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Statistical Methods for Social Networks:          

A Focus on Parallel Computing  

Marina Marino1 and Agnieszka Stawinoga2 

Abstract 

Network analysis and modeling have received considerable attention in 

recent times and require the solution of intricate mathematical problems, 

e.g. the problem of enumeration graphs under specified conditions, finding 

the largest complete graph and so on. Even though a lot of well -known 

algorithms have been proposed, some problems are still challenges from a 

computational point of view and their fast solutions are thus of great 

practical interest. This paper focuses on some parallel algorithms for social 

network analysis. In particular, a review of some existing parallel 

algorithms is carried out and a new parallel algorithm is proposed for 

parameters estimation in Exponential Random Graph Models.  

1 Introduction 

During the last few years statistical methods for analysing social networks have 

been developed. From a descriptive point of view there are many well-known 

techniques that measure properties of a network, of nodes, or of subsets of nodes 

(e.g., density, centrality, cohesive subsets). These techniques serve valuable 

purposes in describing and understanding network features that  might bear on 

particular research questions. However to understand the uncertainty associated 

with the observed outcomes, it is necessary to associate a statistical model to these 

measures. Statistical models, also give the possibility to derive estimation for 

underlying parameters and to test whether certain network  substructures are more 

commonly observed in the network than might be expected by chance. Then, it is 

possible to develop hypotheses about the social processes that might produce these 

structural properties. In particular, in recent years, there has been growing interest 

in Exponential Random Graph Models (ERGMs) for networks. These probability 

models provide a flexible way to model social network dependence structure. In 

this model, the parameters are unknown coefficients and must be estimated.
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 Parameter estimation as well as computation of some characteristic network 

indices can require too much computation time to make them unfeasible for very 

large networks.  

In this paper, section 2 introduces some notations and basic definitions. Then 

we provide a brief introduction to challenges in parallel computing for networks 

(section 3). After an overview of parallel algorithms developed to analyze social 

network structures (section 4), we introduce ERGMs and the Robbins-Monro 

algorithm for estimating the model parameters (section 5). In section 6 we propose 

a way to reduce the Robbins-Monro computation time by exploiting parallelism of 

the algorithm; computational results, in terms of efficiency, obtained when 

implementing our algorithm on a parallel computer are shown. 

2 Definitions 

One of the most useful ways to represent networks is by means of graphs. Indeed, 

a graph, consisting of vertices (nodes) joined by edges (links), provide a very 

flexible abstraction for describing relationships between discrete objects.  

In the following analysis we will consider a graph G = (V,E), where V is the set of 

vertices representing actors in the social network, and E, the set of edges 

representing the relationships between the actors, called also ties. We denote the 

number of nodes and edges by n and m, respectively. 

The degree deg(v) of a vertex vV is the number of edges incident to v, with 

loops being counted twice. A vertex of degree 0 is an isolated vertex. 

A graph is a weighted graph if a positive number (weight) ω(e) is assigned to 

each edge. Such weights might represent, for example, costs, lengths or capacities, 

etc. depending on the problem. The weight of the graph is the sum of the weights 

given to all edges. For unweighted graphs, it is assumed that ω(e)=1  eE. 

A graph can be directed, if edges have direction, or undirected. In a directed 

graph the edges are usually called arcs and vertices have both in-degrees and out-

degrees: the in-degree of vertex v is the number of arcs ended with v and the out-

degree is the number of arcs which originate with v. 

The density of a graph is a proportion of the number of edges present in a 

graph to the maximum possible number of edges in a graph with n vertices.  

A path from vV to sV is an alternating sequence of vertices and edges, 

beginning with v and ending with s, such that each edge connects its preceding 

vertex with its succeeding one. The length of a path is the sum of the weights of its 

edges.  

Two vertices u and v are called adjacent if an edge exists between them.  

A clique in a graph is a subset of nodes, all of which are adjacent to each 

other, and there are no other nodes that are also adjacent to all of the members of 

the clique. A maximal clique is defined as a clique that cannot be contained in 
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other cliques. The maximal clique with the largest size is called maximum clique. 

A 3-vertex clique is called triangle. 

The degree distribution is the probability distribution of degrees of vertices 

over the whole graph; so, the degree distribution P(k) of a graph is the fraction of 

vertices in the graph with degree k.  

A scale-free network is a network whose degree distribution follows a power 

law, at least asymptotically. 

