ρXX′ : FX/F(X) → FX
′
/F(X′), defined by

ρXX′(hF(X)) = fXX′hf−1
XX′F(X′) for every hF(X) ∈ FX/F(X).

Aut(BX)
ψXX′−−−−→ Aut(BX′)

ηX

y yηX′

FX/F(X)
ρXX′−−−−→ FX

′
/F(X′)

Proof. (1) If we define πX′ = ξXX′πXϕ
−1
XX′ , then πX′ : YX′ → X ′ is a graph epimor-

phism fromBX′ onto Γ(X ′) such that the diagram mentioned above is commutative.

(2) Define ηX′ = ρXX′ηXψ
−1
XX′ . Then ηX′ : Aut(BX′) → FX

′
/F(X′) is an epimor-

phism such that the above diagram is commutative.

Now suppose that a graph Γ = (V,R) and a set of graphs {BX = (YX , EX) | X ∈ Π}
satisfy conditions (G1) and (G2). Set Y =

⋃̇
X∈ΠYX . Since for every X ∈ Π, KX ≤

Aut(BX) it follows that the action of
∏
X∈ΠKX on Y defined by

yk := ykX , y ∈ YX , k =
∏
X∈Π

kX ∈ K

is faithful. Set K =
∏
X∈ΠKX . Then K ≤ Sym(Y ).

Moreover, every element of F can be also considered as an element of Sym(Y ). In
fact, for every g ∈ F we can associate g ∈ Sym(Y ). To do this, let yX ∈ YX and TX be a
set of left coset representatives for KX in Aut(BX) such that idYX

∈ TX . Let g ∈ F . We
associate to g an element g ∈ Sym(Y ) as follows:

(i) if Xg = X , then (yX)g = (yX)t where ηX(tKX) = gF(X) for some t ∈ TX ;

(ii) if Xg = X ′, then (yX)g = ϕXX′((yX)t) where ηX(tKX) = f−1
XX′gF(X) for some

t ∈ TX .

Set F = {g | g ∈ F}. Clearly, F ⊆ Sym(Y ) and ⟨K,F ⟩ ≤ Sym(Y ). According to
[1, Definition 2.1], the permutation group ⟨K,F ⟩, is the generalized wreath product of
{Aut(BX)}X∈Π and F . We denote it by F ◦ {Aut(BX)}X∈Π.

Remark 3.2. It should be mentioned that the generalized wreath product of {Aut(BX)}X∈Π

and F is independent of the choice of representatives TX for every X ∈ Π. To see this,
let yX ∈ YX and T ′

X be a set of left coset representatives for KX in Aut(BX) such that
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idYX
∈ T ′

X and T ′
X ̸= TX . Let g ∈ F and ĝ be an element of Sym(Y ) associated with g

by the above argument. If Xg = X , then (yX)ĝ = (yX)t
′

where ηX(t′KX) = gF(X) for
some t′ ∈ T ′

X . Since t′ = tkX , for some t ∈ TX and kX ∈ KX , we have

(yX)ĝ = (yX)t
′
= (yX)tkX = (yX)gkX .

Similarly, if Xg = X ′, then (yX)ĝ = ϕXX′((yX)t
′
) where ηX(t′KX) = f−1

XX′gF(X) for
some t′ ∈ T ′

X . If t′ = tkX for some t ∈ TX and kX ∈ KX , then

(yX)ĝ = ϕXX′((yX)t
′
) = ϕXX′((yX)tkX ) = ϕXX′((yX)gkX ).

Then we conclude that
< F̂ ,K >=< F,K >,

where F̂ = {f̂ | f ∈ F}. This shows that F ◦ {Aut(BX)}X∈Π =< F̂ ,K >.

Example 3.3. Let Γ and {BX , BX′ , BX′′} be the graphs in Figure 7. Then

Aut(Γ) = {idV , (14)(25)(36), (23), (56), (23)(56), (2635)(14), (2536)(14),
(26)(35)(14)}

and
Π = {X = {2, 3}, X ′ = {5, 6}, X ′′ = {1, 4}}

is a system of blocks for F = Aut(Γ). Put fXX′ = (14)(25)(36). Since XfXX′ = X ′ we
have the following graph isomorphism from BX onto BX′ .

ϕXX′ : YX → YX′

a −→ a′

b −→ b′

c −→ c′

d −→ d′

So condition (G1) holds, because, {X,X ′} and {X ′′} are the orbits of F on Π. More-
over, there exist the graph epimorphisms πX : BX → Γ(X), πX′ : BX′ → Γ(X ′), and
πX′′ : BX′′ → Γ(X ′′) such that {π−1

X (x) | x ∈ X} = {{a, c}, {b, d}}, {π−1
X′ (x) | x ∈

X ′} = {{a′, c′}, {b′, d′}}, and {π−1
X′′(x) | x ∈ X ′′} = {{b′′, c′′}, {a′′, d′′}}. If we de-

fine the epimorphisms ηX : Aut(BX) → FX/F(X), ηX′ : Aut(BX′) → FX
′
/F(X′), and

ηX′′ : Aut(BX′′) → FX
′′
/F(X′′) by{

ηX(idYX
) = F(X)

