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In this paper, we propose and evaluate linear and nonlinear prediction models based
on Artificial Neural Networks (ANN) for tourism demand in the accommodation
industry. For efficient forecasting, the Multilayer Perceptron (MLP), Support Vector
Regression (svR) and Linear Regression (LR) methods that utilize two different fea-
ture sets for training have been used. The major contribution of the proposed models
is focused mainly on better forecasting accuracy and lower cost effort. The relative
accuracy of the Multilayer Perceptron (MLP) and Support Vector Regression (SVR)
in tourism occupancy data is investigated and compared to simple Linear Regression
(LRr) models. The relative performance of the MLP and SVR models are also com-
pared to each other. Data collected over a period of eight years (2005-2012) showing
tourism occupancy and the number of overnight stays in the hotels of the Western
Region of Greece is used. Extensive experiments have shown that for time series
describing a subset of the number of overnight stays, the svRr regressor with the
RBE kernel (SVR-RBE), as well as simple LR models, and the MLP regressor for oc-
cupancy time series respectively, outperform other forecasting models, when tested
for a wide range of forecast horizons (1-24 months) and present very small and stable
prediction errors.

Keywords: support vector regression, multilayer perceptron, artificial neural
networks, tourism demand forecasting, forecasting model, time-series

overnight stays, visits to various places of interest, and

An essential factor in the tourist industry is travellers,
which in short can be defined as consumers of tourist
product. Travelers, usually, spend money on prod-
ucts such as air services, food and beverage services,

similar. This consumption is the result of travelling
the world for business, educational and entertain-
ment reasons. In addition, travellers, the consumers of
tourism products, seem to develop a more perceptive
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personality in choosing their destinations; their con-
sumption decisions become less predictable and more
spontaneous, motivated mostly by their need and de-
sire for new experiences (Burger, Dohnal, Kathrada, &
Law, 2001).

The above are only some of the many characteris-
tics of the tourism industry. The tourism phenomenon
is a dynamic system which depends strongly on many
untenable and uncertain characteristics and delivers
a changeable and perishable product. More now than
ever, the important role that the tourism industry plays
in the global economy is clear. This has become a great
necessity for small countries with a significant per-
centage of their revenue coming from tourism, such
as Greece. Especially with the development and ex-
ploitation of new technologies, everyone has the op-
portunity, especially many local economies, to pro-
mote their products globally, with low cost, expecting
a bigger share not only from the local but also from
the global tourist market. One of the key factors in ex-
panding the tourist market is, somehow, to define the
future tourism consumers of the tourist product.

So, how can the present experience be exploited to
obtain better decisions for tomorrow? In the tourism
industry, this question is a crucial step for success. Ob-
viously, any indisposed tourist ‘merchandise’ cannot
be stocked to be offered again in the next season in
the tourist market. For example, empty rooms or un-
sold airplane tickets consist of lost revenue and prob-
ably are a strong indication of bad planning. Hence,
it is of great necessity for the tourist industry to have
an a priori knowledge of the expected tourist arrivals
so as to be able to schedule the flights, the hotel and
room availability, the necessary employees, and other
factors. Although we are not able to know the future,
we can adapt forecasting processes to predict the be-
haviour of future events (Makridakis & Hibon, 1979;
Frees, 1996; Franses, 2004).

The developing of reliable and accurate forecast-
ing models is an essential step for decision makers.
What matters are the knowledge of the size, directions,
and characteristics of future international tourist flows
(Shahrabi, Hadavandi, & Asadi, 2013). Accurate fore-
casting models in both short- and long-term periods
are essential for the effective formulation and imple-
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mentation of tourism strategies (Song, Gao, & Lin,
2013) in various tourist organizations and business,
in both the public and private sectors. Accurate and
reliable forecasting models are the key to the suc-
cess of the whole tourism industry (Gunter & Onder,
2015).

