38

ASSURING NUMERICAL STABILITY IN THE INFORMATICA 4/89
PROCESS OF MATRIX REFACTORIZATION

WITHIN LINEAR PROGRAMMING PACKAGE
ON PC :

Keywords: linear programming, HR matrix, matrix Janez Barle and Janez Grad
factorization, supersparsity, microcomputers Ekonomska fakulteta Borisa Kidri¢a, Ljubljana

ABSTRALCT: . One of the most challenging tasks of those who develop
linear programming software is development of quick, efficient
and reliable matrix refactorization subroutine. The paper
describes the implementation of this subroutine within the FC-LIP
praogramming package, which we developed for the IBM-PC personal
computers. A major design criterium for PC~LIP was to combine
storage economy with numerical stability. The former was achieved
using data structures which exploit super-sparsity and the latter
implementing state of the art algorithms for basis matrix
refactorizatian. These algorithms were combined with different
tools for improving numerical stability. The resulting subroutine
performs satisfactory even on a badly scaled data which are

quite common in practice.

ZAGOTAVLIANIE NUMERIENE STABILNOSTI MED REFAKTDRIZACIJIO BAZNE
MATRIKE V PROGRAMSKEM PAKETU Z2A LINEARNO PROGRAMIRANIE NA OSEBNEM
RACUNALNIKU: Razvoj hitrega, uzinkovitega in zanesl jivega
podprograma =za faktorizacijo bazne matrike spada med najbol]
zahtevne naloge pri izgradnji programske opreme 2a linearno
programiranje. &lanek podaja opis implementacije tega podprograma
v okviru programskega paketa PC-LIP, ki smo ga razvili za IBM
kompatibilne osebne rae&unalnike. Pri na&rtovanju programskega
paketa PC-LIP je bil glavni cilj vskladitev ekonomiene izrabe
pomnilnika z rnumeri&no stabilnostjo. To je bilo doseieno predvsem
z uporabo podatk&vnih struktur, ki izrabljajo hiperrazprienost,
in najbolj ‘ueinkovitih sodobnih algoritmov za izvajanje
refaktorizacije bazne matrike. Ti algoritmi so bili kombinirani 2z
razlienimi postopki 2a zagotavljanje numeriéne stabilnosti.
Razviti podprogram za refaktorizacijo je bil uspefen tudi na
slabo pogojenih prablemih, ki so v praksi dokaj pogosti.

Introduction i) Data structures which are designed for
exploiting sparsity in LP data. They can
be also tailored for wutilization of
structure and distribution of nonzero
elements contained in LP matrix.

ii) PRevised simplex algorithm with product
form factorization of basis matrix. State
of the art implementations of this method
are based on LU factorization.

iii) Subroutines for refactorization of basis
matrix. They are designed for controlling
size and accuracy of product form
factorization of basis matrix during the
LP solving process.

A major concern of those who develop linear
programming software is how to produce
efficient, reliable and numericaly stable
computational procedures for solving large-—
scale problems. When microcomputer software is
considered, the problem of fitting algorithms
and data structures within the limited storage
is also very important. Contemporary literature
on computational linear programming offers a
plethora of different methods for achieving
these goals. Roughly speaking these algorithms
and techniques can be divided into following
groups:

Each of these groups offers a great choice of

more or less elaborate techniques or

Sometimes
the

algorithms. it is not practical to

use only most advanced methods. For

example, it is often desirable to sacrifice

of
But in any case

some computational speed in favour
reliability or storage economy,

refactorization subroutine have to do its job

correctly. Refactorization

subroutine is also
very important part of PC-LIP packaée which
the IBM-PC personal computers.
life problems
as that this package is capable to
even very badly scaled problems. We

to the
refactorization

we
developed for
Practical

experiences on real

show solve
attribute

such a careful

performance
of
Our implementation can be described
as a successful combination of several state of
the with
controlling numerical stability.

mainly
implementation matrix

subroutine.

art numerical methods toocls for

That is

subroutine

why
description of our refactorization

may be of interest.
Analysing Structure of Basis Matrix

Refactorization subroutine starts with

analytical phase, where the structure of matrix
nonzero elements is

analysed. In our

implementation Hellerman and Rarick algorithm
1971) is wused for this
purpose. This is quite a famous algorithm which

is de facto standard

(Hellerman, Rarick,

for analytical phase
implementations. Results of this algorithms are
row which transform
matrix into form of so called HR matrix.