ηX((ab)(cd)) = (23)F(X){
ηX′(idYX′ ) = F(X′)

ηX′((a′b′)(c′d′)) = (56)F(X′)

and {
ηX′′(idYX′′ ) = F(X′′)

ηX′′((a′′b′′)(c′′d′′)) = (14)(25)(36)F(X′′)
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Figure 7: Graph Γ and set of graphs {BX}X∈Π.

then it is easy to verify that condition (G2) holds.
Put Y = {a, b, c, d, a′, b′, c′, d′, a′′, b′′, c′′, d′′}. Consider element g = (2536)(14) ∈ F .
Since X = {2, 3}, X ′ = {5, 6}, and X ′′ = {1, 4} we have Xg = X ′, X ′g = X and
X ′′g = X ′′. Now we associate to g, an element g such that

(i) (yX)g = ϕXX′(yX), since ηX(KX) = f−1
XX′gF(X) = (56)F(X) = F(X);

(ii) (yX′)g = ϕX′X((yX′)(a
′b′)(c′d′)), since ηX′((a′b′)(c′d′)KX′) = f−1

X′XgF(X′) =
(56)F(X′);

(iii) (yX′′)g = (yX′′)(a
′′b′′)(c′′d′′), since ηX′′((a′′b′′)(c′′d′′)KX′′) = gF(X′′) =

(14)(25)(36)F(X′′).

Then g = (aa′bb′)(cc′dd′)(a′′b′′)(c′′d′′). Similarly,

(1) if g = (23) then g = (ab)(cd);

(2) if g = (56) then g = (a′b′)(c′d′);

(3) if g = (23)(56) then g = (ab)(cd)(a′b′)(c′d′);

(4) if g = (2635)(14) then g = (ab′ba′)(cd′dc′)(a′′b′′)(c′′d′′);

(5) if g = (14)(25)(36) then g = (aa′)(bb′)(cc′)(dd′)(a′′b′′)(c′′d′′);

(6) if g = (14)(26)(35) then g = (ab′)(ba′)(cd′)(dc′)(a′′b′′)(c′′d′′).

Since KX , KX′ and KX′′ are trivial groups, it follows that

Aut(Γ) ◦ {Aut(BX)}X∈Π = ⟨idY , (ab)(cd), (a′b′)(c′d′), (aa′bb′)(cc′dd′)(a′′b′′)(c′′d′′),
(ab′ba′)(cd′dc′)(a′′b′′)(c′′d′′), (aa′)(bb′)(cc′)(dd′)(a′′b′′)(c′′d′′),
(ab′)(ba′)(cd′)(dc′)(a′′b′′)(c′′d′′)⟩.

4 Automorphism group of the generalized X-join of graphs
In this section we show that the automorphism group of some graphs which are isomorphic
to a generalized X-join can be expressed in terms of the generalized wreath product of
automorphism groups of its factors.
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Theorem 4.1. With the notation above, suppose that a graph Γ = (V,R) and a set of
graphs {BX = (YX , EX) | X ∈ Π} satisfy the conditions (G1) and (G2). Then

Aut(Γ) ◦ {Aut(BX)}X∈Π ≤ Aut(Γ ◦π {BX}X∈Π).

Proof. Let W = (Y,E) be the generalized X-join of Γ and {BX}X∈Π with respect to π,
and H = ⟨K,F ⟩ be the generalized wreath product of {Aut(BX)}X∈Π and Aut(Γ).

We show that for every h ∈ H and u, v ∈ Y , if (u, v) ∈ E, then (uh, vh) ∈ E. To do
this, we assume that (u, v) ∈ E and we consider the following cases.

Case 1. Suppose that h =
∏
X∈Π kX ∈ K.

(i) If u, v ∈ YX for someX ∈ Π, then since for everyX ∈ Π, kX ∈ Aut(BX) we have
(u, v)h = (uh, vh) = (ukX , vkX ) ∈ EX .

(ii) If u ∈ YX and v ∈ YX′ for some X and X ′ in Π where X ̸= X ′, then (x, x′) =
(πX(u), πX′(v)) ∈ R and since (ukX , vkX′ ) ∈ π−1

X (x)×π−1
X′ (x′) we have (u, v)h =

(uh, vh) = (ukX , vkX′ ) ∈ E.

Case 2. Suppose that h = g for some g ∈ F and u, v ∈ YX for some X ∈ Π.

(i) If Xg = X , then since (u, v)g = (ug, vg) = (ut, vt) where ηX(tKX) = gF(X) for
some t ∈ Aut(BX), we have (u, v)h = (uh, vh) = (ut, vt) ∈ E.

(ii) If Xg = X ′ for some X ′ ∈ Π, then since (u, v)g = (ug, vg) = (ϕXX′(ut),
ϕXX′(vt)) where ηX(tKX) = f−1

XX′gF(X) for some t ∈ Aut(BX) we have
(u, v)h = (uh, vh) = (ϕXX′(ut), ϕXX′(vt)) ∈ E.