3 Parallel computing and its challenges for network 

It is clear that the availability of efficient algorithms for solving problems related 

to graph theory is essential in order to analyze networks. Moreover, real-world 

networks are often very large in size, ranging from several hundreds of thousands 

to billions of vertices and edges so large-scale network analysis is a very 

interesting area of research that has found applications in social networks 

(friendship networks), the internet (the world-wide web), transportation networks 

and biological networks (protein-interaction networks). This implies the solution 

of graph-related problems on large-scale data. In particular, the interest is devoted 

to study two characteristics of network: centrality (which nodes in the graph are 

best connected to others, or have the most influence) and connectivity (how nodes 

are connected to one another). However, as these problems grow larger in scale, 

computation and memory capacities of a single processor computer may not be 

enough (space-efficient memory representation of large graphs is itself a big 

challenge). The development of parallel computer systems has made tractable 

large-size problems that would otherwise take an exceedingly long time. 

In the following analysis, with the term “parallel computer”, we will refer to a 

set of processors that are able to work cooperatively to solve a computational 

problem. This definition is broad enough to include parallel supercomputers that 

have hundreds or thousands of processors, networks of workstations, multiple-

processor workstations, and embedded systems. Parallel computing is a form of 

computation  in which many calculations are carried out simultaneously, operating 

on the principle that large problems can often be divided into smaller ones, which 

are then solved concurrently (“in parallel”). 

However, in the case of graph-related problems, solving algorithms have some 

inherent characteristics that make them poorly adapted to an implementation on 

current parallel computer. This is due to the fact that massive graphs that occur in 

real-world applications are often not amenable to a balanced partitioning among 

processors of a parallel system. Several properties of graph problems which create 

important challenges for efficient parallelism for solving large-scale graph 

problems are extensively discussed by Lumsdaine et al. (2007).  

First of all, the computations performed by a graph algorithm are dictated by 

the vertex and edge (node and link) structure of the graph on which it is operating. 
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As a result, parallelism based on partitioning of computation (task parallelism) can 

be difficult to exploit because the structure of computations in the algorithm is not 

known a priori. 

Moreover, the data in graph problems are typically unstructured and highly 

irregular. This means that data-access patterns and workload are only known at 

run-time, as well as data dependency, which is dynamic. So, similar to the 

difficulties encountered in parallelizing a graph problem based on its 

computational structure, the irregular structure of graph data makes it difficult to 

introduce parallelism by partitioning the problem data (data parallelism). In 

particular, scalability can be quite limited by unbalanced computational loads 

resulting from poorly partitioned data. 

Finally, algorithms to solve graph-related problems are typically memory 

intensive, and the memory accesses are fine-grained and highly irregular. Indeed, 

relatively small amounts of computational work are done between memory 

accesses, so there is a higher ratio of data access to computation than for other 

scientific computing applications. Moreover, because graphs represent the 

relationships between entities and because these relationships may be irregular and 

unstructured, the data access patterns tend not to have very much locality. So, 

runtime can be dominated by the waiting time of memory. Thus, the execution 

time of a graph computation strongly correlates with the memory subsystem 

performance, rather than the processor clock frequency or the floating-point 

processing capabilities of the system. This leads to poor performance on parallel 

computing systems. On distributed memory clusters, few parallel graph algorithms 

outperform their best sequential implementations due to long memory latencies 

and high synchronization costs. Parallel shared memory systems are a more 

supportive platform. They offer higher memory bandwidth and lower latency than 

clusters, as the global shared memory avoids the overhead of message passing. 

However, parallelism is dependent on the cache performance of the algorithm and 

scalability is limited in most cases. While it may be possible to improve the cache 

performance to a certain degree for some classes of graphs, there are no known 

general techniques for cache optimization because the memory access pattern is 

largely dependent on the structure of the graph.  

4 Social network structural properties and parallel 

computing: state of art 

The main topic of Social Network Analysis (SNA), as stated in Carrington et al. 

(2005), is to “measure the structural properties of networks and/or relational 

properties of particular objects/actors within them”. In this section we present a 

quick overview of parallel algorithms developed for analyzing several structural 

properties of social networks. In particular, we will focus on parallel solutions 
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proposed for solving problems such as centrality indices calculation, maximal 

cliques enumeration and triangles counting. 

4.1 Centrality indices 

Centrality is one of the most important and widely used measurements in SNA 

(Carrington et al., 2005). It is a descriptive characteristic for actors/ networks with 

various structural properties, and a crucial parameter in analyzing and 

understanding the actor roles in social network. SNA researchers usually use 

centrality to identify the most powerful, influential or critical actors. The most 

fundamental and popular definitions of centrality were proposed by Freeman in the 

late 1970s (Freeman, 1979). The author developed three measures of centrality, 

one relative and one absolute measure of the centrality of positions in a network, 

and one reflecting the degree of centralization of the entire network. These 

measures are based on degree, closeness and betweenness concepts, respectively.  