Generally, for the problem of forecasting time-
series, different methods and techniques have been
proposed, covering a broad range of different coun-
tries and locations, as well as diverse time intervals.
The most widely used models (especially using month-
ly data) are univariate or time-series models (Gunter &
Onder, 2015) and, in this framework, the developing of
such models is usually based on the (Seasonal) Autore-
gressive (Integrated) Moving Average models (Box &
Jenkins, 1976). Recently, some new, well performed,
time-series models have been proposed such as the
Exponential Smoothing models (Hyndman, Koehler,
Snyder, & Grose 2002; Hyndman, Koehler, Ord &
Snyder 2008), and a low cost inferential model (Psil-
lakis, Panagopoulos, & Kanellopoulos, 2009); mul-
tivariate or Econometric models are also employed,
such as Autoregressive Distributed Lag Models (Drit-
sakis & Athanasiadis, 2000; Ismail, Iverson, & Cai,
2000), Error Correction Models (Kulendran & Witt,
2003; Roselld, Font & Roselld, 2004), Vector Autore-
gressive models (Shan & Wilson, 2001; Witt, Song &
Wanhill, 2004) and Time-Varying Parameter models
(Li, Song & Witt, 2006; Song & Witt, 2006); some ar-
tificial intelligence methods were, also, used (Clave-
ria & Torra, 2014; Palmer, Montafo & Sesé, 2006;
Kon & Turner, 2005; Hernandez-Lopez & Caceres-
Herndndez, 2007; Chena & Wang, 2007). An exhaus-
tive review on forecasting time series can be found in
the work of Song and Li (2008); according to their
work on tourism demand modelling and forecast-
ing, no single model that can be used in all situations
in terms of performance and forecasting accuracy
exists.

Furthermore, Coshall and Charlesworth (2010) re-
port that forecasting tourism demand can be achieved
with causal econometric models (EcM models, VAR
models, LAIDS models, etc.), and non-casual time se-
ries models (Goh & Law, 2002; Cho, 2003). However,
in recent years, Artificial Neural Networks (ANN) have
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made their appearance in solving the tourism fore-
casting problem (Kon & Turner, 2005; Palmer et al.,
2006).

The increasing interest in more advanced predic-
tion models, together with the fact that tourism is a
leading industry worldwide, contributing to a signif-
icant proportion of world production and employ-
ment, has led us to evaluate the forecasting perfor-
mance of the most significant ANNs. Thus, in this
work, forecasting models for the tourist occupancy
are presented, using different forecasting horizons and
compare the performance of the different ANNs ar-
chitectures on the prediction problem of tourism de-
mand as it is described by the occupancy of hotels in
the Region of Western Greece.

The region consists of three dissimilar prefectures
(Achaia, Ilia, and Etoloakarnania) regarding the type
of the visiting tourists, the available resources and in-
frastructure, and the level of development and em-
ployment (Panagopoulos & Panagopoulos, 2005).
However, despite the heterogeneous geographic mor-
phology and economic activity, the overall region re-
tains the same characteristics of a tourist destination,
that is, the suggestibility in various exogenous factors
as well as the considerable contribution to the local
and country economy.

The main reason for choosing the region of West-
ern Greece is the financial crisis in Greece and a ques-
tion about the viability of the local tourist industry,
as well as the lack of research made in this area con-
cerning the future and potentials of tourism. The only
known work in the literature concerning the area
of Western Greece (Panagopoulos & Panagopoulos,
2005) proposes a forecasting model for predicting the
tourist occupancy in the Western Greece region using
the Box-Jenkins Method (Box & Jenkins, 1976) and
monthly data from January 1990 to December 1999.
Hence, the study of the Western Greece region con-
stitutes a strong research motivation and any sugges-
tions in the direction of modelling the overall local
tourist product circulation remains a well-timed issue
for both researchers and local authorities.

The purpose of the paper is twofold: Firstly, we
evaluate the forecasting performance of linear and
non-linear prediction methods using the Multilayer
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Perceptron Regressor (MLP), the Support Vector Re-
gressor with polynomial kernels (sVR-POLY), and the
Support Vector Regressor with Radial Basis Functions
Kernels (svR-RBE), three of the most widely known
neural network architectures in the literature, as fore-
casting models for tourism demand. In addition, two
different feature sets are proposed to train the net-
works, based on the extraction of the essential char-
acteristics of a time series, such as trend and season-
ality.