Case 3. Let h = g for some g ∈ F , u ∈ YX and v ∈ YX′ for some X,X ′ ∈ Π where
X ̸= X ′. In this case since (x, x′) = (πX(u), πX′(v)) ∈ R and g ∈ Aut(Γ) we have
(xg, x′

g
) ∈ R. Then the following cases arise.

(i) If Xg = X and X ′g = X ′, then (u, v)g = (ug, vg) = (ut, vt
′
) where ηX(tKX) =

gF(X) and ηX′(t′KX′) = gF(X′). Since πX(ut) = πX(u)ηX(t) = xg and
πX′(vt

′
) = πX′(v)ηX′ (t′) = x′

g we have

(ut, vt
′
) ∈ π−1

X (xg)× π−1
X′ (x

′g).

Then (uh, vh) = (ut, vt
′
) ∈ E.

(ii) If Xg = X and X ′g = X ′′, then (u, v)g = (ug, vg) = (ut, ϕX′X′′(vt
′
)) where

ηX(tKX) = gF(X) and ηX′(t′KX′) = f−1
X′X′′gF(X′). Then πX(ut) =

πX(u)ηX(t) = xg and by condition (G2) we have

πX′′(ϕX′X′′(vt
′
)) = ξX′X′′(πX′(vt

′
))

= ξX′X′′(πX′(v)ηX′ (t′))

= fX′X′′ηX′(t′KX′)(πX′(v))

= gF(X′)(πX′(v))

= (πX′(v))g

= x′
g
.
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So (ut, ϕX′X′′(vt
′
)) ∈ π−1

X (xg)×π−1
X′′(x′

g
) and then (uh, vh) = (ut, ϕX′X′′(vt

′
)) ∈

E.

(iii) If Xg = X ′ and X ′g = X ′′, then (u, v)g = (ug, vg) = (ϕXX′(ut), ϕX′X′′(vt
′
))

where ηX(tKX) = f−1
XX′gF(X) and ηX′(t′KX′) = f−1

X′X′′gF(X′). From condition
(G2) we have

πX′(ϕXX′(ut)) = ξXX′(πX(ut))

= ξXX′(πX(u)ηX(t))

= fXX′ηX(tKX)(πX(u))

= gF(X)(πX(u))

= (πX(u))g

= xg.

Similarly, πX′′(ϕX′X′′(vt
′
)) = x′

g
. Then

(ϕXX′(ut), ϕX′X′′(vt
′
)) ∈ π−1

X′ (x
g)× π−1

X′′(x
′g)

and so (uh, vh) = (ϕXX′(ut), ϕX′X′′(vt
′
)) ∈ E.

(iv) If Xg = X ′′ and X ′g = X ′′′, then (u, v)g = (ug, vg) = (ϕXX′′(ut), ϕX′X′′′(vt
′
))

where ηX(tKX) = f−1
XX′′gF(X) and ηX′(t′KX′) = f−1

X′X′′′gF(X′). Then an argu-
ment similar to that given in (iii) shows that πX′′(ϕXX′′(ut)) = xg and
πX′′′(ϕX′X′′′(vt

′
)) = x′

g . So (ϕXX′′(ut), ϕX′X′′′(vt
′
)) ∈ π−1

X′′(xg) × π−1
X′′′(x′

g
)

and hence (uh, vh) = (ϕXX′′(ut), ϕX′X′′′(vt
′
)) ∈ E.

Then we conclude that ⟨K,F ⟩ ⊆ Aut(Γ ◦π {BX}X∈Π). Thus

Aut(Γ) ◦ {Aut(BX)}X∈Π ≤ Aut(Γ ◦π {BX}X∈Π).

The inclusion Aut(Γ)◦{Aut(BX)}X∈Π ≤ Aut(Γ◦π{BX}X∈Π) in the above theorem
may be proper. For example

D8 = Aut(K2) ◦Aut(K2) < Aut(K2 ◦K2) = S4,

where S4 is the symmetric group on 4 elements V = {1, 2, 3, 4} and D8 = {idV , (12),
(34), (12)(34), (13)(24), (14)(23), (1324), (1423)} is the dihedral group of order 8; see
[6, Chapter 10]. In the following we give necessary and sufficient conditions under which
the above inclusion is proper.

Theorem 4.2. With the notation above, suppose that the graph Γ = (V,R) and the set
of graphs {BX = (YX , EX) | X ∈ Π} satisfy the conditions (G1) and (G2). Let W =
(Y,E) be the generalized X-join of Γ and {BX}X∈Π with respect to π and let E0 ⊆ E1 be
the equivalence relations defined in (1) and (2). Then the inclusion

Aut(Γ) ◦ {Aut(BX)}X∈Π ≤ Aut(W )

is proper if and only if there exist equivalence relations E′
0 ⊆ E′

1 on Y such that the
following conditions hold.
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(i) E′
0 ⊊ E0 and E′

1 ⊊ E1, and W = Γ′ ◦π′ {AZ}Z∈Π′ , where the graph Γ′ is the
quotient graph W/E′

0, Π′ is a partition of V (Γ′), {AZ}Z∈Π′ are the subgraphs of
W induced by the equivalence classes of E′

1, π′ =
⋃̇
Z∈Π′π′

Z , and {π′−1
Z (x) | x ∈

V (Γ′), Z ∈ Π′} is the set of equivalence classes of E′
0.