Bader and Madduri (2006) presented parallel algorithms for computing those 

centrality indices, optimized for scale-free sparse graphs. These algorithms have 

been optimized to exploit properties typically observed in large scale real-world 

networks, such as the low average distance, high local density, and heavy-tailed 

power law degree distributions. The authors presented implementation details of 

the centrality metrics on two classes of shared memory systems: symmetric multi-

processors and multi-threaded architectures. Both of them have an high memory 

bandwidth and an uniform memory access. Moreover, a cache-friendly adjacency 

array representation (Park et al., 2002) for internally storing the graph is  used. 

4.1.1 Degree centrality 

The degree centrality is designed to detect nodes with a higher number of adjacent 

edges (higher degree) and reflects the popularity and relational activity of an actor 

(Freeman, 1979). Degree centrality is measured as the degree of the given node v:  
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where deg(v) denotes the degree of a vertex v.  

For directed graph, two measures of degree centrality are usually defined: in -

degree and out-degree centrality. 

Bader and Madduri (2006) proposed to take advantage of memory 

characteristics of the high performance computer they employed, storing both the 

in-degree and out-degree of each node in contiguous arrays during construction of 
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the graph. This makes the computation of degree centrality straightforward, with a 

constant time look-up on both the computing systems they referred to. 

 

4.1.2 Closeness centrality 

Closeness centrality measurement is based on the geodesic distance d(v,u), that is, 

the minimum length of the path from v to u (Freeman, 1979). Closeness centrality 

for a node v is defined as: 
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It indicates the actor's availability, so it reveals the capacity of a node to be 

reached.  

An approximation of this index can be obtained choosing randomly k sample 

vertices and computing Breadth-First Search (BFS)3, for unweighted graphs, or 

Single-Source Shortest Paths (SSSP)4, for weighted graphs, from each sample 

vertex to all other vertices.  

The estimated centrality of a vertex is defined in terms of the average d istance 

to the sample vertices as:  
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If the number k of sample vertices  is set to Θ(logn/ε
2
), the approximate closeness 

centrality value can be calculated in О(logn/ε
2
(nlogn+m)) time within an additive 

error of εΔ with high probability (Eppstein and Wang, 2004). 

Bader and Madduri (2006) proposed a parallel algorithm based on this 

approach. The parallelization is achieved by exploiting data parallelism. Each of p 

processors runs SSSP (or BFS) computations for k/p vertices and store the 

evaluated distance values.  The approximate closeness centrality value of each 

vertex can be calculated in O(k)=O(logn/ε
2
) time, and the summation for all n 

vertices would require O(nlogn/pε
2
). 

                                                 
3
 BFS is a graph search algorithm that systematically explores the edges of graph to discover 

every vertex that is reachable from vertex v. It computes the distance (smallest number of edges) 

from v to each reachable vertex. 
4
 SSSP find shortest paths from a source vertex v to all other vertices in the graph  



Statistical Methods for Social Networks: A Focus on Parallel Computing  63 

 

 

4.1.3 Betweenness centrality 

The betweenness centrality of a vertex v is defined to be the fraction of shortest 

paths between pairs of vertices in a network that pass through v (Anthonisse, 1971; 

Freeman, 1979). It is defined as follows:  

 

, , , , , ,

( ) ( ) ( ) /st st st

s t V s v t v s t V s v t v

BC v v g v g
     

   , 

 

where ( )st v  is the pairwise dependency, that is the ratio between the number 

( )stg v of shortest paths between s and t that contain v, and the number stg  of 

shortest paths between nodes s and t.  

This measurement represents the actor's capability to influence or control 

interaction between actors it links. It measures the control a vertex has over 

communication in the network, and can be used to identify critical nodes in the 

network. High centrality index means that a vertex reaches other vertices on 

relatively short paths, or that a vertex lies on a considerable fraction of shortest 

paths connecting pairs of other vertices. 

Bader and Maddurri (2006) proposed a parallel algorithm for computing a 

betweenness centrality index based on a sequential algorithm presented by Brandes  

(2001). Brandes' procedure requires the definition of a set of predecessors of a 

vertex v on shortest paths from s as:  
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The sequential algorithm performs n BFS from each sV; these searches make it 

possible to create the predecessor set and to record the number of shortest paths 

through a vertex w such that v ( )sP w .  