The Support Vector Regressor network uses a struc-
tural risk minimization principle that attempts to min-
imize the upper bounds of the generalization error
rather than minimizing the training error as con-
ventional neural networks do (Vapnik, Golowitch, &
Smola, 1996). The generalization error is defined as
the expected value of the square of the difference be-
tween the learned function and the exact target (mean
square error), while the training error is calculated as
the average loss over the training data. In this work,
we have used official statistical monthly data of the
hotel occupancy in the Western Greece Region from
January 2005 until December 2012, taken from the offi-
cial records of the Hellenic Statistical Authority. Next,
the most commonly used metric based on the Root
Mean Square Error (RMSE) is computed for different
forecast horizons, ranging from 1 to 24 months (2-year
prediction).

The structure of the paper is as follows: in the next
section, we briefly present the theoretical background
of the utilized neural network forecast models. The ex-
perimental setup, as well as the data set, is described in
Section 3. In Section 4, the results of the forecasting are
presented and discussed, and in Section 5 some con-
clusions and remarks are given.

Methodology

Multilayer Perceptron Regressor

An Artificial Neural Network (ANN) is a non-linear
black box statistical approach. The most commonly
used ANN structure is the feed-forward multilayer
perceptron (MLP). This structure is composed of at
least three layers: an input layer, one or more hidden
layers, and an output layer. The network consists of a
set of neurons connected by links and normally orga-
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nized in a number of layers. The number of neurons
in the input and output layer is equal to the number of
input and output variables, respectively. The number
of neurons in the hidden layer(s) is usually selected
by trial-and-error. The output of this network can be
calculated using the following equation:

Y; =f[z Wini]’

where Y; is the output of node j, f(:) is the trans-
fer function of the network, w;; are the connection
weights of the network that need to be estimated be-
tween nodes j and i and X; is the input.

The MLP uses the well-known Back Propagation
learning algorithm to estimate adaptively the values
of the network’s weights. In order to do this, it min-
imizes the square error between the calculated Y; and
the desired network’s output O; based on the steep-
est descend technique with the addition of a momen-
tum weight/bias function, which calculates the weight
change for any given neuron at each iteration step.

By considering that the prediction error is given by
the following equation

B=1 Y500
]

the adaptation rule for estimating the values of the
weights is given by:

@)

(2)

0E(n)
o

K

AWi(n) = =n (3)

The above equation after applying the chain rule of
differentiation leads to the following rule

Awg.(n) = yef(n)Xfﬂ(n) + mAwZ.(n -1),

Awi(n+1) = wh(n) + Awh(n), @

where ef (n) is the nth error signal at the jth neuron in

the pth layer, X/ (n) is the output signal of neuron i
at the layer below, u is the learning rate, and m is the
momentum factor. The last two parameters are speci-
fied at the start of the training procedure and affect the
speed and stability of the convergence of the steepest
descend algorithm.
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In brief, the procedure to set up an MLP neural
network to solve the regression problem is:

1. Select the number of the input data points and
define the input layer.

2. Select the number of the output points and define
the output layer.

3. Determine the number of the hidden layers as
well as the number of the nodes in each layer.
There is no rule for this task; this may depend on
trial and error.

4. Perform learning from a set of known data. This
step results in estimating the weights of the con-
nections between the nodes of all layers of the
network.

5. Test the neural network using known data that
were not presented to the network in Step (4). In
this way, we can measure the accuracy as well as
the efficacy of the network using various metrics
(mean square error, mean absolute percentage er-
ror, etc.).

Support Vector Regression

The support vector regression (sVR) is a recent adap-
tation of the classification scheme based on support
vector machines. The general regression problem can
be formulated as follows: Consider a set of data points
D = {(xi, qi)}I_,, where x; is a vector of model inputs, g;
is the actual value that is a scalar and # the total num-
ber of data patterns. The purpose of the regressor is to
estimate a function f(x) that can predict the desired
values g; given a set of input samples.

A regression function is given in the form of ¢; =
f(x;) + 6, where § is the error that follows the normal
distribution. Support Vector regression deals with the
most general and difficult non-linear regression prob-
lem. In order to solve the non-linear regression prob-
lem, the sVR maps non-linearly the inputs into a high
dimensional space where they are linearly correlated
with the outputs. This is described by:

fx) = (v-¢(x)) + b, (5)

where v is a weight vector, b is a constant, ¢(x) denotes
the non-linear function. So, in sVR, the problem of
nonlinear regression in the lower dimension space is
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transformed into an easier linear regression problem
in a higher dimension feature space.