HR matrix can be,

and column permutations

Every
after suitable rearangement
of rows and columns, represented in the form of

block lower triangular matrix:

gk

matrices and H1
HR
general

where Fi(i=1,...,k) are square

are rectangular matrices.

matrices
block
of
£l These matrices are always nonsingular. When
their 1%l they called
bumps or external bumps and must have structure
similar

are

distinguished from lower

triangular matrices by structure matrices

dimension exceed

are
to one on a next picture, where # is
symbol for element which must be different from
zero and % symbaol for element which can be both
zero or nonzero.

39

Fl =

the
There are two

Columns with, at least one nonzero

main diagonal are called spikes.

above

rules cancerning spikes:

i) Nonspike columns within bump must Hhave
nonzero diagonal elements.

ii) last column within the bump is a spike
having a nonzero uppermost element.
Typical cverali number of spikes is much
smaller than the number of columns within the
matrix. This is an important fact which can be
exploited' far the economical storing of the
faﬁtorized basis matrix. It is easy to prove

that when product form factorization is formed,
only those elementary matrices which correspond
to spikes must be actually computed and stored.
Other matrices from the product can be replaced
by pointers to the non-spike columns (Chvatal,
1983) .

with

as a

that matrix B

can be represented

It is ‘check

described

easy to
structure

product of matrices having a following forms

I, o]
gl = 231
(o]
i
H I,
where F! and H! are situated in the same rows

and columns as in matrix B. I_ and I_ are unit

s
matrices of dimension s and p respectively. It
is assumed that s and p are numbers of columns
to the left and to the right of F1,

which is of dimension r (s+r+p = m). Therefore

matrix

B = Blg2,,.8¥ (1)

be

can

Adequate definition for this identity can
"generalized product form of matrix B". B*
be

{(ordinary

defined as generalized elementary matrices
which
factorization,

elementary matrices, are

cantained can
differ

column).

in product form

from identity matrix only in one

For matrices structured in such a way
the following factorization formula is valid:

gi = Fi 1 @

Hil 1 ol H| I

This identity explains why elementary matrices

within particular bump can be computed

completely independent from other parts of

matrix.
If submatrix F! is a bump, then facterization
(2) is called splitting the bump
1982).

is to reduce number of nonzero elements in the

(Helgason,
Kennington, Main purpose for its usage
product form factorization of B. Fill in
(creating of new nonzero elements) during the
factorization of B! is restricted to r rows
which belong to external bump el It is an
improvement if compared with the usual product
form factorization, where creation of new
nonzero elements is possible in rows belonging
to submatrix Hi as well. Experiences show that
this approach saves computer storage in spite
of some overhead which is necessary to

additional

store
r elementary matrices {Hellerman,

Rarick, 1971, Helgason, Kennington, 1982).
Numserical Phase of the Algorithms

Our algorithm for the numerical phase of

refactorization which includes splitting the
bump is presented in the continuation. This
is modification of recent

algorithm algorithm

(Helgason, Kennington, 19821 in which we

included additional techniques for assuring

numerical stability. 1t was necessary due to
the fact that in the mentiéned algorithm well
scaled matrix was assumed. This assumption is
in general quite a realistic one because many
mainframe programming packages use some
procedures for automatic scaling of data prior
to apélying the revised simplex algorithm. For
example, this is true when MPSXs370 is
1977 .
such kind of procedure is not included in the
PC~LIP. We avoided this for the sake of storage

economy. The use of scales for rows and columns

considered (Benichou et al, However,

requires additional storage and, what is more

important, practicaly prevents employing of
such data structures which take advantage of
supersparsity. This is a characteristics of
large scale problems which means that the

number of distinct numerical values in the
problem matrix is usually much smaller than the
number of nonzero coefficients (Greenberg,
1976). In the PC-LIP supersparsity is exploited
in a standard way: nonzeroa values within
problem matrix are represented by pointers to
the table of all

(Barle, Grad, 1987).

distinct nonzero values

When basis matrix is not well scaled,

automatically or by means of proper problem
farmulation, preassigned pivot can appear to be
too small and for this reasen inadequate. Two

cases, which must be treated differently are:

1. Inadequate pivot 1is situated within the

external bump. In such a case its

corresponding column can be treated in a

same way as a spike. This means that such

columns are included in the process of
"spike swapping"
1980). In fact this procedure is a variant
of partial pivoting which is restricted to

spikes within the same buap.