Next, for every sV, both the number of shortest paths through a vertex w 

stored in g(w) and predecessor sets along the paths are used to compute  
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In the end, betweenness centrality is obtained as:  
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This algorithm computes the betweenness centrality index for all vertices in the 

graph in O(mn+n
2
logn) time for weighted graphs, and O(mn) time for unweighted 

graphs.  

The parallelism of this algorithm can be exploited at three levels of 

granularity5:  

 Coarse-grained: the computation starting from each source vertex can be 

considered as a task; the algorithm needs n tasks to compute partial values, 

which can proceed in parallel. If p processors are used, p copies of data 

structures are required. In a real world, this space usage for a large scale 

graph easily exceeds the available physical memory on conventional 

parallel computers. 

 Medium-grained: the  BFS explores all neighbors of each vertex. One 

exploration of a vertex can be considered as one task, thus, all tasks could 

proceed totally in parallel if there was no shared neighbor between any two 

vertices. Otherwise, memory access conflicts occur and a synchronization 

mechanism is required to exploit this granularity of parallelism.  

 Fine-grained: the task of exploring the neighbors of a vertex itself can also 

be parallelized. The amount of available parallelism depends on the degree 

of a vertex. 

 

In the work of Bader and Maddurri (2006), the parallel algorithms exploit 

either medium-grained or fine-grained parallelism. For the symmetric multi-

processors implementation, they assigned a fraction of the vertices from which to 

initiate BFS (or SSSP) computations to each processor. The authors noted that the 

approach used for symmetric multi-processors system is not efficient for multi-

threaded system so they proposed a finer partition of the work  in order to saturate 

all the hardware threads. They parallelized the actual BFS (or SSSP) computation, 

and also have a medium-grained partition at the outer level. The computational 

complexity is at least of O(nm/p) for unweighted and weighted graphs and 

O[(nm+n2logn)/p] for weighted graphs. These bounds can be reached only if the 

degree of each vertex is 1. 

The parallel algorithm for betweenness centrality can be used also for 

calculating the stress centrality, a centrality metric based on shortest paths counts, 

first presented by Shimbel (1953). 

                                                 
5
 Applications are often classified according to how often their subtasks need to synchronize or 

communicate with each other. An application exhibits fine-grained parallelism if its subtasks must 

communicate many times per second; it exhibits coarse-grained parallelism if they do not 

communicate many times per second 
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4.2 Maximal clique 

Many practical problems such as detection of social hierarchies, genome mapping, 

gene expression analysis, require the enumeration of all maximal cliques in a 

graph (i.e. to solve the problem of maximal clique enumeration (MCE)). By a 

result of Moon and Moser (1965), any n-vertex graph can have at most 3
n/3

 

maximal cliques. Enumerating all maximal cliques in networks is an NP-hard 

problem (Lawier, 1980), that is, its computational cost is, at least, of exponential 

order with respect to the number of vertices.  

Zhang et al. (2005) proposed a parallel algorithm (pClique) to enumerate all 

maximal cliques in a graph. This algorithm is based on the work of Kose et al. 

(2001) where a serial algorithm (KOSE) that uses BFS strategy is proposed and 

makes it possible to find all maximal cliques in an order with non-decreasing size 

k. Thereby, maximal cliques with size k are generated from cliques of size (k-1). 

However, KOSE algorithm requires storing all k-cliques and (k+1)-cliques, and 

this needs an enormous amount of memory. 

The parallel technique is based on the fact that the generation of (k+1)-cliques 

from a k-clique sub-list is independent of any other k-clique sub-lists. So, starting 

from different k-clique sub-lists, each processor can enumerate its own (k+1)-

cliques independently. Since the number of cliques generated could vary from one 

sub-list to another, this algorithm needs load balancing to pass some work from 

heavy loaded processor to light loaded ones. The pClique algorithm proceeds as 

follows: at each step a list of k-cliques is divided and distributed among 

processors which enumerate (k+1)-cliques. When all processors finish their work, 

results from each processors are collected, the updated list of cliques is again  

divided and redistributed among processors. The procedure ends when no 

candidate (k+1)-cliques are generated by any processors. Since all processors work 

independently, this algorithm does not require any communication when 

processors perform clique enumeration operation but the BFS strategy used makes 

the algorithm memory-intensive as well as the sequential one. This affects both 

size of graphs that can be handled by the algorithm and the parallel algorithm 

performance (see experimental results in the work of Zhang et al. (2005)). 