(ii) There exist Z ̸= Z ′ ∈ Π′−Π and a graph isomorphism ϕ : YZ → YZ′ fromAZ onto
AZ′ , such that ϕ preserves equivalence classes of E′

0 contained in YZ .

(iii) For every equivalence class S′ of E′
0 contained in YZ , if W [S′] is a union of con-

nected components of W [S] for some S ∈ W/E0, where S′ ⊊ S then π′
Z(S

′) and
π′
Z′(ϕ(S′)) are nonadjacent, otherwise π′

Z(S
′) and π′

Z′(ϕ(S′)) are adjacent. In
both cases π′

Z(S
′) and π′

Z′(ϕ(S′)) have the same neighbors in V (Γ′) \ Z ∪ Z ′.

(iv) For each two distinct equivalence classes S′
1 , S′

2 of E′
0 that are contained in YZ , S′

1

and ϕ(S′
2) are adjacent if and only if ϕ(S′

1) and S′
2 are adjacent.

Proof. Suppose that there exists ϕ ∈ Aut(W ) \ Aut(Γ) ◦ {Aut(BX)}X∈Π. Let U be
the set of all elements of Y that are moved by ϕ. Since Y/E1 = {YX | X ∈ Π} and
Y/E0 =

⋃
X∈Π ΛX , where ΛX = {π−1

X (x) | x ∈ X}, are two system of blocks for
Aut(Γ) ◦ {Aut(BX)}X∈Π, then there exist

(1) X ∈ Π such that UX = U ∩ YX ̸= ∅;

(2) X ′ ∈ Π such that X ̸= X ′ and ϕ(UX) ⊆ YX′ . Note that if X = X ′, then the
restriction of ϕ to YX is an automorphism of BX and ϕ(UX) ⊆ YX . But since
ϕ /∈ Aut(Γ) ◦ {Aut(BX)}X∈Π we must have at least two equivalence classes
S1, S2 ∈ E0 such that a part of S1 is moved by the automorphism ϕ to a part of
S2. This contradicts the fact that ΛX = {π−1

X (x) | x ∈ X} is a system of blocks for
Aut(BX).

(3) at least one equivalence class S of E0 such that S ∩ UX ⊊ S. Indeed, if UX =⋃t
i=1 Si ⊊ YX where every Si is an equivalence class of E0, then by (2), ϕ(UX) ⊆

YX′ for some X ′ ̸= X and ϕ(UX) is a union of some equivalence classes of E0

which are contained in YX′ . This means that the vertices πX(S1), . . . , πX(St) of X
can be moved to the vertices πX′(ϕ(S1)), . . . , πX′(ϕ(St)) of X ′. This contradicts
the fact that Π is a system of blocks for Aut(Γ).

Put VX′ = ϕ(UX). Let S1, S2, ..., St be the equivalence classes of E0 contained in YX
such that for every 1 ≤ i ≤ t,

SXi = Si ∩ UX ̸= ∅.

Then for at least one i, SXi ⊊ Si. Moreover, we have the following.

(a) The restriction of ϕ to UX gives an isomorphism between W [UX ] and W [VX′ ], the
subgraphs of W induced by UX and VX′ .

(b) For each i the vertices in SXi ∪ ϕ(SXi ) have the same neighbors in Y \ (UX ∪ VX′).
Indeed, suppose that u ∈ SXi and w is a neighbor of u. Suppose that T1, . . . , Tt
are equivalence classes of E0 such that ϕ(SXi ) ∩ Ti ̸= ∅ and vi ∈ Ti \ ϕ(SXi ).
If w ∈ Y \ (YX ∪ YX′), then ϕ(w) is adjacent to all vertices of Ti, specially vi.
So w and ϕ−1(vi) = vi are adjacent. Thus w is adjacent to all vertices of ϕ(SXi ).
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Moreover, if w ∈ YX \ UX , then since w is adjacent to u, ϕ(w) = w is adjacent to
ϕ(u). Then w is adjacent to all vertices of ϕ(SXi ). Similarly, if w ∈ YX′ \ VX′ , then
w is adjacent to all vertices of ϕ(SXi ). Hence we conclude that SXi ∪ ϕ(SXi ) have
the same neighbors in Y \ (UX ∪ VX′).