(Helgason, Kennington,

2. Inadequate pivot belongs to column which is
cutside the bumps {(column from the triangle
part of the matrix). In this case the only

solution is to permute this pivot to the

right bottom of the matrix. Such pivots
will be

pivats".

referred to as "unstable

In the continuation of the paper we describe
our implementation, which includes handling of

above cases.

Algorithm S [(Product form factorization for a
HR matrix including splitting the bumpl

Preassigned sequence of pivots is represented

with wvector C, consisting of column indices,

and vector R, consisting of row indices. It is
assumed that these sequences are the results of
Other

information obtained with this algorithm can be

Hellerman and Rarick’s algorithm.
included into R and C wusing the following
method:

C with opposite (negative) sign,

indices of spike columns are stored in
as well as
components of R where external bumps are

beginning. Algorithm’s input is also basis
matrix B, which is of dimension m and parameter
All pivots
Yrs Tor which the inequality ’Vrl < TPIVR®y ..

holds, where y_ ., is the largest absolute value

TPIVR ("pivot relative tolerance").

of available pivots, are counted as inadequate.
Typical values for TPIVR are 0.001 or 0.01.

80: [(Divide the pivots into stable and
unstablel
a) Set
i) n = m for the number of stable
pivats
(ii) TPIVR = 0.001
(iii) 1 = 1
b) If i>m, go to Sl.
€) 1f R;<0, go to SO g).
d) Set
i)y r =Ry
(i) |1 = ¢
(1i1) ypay = max |By|

e) If ,Brll < TPIVRxy s set
(i) for § =1, ..., n-1:
Rj = Rj+1 and Cj = C3+1
tiiy Ry, =r and G, =1
(iii) n = n-1
f) Set i = i+1 and go to S50 b)
g} Set
(i) t = number of columns in this
external bump
(ii) i =1 + ¢t
h)} Go to SO b

S1:

Sa:

'S3:

Stz

SS:

Sé

S7:

41

[Initializel tiiy) 1
a) Set (ijii) r

(i) i

JCi]
IRi|

€8: [(Test for spikel

[}

1 (pivot counter)

(11? 1 =€ (pivot column index) If C{>0, set y = B,; and go to Sé&.
(iii) r = 'Ri| (pivot row index)
(iv) j = 1 (counter for elementary

S9: (Spike update]

matrices) < :
atri Solve system of linear equations

b) Alocate storage for

; Ed'-'Ej—1Y = B*l
(i) y — real vector of dimension m
tii) ETA~file (data structure for S10: [Swap spikes if |y | < TPIVR#y..]

storing matrices Ej). a) Compute yga, = max kal

for k € (Rg,...,Ry)
by If |yr| 2 TPIVR®y ., go to Sé.
c) Obtain new 1; for which

c) Set y = By, (1% column of the
matrix B).
d) 1f R;<0, go to S5.

{Obtain new lower triangular elementary 1 = |Cg) (i<s<t, C_<0).
matrixl Criteria for choosing 1 is partial
a) Set z = y. pivoting inside row r.
Vector z is the r¢" column of the d) Solve system of equations
elementary matrix E;. Eg---Ej_1¥ = By -
b) Set § = j+i. e) Interchange Ci in C5 and go to Sé.
S11: [Obtain new upper triangular eiementary
{Test for the last stable pivot] matrixd
a) 1f i=n, go to Slé&. : a) Set
b) If i<m, set 1 s for k = r
(i) i = i+l 2y = YKk s for k = lRBI
(ii)y 1 = ICiI [} , otherwise
(i) ro= |R;| Vector 2z is the r*" column of the
Civ) y = By, elementary matrix Ej.
b) Set
[Test for External Bumpl (i) j o= je1
If R;>0, go to S2. ii) i o= i-~1
LInitialize for Bumpl : (iii) 1 = |C;|
a) Set (iv) r = 'Ri'
(i) d = J (current length of ETA file) 612: [Test for beginning of bump]
(ii) p = i (first column in this If i=p, set y = B,; and go to Si4.
external bump) :
(iii) b = number of columns in this S13: (Test for spikel
external bump a) If €350, set i = i-1 and go to Si2.
(iv) t = i+b-1 (last column in this b) If C; <0, solve system of equations
external bump) . Ed---Ej-1Y = B*l
b) Set k = p. and go to Si1i.