For solving this problem, the most commonly used
cost function is:

La(f(x)> ‘1) =

_ If(x) — gl — &, if[f(x) — gl = 8’ ©)

0, otherwise

where ¢ is the precision parameter that represents the
radius of the tube located around the regression func-
tion f(x) and q is the target value.

The weight vector v as well as the constant b can be
estimated by minimizing the following risk function:

1 1 1 2
R(C) = C~ Z Le(f (), 43) + SIwP, 7)

where L,(f (x), g;) is the loss function, 1/2|w|* is the reg-
ularization term which controls the trade-off between
the complexity and the approximation accuracy of the
model, C is the regularization constant. Both C and &
are determined by the user by trial-and-error.

By using slack variable & and &/, the previous equa-
tion is transformed into the constrained form, mini-
mize:

Reglf) = ~IwP + C (& + £, ®)

subject to:

gi—w-odx))-b<e+é
(w-¢(x,'))+b—q,'S8+§:. (9)

&E >o0,i=1,...,n

By using Laplace multipliers and the Karush-Kuhn-
Tucker conditions to the equation, it results to the fol-
lowing dual Lagrangian form, maximize:

La(a,a) = —& ) (a; +a) + > (a; — a)q;

_i Z((l: - ai)(a; - ll])
K(x;, xj), (10)

subject to the constraints,
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" (@ —a)=o
o0<a; <Cji=1,...,n, (11)

* .
0<ag <Ci=1...,n

where K(x;, x;) is the kernel function.

The Lagrange multipliers satisfy the equality a;a; =
o. The Lagrange multipliers, a;, a; are calculated and
an optimal desired weight vector of the regression hy-
perplane is

v = Z(a,- - a:)K(xi,xj). (12)

Hence, the general form of the regression function
can be written as

f(xw) :f(Jo ai, a:)
= > (@i = a)K(x;, %) + b. (13)

=1
The values of the kernel function equal the inner
product of the vectors x;, x;j in the feature space ¢(x;),
#(x;).
Several choices for the kernel function exist; the
two most widely known and used in the literature are
the radial basis function (sVR-RBF) defined as

—llxi - lelz)

202

K(x;, x;) = exp(

and the polynomial kernel (svR-poLY) function de-
fined as K(x;, x;) = (xiT-xj+c)d, with d the degree of the
polynomial and ¢ > o is a free parameter trading oft
the influence of higher-order versus lower-order terms
in the polynomial.

Experimental Setup

Multilayer Perceptron Regressor

The main objective in designing the MLP model’s ar-
chitecture is to find the optimal architecture that will
model the relationship between input and output (fore-
casted) values. The number of neurons in the input
layer equals the number of the dimensionality of the
input data, while the number of neurons in the out-
put layer is equal to the number of the output data.
In forecasting the tourism occupancy and overnights
stays of the hotels in the Region of Western Greece, we
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have used two Feature Sets (rs) with different dimen-
sionality in order to assist the predictor. The number
of the neurons in the hidden layer is selected using
the trial-and-error procedure. In this paper, we have
tested the efficacy of the MLP network using a wide
range of neurons in the only hidden layer from 1 to
50. Extensive experiments were performed for each
different case in order to find the optimal number of
neurons in the hidden layer that result in the best per-
formance (smaller error) of the predictor. For train-
ing, this type of neural network we have used the
Levenberg-Marquardt optimization algorithm.

Support Vector Regressor

The first step in using the sVR is the selection of the
Kernel function. In this paper, we have tested the fore-
casting performance of the polynomial (SVR-POLY)
as well as the RBF (SVR-RBF) kernel function pre-
sented in the previous section. The performance of
the proposed RBF regressors depends on the values
of the kernel function parameters. Thus, the selection
of three parameters, regularization constant C, loss
function € and o (the width of the RBF) of a SVR-RBF
regressor, as well as the selection of the regularization
constant C, loss function & and d (the degree of the
polynomial) of a SVR-POLY regressor is crucial for
accurate forecasting. As no general rule for selecting
these parameters exists, this is usually based on the
grid search method proposed by Lin, Hsu and Chang
(2003). The grid search method is a straightforward
method that uses exponentially growing sequences of
C and ¢ to estimate the best parameter values. The pa-
rameter set C, ¢ that generates the minimum forecast-
ing RMSE error is considered as the best parameter set
and used throughout the experiments.