Another parallel MCE algorithm is the “Parallel Enumeration of All Maximal 

Cliques” (Peamc) algorithm presented by Du et al. (2006). This algorithm is based 

on a serial MCE procedure described by the same authors. This procedure,  based 

on Depth-first search (DFS)6, generates a disjoint set of maximal cliques for every 

                                                 
6
 DFS is an algorithm for traversing a graph starting from a root item (a selected node of the 

graph) and traveling through the edges. Algorithm starts at a specific vertex, whic h becomes 

current vertex. Then algorithm traverse graph choosing a vertex adjacent to the current vertex to 

visit next. If all adjacent vertices have already been discovered, or there are no adjacent vertices, 

then the algorithm backtracks to the last vertex that had undiscovered neighbors. Once all 

reachable vertices have been visited, the algorithm selects from any remaining undiscovered 

vertices and continues the traversal. The algorithm finishes when all vertices have been visited.  
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vertex in a given graph. Peamc uses a simple parallelization scheme that simply 

assigns each parallel process a disjoint set of vertices and allows each process to 

enumerate every maximal clique in the set of maximal cliques assigned to it by the 

serial algorithm. The Peamc algorithm does not have the same memory issues of 

pClique algorithm but since there is not a load balancing step after the initial work 

distribution, certain processes would be allowed to terminate early.  

To overcome this limitation, Schmidt et al. (2009) presented a parallel, 

scalable, and memory-efficient MCE algorithm for distributed and/or shared 

memory high performance computing architectures. The proposed algorithm 

represents a parallelization of the MCE method of Bron and Kerbosch (1973) (BK) 

that enumerates maximal cliques by using a backtracking search when visiting all 

vertices in a maximal clique. The search paths in BK are expanded into a  search 

tree structure. A search path can be extended in BK by visiting an unexplored 

vertex that is connected to every vertex already explored by the search path. Thus, 

the explored vertices form a clique in the graph. If a search path cannot be 

expanded, then the representative clique is a maximal clique. Schmidt et al. (2009) 

proposed an effective decomposition of the BK search tree into independent search 

sub-trees whose leaf nodes represent maximal cliques. The algorithm is structured 

as follows. Initially, it reads in the input graph data. Since the subtask of 

generating a sub-tree in the BK search tree requires that a processor is able to 

check the adjacency of nodes in the input graph, the algorithm distributes the 

vertex adjacency list to every processor. Once the graph data has been distributed, 

all candidate path structures that represent cliques of size 1 are generated and 

distributed to the computing elements which can begin to independently generate 

maximal cliques according to the BK method of generating maximal cliques. 

Processors continue to generate maximal cliques independently until one of them 

finishes exploring all of the sub-trees of the BK search for which it had been 

assigned. At this point the idle processor requests for more sub-trees to explore 

from another randomly chosen processor. This algorithm makes it possible to 

solve the problem MCE also for large graphs in a time that scale linearly with the 

number of processors used. 

4.2 Problem of triangles 

The triangle is one of the most basic structures in complex network analysis, and 

the problems of deciding if a given graph contains a triangle as well as counting 

the number of triangles in the graph, and listing all of them recently gained much 

practical importance. 

In particular, counting the total number of triangles is required to check two 

properties of a network: clustering and transitivity. Clustering, measured by means 

of the clustering coefficient proposed by Watts and Strogatz (1998), is a measure 

of degree to which nodes in a graph tend to cluster together, while transitivity, 
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quantified by the transitivity ratio (Newman et al., 2002), measures the probability 

that two neighbors of a vertex are connected.  

Both these indices are based on the total number of triangles and are widely 

used to understand the structure, dynamics and evolution of real-world networks. 

Owing to the large dimension of this network, straightforward and even 

approximate counting algorithms can be slow. Moreover, the asymptotically 

fastest existing methods for counting triangles (lowest time complexity) (Alon et 

al., 1997; Itai and Rodeh, 1978) suffer from space complexity. Specifically, for a 

network with n nodes, they present O(n
2
) space complexity. Therefore, in practice, 

instead of counting exactly the triangles, it is preferred to list the triangles (Latapy, 

2008) or to use streaming (Bar-Yosseff et al., 2002; Buriol et al. 2006) and semi-

streaming models (Becchetti et al., 2008). 

Tsourakakis (2008) presented a new method for counting triangles 

approximately in large, real-world networks. In this work the author presented the 

Eigen-Triangle algorithm for counting the total number of triangles in a graph, and 

the EigenTriangleLocal algorithm that returns the count of triangles that contain a 

desired node. Both algorithms use a link between the number of triangles and the 

eigenvalues of the adjacency matrix of the graph (the number of triangles is 

proportional to the sum of the cubes of eigenvalues) and the observation that just 

the top eigenvalues contribute significantly to the total number of the triangles. 