c) If k>t, go to Sé. Sl4: [(Obtain new lower triangular elementary

d) If CkFO, set k = k+1 and go to SS c). matrixd
e) Set i a) Set
(i) u = Cy 1 y for k = r ”
(i) v = Ry : z, = dy s for k = |Rg|
(1i1) ypay = max |Bqu| ok s
q , otherwise
) 1 |Byy| ¢ TPIVR®y .., set C, = - C Vector z is the r*" column of the
g) Set k = k+1 and go to S5 c). elementary matrix Ej;.
[Obtain new lower triangular elementary b) Set’ § = j+i
matrixl S15: [Test for end of bumpl
2) Set . : a) If i=t, go to S3.
, - {yk s for k = |Rg] (igsst) b)Y If i<t, set
k) , otherwise

(i) i = i+t
tii) 1 = Lci|
(iii) r = [Ri]
(iv) vy = Beq

Vector z is theée r*" column of the
elementary matrix Ej.
b} Set i = j+1.

{Test for end of bumpl c) Go to Sia4,
a) If i=t, go to Sil.
b) Set S146: [Partial pivotingl

(1) i = i+l a) If m=n, go to S17.

(s<i)

(s>t)

b) Set

c€) Sort columns having indices from C; to

i = n+l
Cn in such a way that the number of
their nonzero elements is increasing.
d) In
from R; to R

the submatrix containing the rows
and the columns from C;
to C, perform Gaussian elimination
with partial pivoting.
[End]
Product form of B including splitting the

bump is obtained.

S17:

At the termination of algorithm S, matrix B is
represented as a product of elementary matrices
Ej=

B = EEp...Ej (3)

After obtaining this new factorisation of B,
its accuracy must be tested. State of the
method doing this is the sa called ARAird-
Lynch estimate (Rice, 1985).
that (3) is not

algorithm S must be repeated with larger value
of TPIVR. implementation of algorithm S
the PC-LIP, old of TPIVR

multiplied by 10.

art
for

If this estimate

shows accurate enough,
In our

within value is

Partial within step S10 ©)
performed by using subroutine BTRAN,

pivoting can be
which can
be restricted to only those elementary matrices
which belong bump (Saunders,
1976). BTRAN TRANsformation)
historical name for the subroutine which sclves
of the form Bly = d,
product form.
which appear
algorithm, can be solved by using
FTRAN (Forward TRANsformation).
are

to the current
(Backward is a
systems where B is in a
Bz = u,

the S
subroutine
BTRAN and FTRAN
the

The systems of the form

within several steps of

also important subroutines within

revised simplex algorithm.

If row and column permutatiaons determined by R
and C all
€3 are either upper
or
That
For

are taken into
(i=1,2,
lower triangular,

is why (3)

account, matrices

ceesd—l) triangular
but they are intermixed.
is not LU factorization of B.
this reason the revised simplex algerithm
with ordinary product form aof basis matrix must
be applied after perfarming the refactorization
(as 1t is in PC-LIP). It

t?.\OSE

is nat possible to use
Ly
format of the basis matrix, for example Forrest
1972).

algorithms which use and maintain

and Tomlin method (Forrest, Tomlin,
If one wishes to use LU format of the
the bump can be used
partially on an overall bump or kernel.

that
after

basis

matrix, splitting only

Kernel
is

part of HR matrix which cbtained

the lower and upper triangles have

is
been

removed from the matrix. Recently an algorithm

was proposed (Helgason, Kennington, 1982) which

performs splitting the bump while maintaining
the LU format. We briefly sketch how our
methods for handling the unstable columns can

42

be incorporated in this algorithm.