Experimental Dataset

For evaluating the performance of the utilized fore-
casting methods, (a) the occupancy of all tourist ac-
commodations (except from camping sites) and (b)
the number of overnight stays in the Region of West-
ern Greece that includes data from the Prefectures
of Etoloakarnania, Achaia, and Hlia from January of
2005 to December 2012 were used. All data employed
in this study were obtained from the official records
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of the Hellenic Statistical Authority. It must be em-
phasized that the Hellenic Statistical Authority has not
released any similar data for the period 2013 until now.

There is a total of 96 data points in the dataset,
and the monthly occupancy series and the number of
overnight stays are plotted in Figures 1 and 2. Both
plots exhibit a long-term downward trend as well as a
strong seasonality of 12 months with the maxima of the
occupancy occurring during the high touristic sum-
mer season (maximum in August for every year).

In order to test the performance of the proposed
regressors, the collected data is divided into two sets,
training data, and testing data set. In order to further
test the efficacy of the linear and non-linear prediction
methods, we have calculated the prediction accuracy
with a prediction step ranging from 1 to 24 months
(forecasting horizon of 2 years).

Performance criteria

According to Tay and Cao (2001) and Thomason
(1999), the prediction performance of our method is
evaluated using measures of the root mean square er-
ror (RMSE). RMSE is used to measure the correctness
of the prediction in terms of levels and the deviation
between the actual and predicted values. The smaller
the values, the closer the predicted values (P; ) are to
the actual values (A;).

(14)

Experimental Results

The proposed method’s performance was tested by
using the first 72 data points (72 months; 6 years from
2005-2010) for training purposes and the remaining
24 data points (24 months; 2 years, 2011 and 2012) were
forecasted using four different types of regressors:
SVR-POLY, SVR-RBF, MLP as well as the Lp forecast-
ing networks. The performance of these methods was
compared using the prediction error measurements
(RMSE).

Occupancy Prediction
The performance error of the occupancy prediction
was estimated using different values of prediction
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horizon ranging from 1 to 24 months for all four types
of the tested regressors, using two different Feature
Sets as inputs:

« Feature Set 1 (rs1): This set was used to capture
the pattern of the tourism data as it changes in the
last 12 months (one year), and thus takes into con-
sideration 12 previous monthly occupancy time-
series values X;_;, Xy, . .., X1, in order to pre-
dict X;.

« Feature Set 2 (Fs2): The selection of this set is
based on the fact that business and economic cy-
cles usually last five years and all seasonal data
are typically related to their predecessor and suc-
cessor ones. Therefore, it is adequate to use only
seven time series values from the past 60 ones
(Psillakis, Panagopoulos & Kanellopoulos, 2009).
Fs2 takes into consideration X, X 1, Xi 13,
Xt—24> Xt—36> Xt—48, Xt—60 OCCUpancy time-series
values, in order to predict X;.

The prediction results for both feature sets are pre-
sented in a comparative plot in Figure 3. From this fig-

2009 2010 2011 2012

Monthly Overnight Stays of All Tourist Accommodations (Except Camping Sites) from 2005 (1) to 2012 (12)

ure, itis clear that Fs2 presents the smallest prediction
error for all used predictors with a stable behaviour re-
gardless of the forecast’s time horizon (1-24 months).
In Figure 4, we present a comparison of the four re-
gressors’ prediction accuracy for rs2. It is clear that
the MLP performs the best, with the LR and the svr-
RBF performing worse after 15 months of prediction.

Overnight Stays Prediction

The prediction errors of the overnight stays were also
estimated for different values of prediction horizon
that range from 1 to 24 months and all four different
types of regressors using the aforementioned two Fea-
ture Sets as inputs. The results are presented in Figure
5. From this figure, it is shown that also in this predic-
tion task, Fs2 shows the smallest error for all predic-
tors, with the only exception of the sVR-RBF. In Figure
6, we present a comparison of the four regressors’ pre-
diction accuracy for s2. It is clear that the SVR-RBF,
as well as the LR, performs the best, showing great
robustness regardless of the length of the forecasting
horizon.