The algorithms are based on Lanczos method (Golub and Van Loan, 1989) method 

which is a well studied projection method for solving the symmetric eigenvalue 

problem using Krylov subspaces. These algorithms are not only fast, but, most of 

them have been parallelized, or can be easily parallelized.  

5 Stochastic model for social networks 

Graph models used in social network analysis may describe different issues, the 

temporal dynamics of the social processes or the probabilistic structure of the 

social ties, but each of them represents the idealization and simplification of the 

actual processes. The exponential random graph models for social networks are the 

stochastic models for graphs and attempt to represent the stochastic mechanisms 

that produce ties, and the complex dependencies this induces. This class of models 

forms a statistical exponential family and it has been referred to as the p* class of 

models (Holland and Leinhardt, 1981; Wasserman and Pattison, 1996). The 

Markov random graph models (Frank and Strauss, 1986) are a particular sub-class 

of exponential random graph models in which a possible tie from i to j is assumed 

conditionally dependent only on other possible ties involving i and/or j.  

A social network can be represented also by n × n adjacency matrix, Y, which 

with its elements is assumed for following analysis as random variables. We 

denote by Yij a network tie variable where Yij = 1 if there is a network tie from 

actor i to actor j, and where Yij = 0 if there is no tie. We specify yij as the observed 
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value of the variable Yij. We let Y be the matrix of all variables Yij and y the 

observed matrix with elements yij. 

The Exponential Random Graph Model (ERGM) is defined by  
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where: 

 Y is the adjacency matrix of random network on n nodes, 

 γ is the support of Y, the set of all possible networks with n nodes, 

 θ is a vector of parameters, 

 u(y) is a known q-vector of graph statistics on y, 

 κ(θ,γ) is the normalizing factor. 

 

In this model, the θ parameters are unknown parameters that we want to 

estimate. The goal in defining the vector of statistics u(y) is to choose statistics 

that summarize the social structure of the network (e.g. number of edges, number 

of triangles). These statistics should match the purpose for which networks are 

being simulated and model parameters are being estimated. The denominator κ(θ,γ) 

depends on both θ and the support γ and it is defined as:  

 

     ( , ) exp ( )t

z

u z


   


 .          (5.2) 

 

The dependence of κ(θ,γ) on the unknown parameter vector carries the primary 

barrier to inference when using this model. It makes difficult to obtain the 

maximum likelihood estimation for an exponential family random graph model.  

Until recently, inference for ERG models has been almost exclusively based on 

an alternative local approximation to the likelihood function referred to as the 

pseudo-likelihood (Strauss and Ikeda, 1990). The computational tractability of the 

pseudo-likelihood function makes it an attractive alternative to the full likelihood 

function. Since this approach assumes conditional independence of the random 

variables representing the relational ties (that is, Yij and Ykl are independent 

whenever i  k and j  l), it gives reasonable results only for dyadic independence 

models which for non-directed networks are defined as those in which P(Yij=yij) is 

independent of P(Ykl=ykl)  (i,j)  (k,l) conditional on the actor attributes. Such 

models typically consist of an edge term and set of terms counting the number of 

instances of edges among actors with different attribute combinations. In this case 

the Maximum Pseudo-Likelihood (MPLE) estimators correspond to the exact 

solution and the true maximum likelihood estimator may be found via an MPLE 

computation. For dyadic dependence models statistical properties for MPLE 
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estimators are not well understood and in practice MPLE does not provide a good  

performance (van Duijn et al., 2009). 

Currently the favored methods for statistical inference are Markov Chain 

Monte Carlo (MCMC) Maximum Likelihood Estimate (MLE) (Geyer and 

Thompson, 1992) and an MCMC implementation of the Robbins-Monro algorithm 

(Snijders, 2001; Snijders, 2002), both of which rely on the properties of the 

method of moments for exponential family distributions. The first method, 

proposed for approximating MLEs in exponential families, was used for parameter 

estimation in exponential random graph models by Corander et al.(1998). 