(c) If W [SXi ] is a union of connected components of W [Si], then SXi and ϕ(SXi ) are
nonadjacent; otherwise by the definition of W , Si \ SXi and ϕ(SXi ) are adjacent and
since ϕ ∈ Aut(W ), SXi and Si \SXi are adjacent and this contradicts the hypothesis
that W [SXi ] is a union of connected components of W [Si]. Also if W [SXi ] and
W [Si \ SXi ] are adjacent, then since ϕ ∈ Aut(W ), Si \ SXi and ϕ(SXi ) must be
adjacent and the definition of W implies that ϕ(SXi ) and Si are externally related to
each other. Moreover, Si \ SXi and SXi are also externally related to each other.

(d) For two different equivalence classes S1 and S2 of E0 with SX1 , S
X
2 ̸= ∅, if S1 and

ϕ(SX2 ) are adjacent then from the definition of W it follows that S1 and ϕ(SX2 ) are
externally related to each other. Moreover, since ϕ ∈ Aut(W ) we must have ϕ(SX1 )
and S2 are also externally related to each other. Similarly, if S2 and ϕ(SX1 ) are
adjacent then ϕ(SX2 ) and S1 are externally related to each other.

Now we consider two equivalence relations E′
0 ⊆ E′

1 on Y such that

Y/E′
1 = {UX , VX′ , YX \ UX , YX′ \ VX′ , Y/E1 \ {YX , YX′}},

and the equivalence classes of E′
0 are equal

SXi , Si \ SXi , ϕ(SXi ), Ti \ ϕ(SXi ), 1 ≤ i ≤ t,

and Y/E0 \ {Si, Ti | 1 ≤ i ≤ t}, where for every i, Ti is an equivalence class of E0 such
that ϕ(SXi ) ⊆ Ti.
From statements (b) and (c) we conclude that the condition (ii) of Theorem 2.4 holds and so
W = Γ′ ◦π′ {AX}X∈Π′ , where Γ′ is the quotient graph W/E′

0, Π′ is a partition of V (Γ′)
induced by Y/E′

1, and {AX}X∈Π′ are the subgraphs of W induced by the equivalence
classes of E′

1. So (i) holds. If we denote by AX and AX′ the subgraphs of W induced
by UX and VX′ , respectively, then the restriction of ϕ to UX gives a graph isomorphism
betweenAX andAX′ . Clearly, ϕ preserves the equivalence classes of E′

0 contained in UX .
Thus condition (ii) of theorem holds. Moreover, (b), (c) and the definition of π′ imply that
condition (iii) holds. Finally, condition (iv) follows from statement (d).

Conversely, suppose that there exist equivalence relations E′
0 ⊆ E′

1 on Y such that
conditions (i) – (iv) hold. Let UZ and UZ′ be the vertex sets of AZ and AZ′ , respectively.
Assume that ϕ : UZ −→ UZ′ is the graph isomorphism from AZ onto AZ′ . We define a
bijection ψ : Y −→ Y as follows:

ψ(v) =


ϕ(v) if v ∈ UZ ,

ϕ−1(v) if v ∈ UZ′ ,

v if v /∈ {UZ , UZ′}.

We claim that ψ ∈ Aut(W ). To do this, we suppose that (u, v) ∈ E and we consider the
following cases.



J. Bagherian: Generalized X-join of graphs and their automorphisms 17

(1) If u, v ∈ Y \ UZ ∪ UZ′ , then clearly (ψ(u), ψ(v)) = (u, v) ∈ E.

(2) If u, v ∈ UZ , then since ϕ is a graph isomorphism it follows that (ψ(u), ψ(v)) =
(ϕ(u), ϕ(v)) ∈ E. Similarly, if u, v ∈ UZ′ we have (ψ(u), ψ(v)) = (ϕ−1(u),
ϕ−1(v)) ∈ E.

(3) If u ∈ UZ and v ∈ Y \ UZ ∪ UZ′ , then since v is a neighbor of u it follows from
(iii) that v is also a neighbor of ϕ(u). Hence (ψ(u), ψ(v)) = (ϕ(u), v) ∈ E.

(4) If u ∈ UZ and v ∈ UZ′ such that for some equivalence class S′ of E′
0, u ∈ S′ and

v ∈ ϕ(S′), then the definition of W implies that all vertices in S′ are adjacent to all
vertices in ϕ(S′) and so (ψ(u), ψ(v)) = (ϕ(u), ϕ−1(v)) ∈ E.

(5) If u ∈ UZ and v ∈ UZ′ such that for two equivalence classes S′
1 and S′

2 of E′
0,

u ∈ S′
1 and v ∈ ϕ(S′

2), then by the definition of W , all vertices in S′
1 are adjacent

to all vertices in ϕ(S′
2). On the other hand, it follows from (iv) that ϕ(S′

1) and S′
2

are adjacent. So all vertices of ϕ(S′
1) are adjacent to all vertices of S′

2 and thus
(ψ(u), ψ(v)) = (ϕ(u), ϕ−1(v)) ∈ E.

Hence ψ ∈ Aut(W ). SinceE′
0 ⊊ E0 and Z,Z ′ ∈ Π′−Π, and ψ preserves the equivalence

classes of E′
0 we conclude that ψ ∈ Aut(W ) \Aut(Γ) ◦ {Aut(BX)}X∈Π.