AcADEMICA TURISTICA, YEAR 9, NO. 1, JUNE 2016 | 91



ATHANASIOS KOUTRAS ET AL. FORECASTING TOURISM DEMAND

0.06

0.05

0.04 —

0.03

(a) RMSE - Linear

0.02

0.01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(b) RMSE - MLP
[}

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(c) RMSE - SVR-POLY

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.07
0.06 /_/\———\/
0.05
0.04 J

0.03

(d) RMSE - SVR-RBF

0.02

0.01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 3 Monthly occupancy prediction performance (2011-2012) for Fs1, Fs2 and (a) Linear Regressor, (b) Multilayer
Perceptron Regressor, (c) Support Vector Regressor (Polynomial Kernel), and (d) Support Vector Regressor (RBF
Kernel) (gray - Fs1, light gray - Fs2)
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Figure 5 Monthly Overnight Stay Prediction Performance (2011-2012) for Fs1, Fs2 and (a) Linear Regressor, (b)
Multilayer Perceptron Regressor, (c) Support Vector Regressor (Polynomial Kernel), and (d) Support Vector
Regressor (RBF Kernel) (gray - Fsi, light gray — Fs2) Continued on the next page
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Additionally, for comparison reasons, in Tables 1
and 2, we present analytically the forecasted occu-
pancy and the overnight stays values for the years 2011
and 2012 estimated by the SVR-RBEF, SVR-POLY, MLP,
LR, together with the real values for this period.

Finally, Figures 7 and 8 make point-to-point com-
parisons of actual and predicted values of the best
models presented in this (overnight stays) and the pre-
vious section (occupancy), respectively. As shown in
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these Figures, the MLP Regressor for the occupancy
and the svR-RBF for the overnight stays forecasting,
work efficiently and manage to capture the trend of
data extremely well, especially in the high-demand
seasons (June-September).

Conclusion
In this paper we have presented an evaluation of the
forecasting performance of four of the most widely
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Figure 6 Comparison of the Prediction Performance of the Proposed Four Models Overnight Stays Using Fs2
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Figure 7 Illustration of Actual and Forecasting Values of Occupancy Using the Best Model

(MLP Regressor — Fs2; gray — actual, gray dashed

known linear and non-linear regressors based on Ar-
tificial Neural Networks, the Multilayer Perceptron
(MLP), and the Support Vector Regressor based on
polynomial (sVR-POLY) as well as Radial Basis Func-
tions Kernels (SVR-RBF) as forecasting models for
tourism demand. For our experiments, we have used
official statistical monthly data of the hotel occupancy
and overnight stays in the Western Greece Region
from 2005 to 2012 taken from the official records of the
Hellenic Statistical Authority. Then the RMSE is com-
puted for different forecast horizons, ranging from 1
to 24 months (2-year prediction, 2011 and 2012).
Extensive experiments have shown that forecasting
tourism demand in the Western Greece Region can be

— MLP)

accomplished with a small error when using features
sets that take into account the trend the seasonality of
the data, even if a small number (7) of observations
are used. Furthermore, the difference in the behaviour
of the data between the occupancy and the overnight
stays was also highlighted as different regressors must
be used in different forecasting problems.

In the tourism industry, tourism service providers
should assess the costs and benefits of each model be-
fore choosing one for forecasting. This has significant
managerial implications when it comes to construct-
ing a strategic plan for marketing. With the accurate
forecasted trends and patterns that indicate the sizes
of tourism demand, the government, and private sec-

Acapemica TURISTICA, YEAR 9, NO. 1, JUNE 2016 | 95



ATHANASIOS KOUTRAS ET AL.

FORECASTING TOURISM DEMAND

350,000
300,000 ,//\ A
250,000 / \ V.

4 7,

/ N\ J N\
200,000 / \ 7 \
’ / \

150,000 7 V. > 2 \
100,000 / \ -~ // \\

4 \

50,000 = e N =
0,000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 8 Illustration of Actual and Forecasting Values of Occupancy Using the Best Model

(SVR-RBF — F$2; gray — actual, gray dashed - sVR-

tors can have a well-organized tourism strategy and
provide better infrastructure to serve the visitors and
develop a suitable marketing strategy to gain bene-
fit from the growing tourism (Shahrabi et al., 2013).
Moreover, armed with accurate estimates of demand
for tourism, tourism authorities and decision makers
in the hospitality industries would be better able to
perform strategic planning.
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