In the following analysis we will focus on the Robbins-Monro algorithm. This 

method is a stochastic iterative algorithm and can be used to compute moment 

estimates, and therefore also maximum likelihood estimates in the exponential 

random graph model. The algorithm proposed by Snijders (2002) distinguishes 

three phases. In phases 1 and 3 a generation of networks is required by simulating 

random draws from the exponential random graph distribution with parameters 

that depend on the algorithm's phase. In phase 1 generated networks are used to 

determine a diagonal matrix 
00 (cov ( ( )))D diag u Y  to be used in the successive 

phase. Its diagonal elements are estimates of the derivatives ( ) /kk k kd E u Y    ,    

k = 1,2,..., q evaluated in the initial value θ0 of the estimation algorithm, the 

method usually used to choose θ0 is pseudolikelihood estimation method. In phase 

3 the estimate covariance matrix ( ) cov( ( ))u Y   of u(Y) is used to estimate the 

standard error of the model parameters estimates. The phase 2 is the most 

important one which consists of several sub-phases. The main goal of this phase is 

to determine iteratively the estimates parameter, according to the updating step:  

 

     ( 1) ( ) 1

0
ˆ ˆ ( )t t

ta D Z t    ,     (5.3) 

 

where at is the step size, D0 is the diagonal matrix computed in phase 1, and Z(t) 

for t=1,2,... are random variables so that the conditional distribution of Z(t) given 

Z(1),...,Z(t-1) is the distribution of Zθ (a random variable with probability 

distribution governed by parameter θ) obtained for ( )ˆ t  . Zθ is given by 

0( )Z u Y u    where u0=u(y) is the observed value of statistics and Y has 

probability distribution (5.1) with parameter θ. 

6.  A new parallel algorithm for estimation ERGM 

parameter 

In June 2009  we presented at the Workshop ARS'09 the state of art of parallel 

computing for ERGM (Marino and Stawinoga, 2009). We showed how parallel 
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computing could be useful for ERGM. We distinguished two kinds of problems 

where parallel computing could be used: 

 for parameter estimation 

 for network simulation. 

 

During our studies of different algorithms for parameter estimation we realized 

that in the Robbins-Monro algorithm there are two moments (phase 1 and phase 3) 

where the generation of number of independent networks is required and so, 

parallelism could be effective. The parallelization of phase 2 has to be further 

investigated owing to the presence of MCMC simulations and inherently 

sequential nature of the updating step (5.3). 

Recently, Ripley and Snijders (2010) introduced in the SIENA v.4 package the 

possibility to perform all three phases of parameters estimation procedure in 

parallel. However, it has to be noted that since Siena v.4 carries out the statistical 

estimation of models for the evolution of social networks according to the dynamic 

actor-oriented model of Snijders (2001), the Robbins-Monro algorithm solves a 

slightly different problem which does not require MCMC simulations. So, 

parallelization of all three phases can be achieved using straightforward simple 

multiple simulations. 

In the following analysis we present our parallel approach and some results 

obtained by implementing a parallel algorithm. 

The natural strategy for parallelizing phases 1 and 3 of the Robbins-Monro 

algorithm is to distribute the generation of networks among processors; processors 

work concurrently to generate different networks under the same parameters 

configuration and to compute a partial estimates of the diagonal matrix D0 in 

phase 1 and of the covariance matrix Σ(θ) of statistics u(Y) in phase 3 that are 

afterwards combined to obtain the estimate of overall matrices. Communication 

among processors is limited to the initialization phase, where basic common 

information is exchanged, and the final phase, when partial results are combined to 

compute overall results of both phases. Therefore, this algorithm can be generally 

considered as “naturally parallel”. However, it is worth noting that phase 1 

requires the generation of a small number of networks (usually, 7+3q, where q is 

the number of statistics used in the model) while in phase 3 a greater number of 

generated networks is required; in the work of Snijders (2002) it is suggested to 

generate 1000 of them. 

6.1 Computational results 

In order to evaluate the effectiveness of such a parallel approach we implemented 

our algorithm on an IBM Bladecenter. It consists of 6 Blade LS 21, each one 

equipped with 2 AMD Opteron 2210 HE, with 4 GB DDR2 RAM. Each Blade is a 

Non-Uniform Memory Access (NUMA) architecture. The Blades are connected via 
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a Gigabit Ethernet Nortel layer 2/3 switch, integrated into the Bladecenter. The 

operating system installed on the system is Linux Red Hat Enterprise ES, release 

4. Our algorithm is written in R language using functions of R environment and of 

the statnet package (Handcock et al., 2003); algorithm communication (message 

passing) relies on RMPI (Yu, 2010). 

To evaluate the  performance of the proposed parallel algori thm we developed, 

we use parallel efficiency (Kumar et al., 1994) defined as:  

 

     
( )1

( , )
( , )

seqT N
E N P

P T N P
 ,   (6.1) 

 

where T(N,P)  is the runtime of the parallel algorithm, and Tseq(N) is the sequential 

runtime of the Robbins-Monro algorithm. 