Example 4.3. Suppose that Γ is the graph in Figure 8 with vertices V = {1, 2, 3, 4, 5, 6}.
Then one can see that

F = Aut(Γ) = {idV , (12)(56)(34), (13)(24), (23)(56)(14)}
and

Π = {X = {1, 2}, X ′ = {3, 4}, X ′′ = {5, 6}},

is a system of blocks for F . Moreover, FX = FX
′
= {idV , (12)(56)(34)}, FX

′′
= F ,

F(X) = F(X′) = {idV }, and F(X′′) = {idV , (13)(24)}. Suppose that BX , BX′ , and
BX′′ are the graphs in Figure 8 with vertices YX = {a, b, c, d}, YX′ = {a′, b′, c′, d′},
YX′′ = {a′′, b′′, c′′, d′′}, respectively.

Now consider the graph epimorphisms πX : BX → Γ(X), πX′ : BX′ → Γ(X ′), and
πX′′ : BX′′ → Γ(X ′′) as the following:

1

3 4

211

5

3 4

6

2

Γ
a

bc

d BX

d′

c′ b′

a′

BX′ a′′ b′′

c′′ d′′

BX′′

Figure 8: Graph Γ and set of graphs {BX}X∈Π.

{
πX(a) = πX(b) = 1

πX(c) = πX(d) = 2
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{
πX′(a′) = πX′(b′) = 3

πX′(c′) = πX′(d′) = 4

and {
πX′′(a′′) = πX′′(b′′) = 6

πX′′(c′′) = πX′′(d′′) = 5
.

Since Aut(BX) = {idYX
, (bc)(ad)}, Aut(BX′) = {idYX′ , (b

′c′)(a′d′)}, and

Aut(BX′′) = {idYX′′ , (a
′′b′′), (c′′d′′), (a′′b′′)(c′′d′′), (a′′c′′b′′d′′), (a′′d′′b′′c′′)

, (a′′c′′)(b′′d′′), (a′′d′′)(b′′c′′)},

we can define epimorphisms ηX : Aut(BX) → FX/F(X), ηX′ : Aut(BX′) → FX
′
/F(X′),

and ηX′′ : Aut(BX′′) → FX
′′
/F(X′′) by{

ηX(idYX
) = idV

ηX((bc)(ad)) = (12)(56)(34)F(X){
ηX′(idYX′ ) = idV

ηX′((b′c′)(a′d′)) = (12)(56)(34)F(X′)

and
ηX′′(idYX′′ ) = ηX′′((a′′b′′)) = ηX′′((c′′d′′)) = ηX′′((a′′b′′)(c′′d′′)) = idV

ηX′′((a′′c′′b′′d′′)) = ηX′′((a′′d′′b′′c′′)) = ηX′′((a′′c′′)(b′′d′′))= ηX′′((a′′d′′)(b′′c′′))=

(12)(56)(34)F(X′′)

Then KX and KX′ are trivial groups and

KX′′ = {idYX′′ , (a
′′b′′), (c′′d′′), (a′′b′′)(c′′d′′)}.

Let TX = {idYX
, (bc)(ad)}, TX′ = {idYX′ , (b

′c′)(a′d′)}, and TX′′ = {idYX′′ ,
(a′′c′′)(b′′d′′)}. Put fXX′ = (13)(24). Then the elements (12)(56)(34), (13)(24) and
(23)(56)(14) in Aut(Γ) are associated to (bc)(ad)(b′c′)(a′d′)(a′′c′′)(b′′d′′),
(aa′)(bb′)(cc′)(dd′) and (bc′)(ad′)(cb′)(da′)(a′′c′′)(b′′d′′), respectively. Then we have

Aut(Γ)◦{Aut(BX)}X∈Π=⟨idY , (aa′)(bb′)(cc′)(dd′), (bc′)(ad′)(cb′)(da′)(a′′c′′)(b′′d′′),
(a′′b′′), (c′′d′′), (bc)(ad)(b′c′)(a′d′)(a′′c′′)(b′′d′′)⟩.

Now letW = (Y,E) be the generalized X-join of Γ and {BX}X∈Π with respect to π. (See
Figure 9.) Consider the equivalence relations E′

0 and E′
1 on Y with the following classes,

Y/E′
0 = {{a}, {b}, {c}, {d}, {a′}, {b′}, {c′}, {d′}, {a′′, b′′}, {c′′, d′′}}

Y/E′
1 = {{a, d}, {b, c}, {a′, d′}, {b′, c′}, {a′′, b′′, c′′, d′′}}.

Then one can see that
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Figure 9: Graph W = Γ ◦π {BX}X∈Π.