By rearangement of rows and columns, the HR
matrix may be placed in the following form:
U v]
B’ = o] [T
0 M N
L and U are lower and upper triangular matrix

respectively, O are zero matrices of suitable

dimensions. We use T instead of O which is used

in the mentioned algorithm (Helgasaon,
Kennington, 1982). This enables transfer of
nonstable columns to the rightmost part of

the matrix. It is easy to check that for matrix

B’ the following factorization is valids

1 o] o u v W
B’ = (s} L T * 0 I [o}
] M N (o) o) I

tU factorization can be performed in usual way

for the first matrix at the right hand side.
The second matrix is already upper triangular.
Due to the fact that a product of two upper

triangular matrices is also an upper triangular

matrix, LU factorization of B” is obtained.
Conclusions
The matrix refactorization subroutine as

described in the paper has been included in the
PC-LIP linear programming software package. Our
main contribution was that we have combined the

already known methods for "splitting the bump®
with methods
stability. The algorithm

real life problems and proved to be stable even

some for assuring numerical

was tested on many

on a very badly scaled data.

the
not

Algorithm satisfies also with respect to
computational speed.
had

performance

Unfortunately we have

yet an opportunity for its
with

performance. It

comparising

some ather algorithm
to
measure the amount of reinversion computational
Another interesting

examine the effect inversion

is possible however
time in overall run time.
test to

frequency on the solution time.

of
We
two test on a real life problem with 342
434 structural variables and 2048
With the inversion freguency

is
performed
these
constraints,
nonzero elements.
ao,
iterations

the optimal solution was obtained after 221

and 565.1 seconds of elapsed time.

During the process 12 refactorizations were

that
to the overall

in 149.7 seconds. This
26.49%

We used the same

performed means

refactorizations amounts

computational time. problem

for the test with the inversion frequency SO.

The effect of

time:

inversion frequency on solution

nversion Solution Iterations Time per

I

frequency time iteration

(iterations) (secs) (secs)
20 - 565.1 221 2.99
S0 544 224 2.43

Results show that higher inversion frequency

does not effect much the overall solution time.

This can be explained with relatively slow

execution of the product form variant of

revised simplex methad. With the use af the

Forrest-Tomlin method the performance could be

slightly improved (Ashford, Daniel, 1988).

References

1. Ashford R.W., R.C. Daniel: " A note on
evaluating LP software for personal
computers", European Journal of Operations
Research, 35(1988), pp. 160-164.

2. Benichou M., J.M. Gauthier, G. Hentges, G.
Ribiere: “The efficient solution of

" large-scale linear programming problems
- some algorithmic techniques and
computational results”, Mathematical
Programming, 13(1977), pp. 280-322.

3. Chvatal V.: Linear Programming, New York -
San Francisco, W.H. Freeman and Company
1983.

4. Forrest J.J.H., Tamlin J.A.: "Updated

triangular factors of the basis to maintain

43

10.

1.

12.

sparsity in the product form éimplex
method”, Mathematical Programming, 2(1972),
pp. 263-278B.

Greenberg H.J.: "A Tutorial on Matricial

Packing", Design and Implementation of

Optimization software, Urbino (Italy), (Ed.

Greenberg H.J.), Alphen aan den Rijn
(Netherlands), Sijthoff and Nordhoff 1978,
pp. 109-142.

Helgason R.V., Kennington J.L.: "Spike
swapping in basis reinversion", Naval
Research Logistics GQuarterly, 27¢(1980),

pp. 697-701.

Helgason R.V., Kennington J.L.: "A note on

splitting. the bump in an elimination
factorization”, Naval Research Logistics
Quarterly, 29(1982), pp. 1469-178.

Hellerman E., Rarick D.: "Reinversion with
the preassigned pivot procedure”,
Mathematical Programming, 1(1971), pp.
195-214. ’

Rice J.R.: Numerical Methods, Software, and
Analysis, New York, McGraw-Hill 198S.

Saunders M.A.: A fast,
implementatian of the simplex method
Bartels-Golub

Computations,

stable

using
Matrix
Rose D.J.),
213-226.

updating”, Sparse
(Eds. Bunch J.R.,
New York, Academic Press 19746, pp.

Tomlin J.A.: "On scaling linear programming
problems”,
4(1973), pp.

Mathematical Programming Study,
1456-166.

Barle J., Grad J.:
Linear

"PC-LIP: A Microcomputer
Programming Package”,

1987.

(program
description), Ljubljana,