The data used for our work are the network data from package statnet for R. 

We chose 4 networks different in size and density. The data “flo” represents a data 

set of Padgett (1994), consisting of weddings among leading Renaissance 

Florentine families; it is a directed network with 16 nodes (families) and 20 edges 

(marital ties); the network's density is  0.167. The data “coleman” is a directed, 

unvalued 73-node network with 202 edges. This data derives from Coleman 

reports research (Coleman, 1964) on self-reported friendship ties among 73 boys 

in a small high school in Illinois over spring time in the 1957-1958 academic year; 

the density of network is 0.077. The networks “faux.mesa.high” and 

“faux.magnolia.high” (Resnick et al., 1997) represent simulations of an in-school 

friendship network with 205 nodes (students), 203 undirected edges (mutual 

friendships) and 1461 nodes (students), 974 undirected edges (mutual friendship), 

respectively. The densities of these two networks are 0.0097 and 0.0009.  

We decided to test our algorithm only on undirected networks so we transformed 

“flo” and “coleman” to meet this characteristic using R function for this purpose.  

Moreover, for our analysis we chose three models: 

 model that includes four statistics: number of edges, the geometrically 

weighted edgewise shared partner (GWESP)  

 model that includes four statistics: number of edges, the geometrically 

weighted edgewise shared partner (GWESP) and the geometrically 

weighted degree (GWD)  

  model that includes four statistics: number of edges, the geometrically 

weighted edgewise shared partner (GWESP), the geometrically weighted 

degree (GWD) and the geometrically weighted dyadwise shared partner 

(GWDSP).  

 

The geometrically weighted edgewise shared partner (GWESP), the 

geometrically weighted degree (GWD) and the geometrically weighted dyadwise 

shared partner (GWDSP) represent statistics that are useful for avoiding 
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degeneracy and for capturing high-order of dependency structures in networks 

(Hunter, 2007). The terms GWESP, GWDSP are equivalent to the alternating k-

triangle and the alternating k-star. The GWD shares a similar relationship to the 

alternating k-two path, proposed by Snijders et al. (2006).  

 

 

Figure 1: Efficiency (on vertical axis) of phase 1 for the four networks considered for a 

varying number of processors (on horizontal axis) and number of statistics.  

 

In Figure 1 we report the efficiency of phase 1 when varying the number of 

processors from 2 to 10 and the number of statistics for the four different networks 

described above. We note that efficiency generally tends to decrease as the number 

of processors increase especially for lower dimension networks. This is because 

this phase requires generation of a small number of networks, so, as the number of 

processors grows (and number of networks that each processor have to generate 

decreases), the communication phase increasingly affects the total execution time.  

In Figure 2 we report the efficiency of phase 3 when varying the number of 

processors from 2 to 10 and the number of statistics for the four different 

networks. For this phase, efficiency is always greater than 0.7 and shows an 

increasing tendency with processors number.  We observed that time required for 
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phase 3, for the networks we considered, is almost 50% of the total computing 

time. 

 

Figure 2: Efficiency (on vertical axis) of phase 3 for the four networks considered for a 

varying number of processors (on horizontal axis) and number of statistics.  

 

Finally, in Figure 3 we show comparisons of phase 3 efficiency values among 

the 4 different networks for a different number of statistics. From these 

comparisons we observe that, even if phase 3 perform well on parallel computer 

for all the considered networks, networks for which reduction of computational 

time is maximum are the larger ones and the ones with greater density.  

7 Conclusions and future work  

The use of parallel computing in social network analysis becomes essential as 

networks size (and density) increase. In this paper, after a review of some parallel 

algorithms developed to address computational problems in evaluating structural 

properties of networks, we focus our attention on exploiting parallelism when 

estimating parameters of an exponential random graph model. In particular we 

introduce parallelism in phases 1 and 3 of the Robbins-Monro algorithm. Results 
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obtained in terms of parallel efficiency show that parallelization is not really 

effective in phase 1 except for larger networks, while in phase 3 it makes it 

possible to reduce computational time by a factor almost equal to the number of 

processors used. Parallelism of the Robbins-Monro algorithm has to be further 

investigated in order to reduce also the computation time of phase 2; this phase is 

rather more difficult to parallelize because of the presence of MCMC and 

inherently sequential nature of the updating step. 

 

Figure 3: Efficiency (on vertical axis) of phase 3 for the three different numbers of 

statistics considered for a varying number of processors (on horizontal axis) and 

networks. 
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