(1) Γ ◦π {BX}X∈Π = Γ′ ◦π′ {AZ}Z∈Π′ , where Γ′ is the quotient graph W/E′
0 with

vertices V (Γ′) = {1, 2, . . . , 10}, and {AZ}Z∈Π′ are the subgraphs of W induced by
the equivalence classes of E′

1, and π′ =
⋃̇
Z∈Π′π′

Z maps {a}, {b}, {c}, {d}, {a′},
{b′}, {c′}, {d′}, {c′′, d′′}, {a′′, b′′} onto 1, 2, . . . , 10, respectively. (See Figure 10.)

(2) Put YZ = {b, c} and YZ′ = {b′, c′} and let AZ =W [YZ ] and AZ′ =W [YZ′ ]. Then
ϕ : YZ → YZ′ such that ϕ(b) = b′ and ϕ(c) = c′ is a graph isomorphism from AZ
onto AZ′ . Clearly, ϕ preserves the equivalence classes of E′

0 contained in YZ .

(3) YZ contains two equivalence classes S′
1 = {b} and S′

2 = {c} of E′
0 such that S′

1 ⊆
S1 and S′

2 ⊆ S2 where S1 = {a, b} ∈ Y/E0 and S2 = {c, d} ∈ Y/E0. Moreover,
W [S1] is connected and π′

Z(b) and π′
Z′(ϕ(b)) are adjacent and have the same neigh-

bors in V (Γ′) \ {Z ∪Z ′}, where Z = {π′
Z(b), π

′
Z(c)} and Z ′ = {π′

Z′(b′), π′
Z′(c′)}.

Similarly, W [S2] is connected and π′
Z(c) and π′

Z′(ϕ(c)) are adjacent and have the
same neighbors in V (Γ′) \ {Z ∪ Z ′}.

(4) The vertex b is nonadjacent to ϕ(c) and vertex c is nonadjacent to ϕ(b).

Then the conditions of Theorem 4.2 hold. So

Aut(Γ) ◦ {Aut(BX)}X∈Π ⪇ Aut(Γ ◦π {BX}X∈Π).

In the following as a main result, we give necessary and sufficient conditions under
which the full automorphism group of the generalized X-join of graphs is equal to the
generalized wreath product of the automorphism groups of their factors.
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Figure 10: Graph Γ′ and set of graphs {AZ}Z∈Π′ .

Corollary 4.4. Suppose that W = Γ ◦π {BX}X∈Π is such that the graph Γ = (V,R) and
the set of graphs {BX = (YX , EX) | X ∈ Π} satisfy the conditions (G1) and (G2). Then
Aut(Γ◦π {BX}X∈Π) = Aut(Γ)◦{Aut(BX)}X∈Π if and only if there are no equivalence
relations E′

0 ⊆ E′
1 on Y satisfying the conditions (i), (ii), (iii), and (iv) of Theorem 4.2.

Proof. This follows immediately from Theorem 4.2.

Example 4.5. Let W = (Y,E) be the graph in Figure 11. It is easy to see that W is the
graph Γ ◦π {BX , BX′ , BX′′} where Γ and {BX , BX′ , BX′′}, and π = πX ∪ πX′ ∪ πX′′

are given in Example 3.3. Moreover, Y/E0 = {{a, c}, {b, d}, {a′, c′}, {b′, d′}, {b′′, c′′},
{a′′, d′′}} and Y/E1 = {{a, c, b, d}, {a′, c′, b′, d′}, {b′′, c′′, a′′, d′′}}. Since there are no
equivalence relations E′

0 ⊆ E′
1 on Y that satisfy the conditions (i), (ii), (iii), and (iv) of

Theorem 4.2, it follows that

Aut(W ) = Aut(Γ)◦{Aut(BX)}X∈Π = ⟨idY , (ab)(cd), (aa′bb′)(cc′dd′)(a′′b′′)(c′′d′′),
(a′b′)(c′d′), (ab′ba′)(cd′dc′)(a′′b′′)(c′′d′′),
(aa′)(bb′)(cc′)(dd′)(a′′b′′)(c′′d′′),
(ab′)(ba′)(cd′)(dc′)(a′′b′′)(c′′d′′)⟩.

The next corollary follows directly from Theorem 4.2.

Corollary 4.6. Suppose that the graph Γ = (V,R) and the set of graphs {BX = (YX , EX) |
X ∈ Π} satisfy the conditions (G1) and (G2). Let W = (Y,E) be the generalized X-join
of Γ and {BX}X∈Π with respect to π and letE0 ⊆ E1 be the equivalence relations defined
in (1) and (2). Then

Aut(Γ) ◦ {Aut(BX)}X∈Π = Aut(Γ ◦π {BX}X∈Π)

if W is uniquely determined by E0 and E1.

Corollary 4.7 (See [8, Theorem 2.10]). Let Γ = (V,R) be a graph and {Bx | x ∈ V } be
a set of graphs such that Bx ≃ Bx′ whenever xf = x′ for some f ∈ Aut(Γ). Then

Aut(Γ[Bx]x∈V ) = Aut(Γ) ◦ {Aut(Bx)}x∈V

if and only if
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Figure 11: Graph W .

(1) Bx is connected if there exists at least one vertex w ∈ V such that x and w are
nonadjacent and have the same neighbors in V ,

(2) Bx is connected if there exists at least one vertex w ∈ V such that x and w are
adjacent and have the same neighbors in V \ {x,w}.

Proof. By Example 2.2, W = Γ[Bx]x∈V = Γ ◦π {Bx}x∈V where Π = {{x} | x ∈ V }
and πx : Yx → X is a graph epimorphism from Bx onto Γ(X) such that πx(yx) = x for
every yx ∈ Yx. In this case E0 = E1 and FX = F(X). If we define

ηX := Aut(BX) → FX/F(X)

by ηX(α) = 1FX/F(X)
for every α ∈ Aut(BX), then ηX is an epimorphism and condition

(G2) holds. Then it follows from Corollary 4.4 that

Aut(Γ[Bx]x∈V ) = Aut(Γ) ◦ {Aut(Bx)}x∈V

if and only if there is no equivalence relation E′
0 on Y satisfying the conditions (i), (ii),

(iii), and (iv) of Theorem 4.2.
Now suppose that Aut(Γ[Bx]x∈V ) = Aut(Γ) ◦ {Aut(Bx)}x∈V and there exist x,w ∈

V such that x and w are nonadjacent and have the same neighbors in V . If Bx is discon-
nected then Bw is also disconnected and we can define an equivalence relation E′

0 on Y
such that the equivalence classes of E′

0 are Yz, z ̸∈ {x,w}, together with the connected
components of Bx and Bw. Since x and w are nonadjacent and have the same neighbors in
V , one can see that the conditions (i), (ii), (iii), and (iv) of Theorem 4.2 hold, a contradic-
tion. So Bx is connected. Moreover, suppose that there exist x,w ∈ V such that x and w
are adjacent and have the same neighbors in V \ {x,w}. If Bx is disconnected, then there
exist at least two subsets S1, S2 ⊂ Yx such that all vertices of S1 are adjacent to all vertices
of S2. Similarly, there exist subsets S′

1, S
′
2 ⊂ Yw with the property that all vertices of S′

1

are adjacent to all vertices of S′
2. Then we can define an equivalence relation E′

0 on Y such
that S1, S2, S′

1, and S′
2 together with Yz, z ̸∈ {x,w} are its equivalence classes. One can

see that in this case the conditions (i), (ii), (iii), and (iv) of Theorem 4.2 hold and thus again
we have a contradiction.



22 Ars Math. Contemp. 24 (2024) #P2.06

Conversely, suppose that conditions (1) and (2) hold and suppose on the contrary that

φ ∈ Aut(Γ[Bx]x∈V ) \Aut(Γ) ◦ {Aut(Bx)}x∈V .

Then there is an equivalence relation E′
0 on Y satisfying the conditions (i), (ii), (iii), and

(iv) of Theorem 4.2. It follows from condition (i) that W = Γ′ ◦π′ {Az}z∈V (Γ′), where
the graph Γ′ is the quotient graphW/E′

0 and {Az}z∈V (Γ′) are the subgraphs ofW induced
by the equivalence classes of E′

0. It follows from (ii) that there exist x,w ∈ V such that
the equivalence classes of E′

0 contain Yz ⊊ Yx and Yz′ = φ(Yz) ⊊ Yw. By (iii) if Bx[Yz]
is a union of connected components of Bx, then z and z′ are nonadjacent and all of their
neighbors are exactly the same in V (Γ′), otherwise z and z′ are adjacent and have the
same neighbors in V (Γ′) \ {z, z′}. This implies that if Bx is disconnected then z and z′

are nonadjacent and all vertices in Yz and all vertices in Yz′ have the same neighbors in
Y \ (Yz ∪ Yz′). Since Yz ⊊ Yx and Yz′ ⊊ Yw it follows that x and w must be nonadjacent
and have the same neighbors in V , which contradicts (1). Moreover, if Bx is connected,
since z and z′ are adjacent and have the same neighbors in V (Γ′) \ {z, z′} it follows that
all vertices in Yz are adjacent to all vertices of Yz′ and all vertices in Yz and all vertices in
Yz′ have the same neighbors in Y \ (Yz ∪ Yz′). Then all vertices in Yx are adjacent to all
vertices of Yw. So x and w must be adjacent and have the same neighbors in V \ {x,w}.
Furthermore, since all vertices in Yz are adjacent to all vertices of Yx \ Yz it follows that
Bx is disconnected, which contradicts (2). Thus we have

Aut(Γ[Bx]x∈V ) = Aut(Γ) ◦ {Aut(Bx)}x∈V .

5 Conclusion
A generalization of the X-join of graphs has been introduced and necessary and sufficient
conditions under which a graph is isomorphic to a generalized X-join has been given. A
generating set for the automorphism groups of a class of graphs which are isomorphic to a
generalized X-join has been computed.

Since the generalized X-join of graphs is a natural generalization of the X-join of
graphs, the results on the X-join or lexicographic product of graphs can be also studied
for the generalized X-join of graphs.
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