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Abstract

Let Γ denote a non-bipartite distance-regular graph with vertex set X , diameter D ≥ 3,
and valency k ≥ 3. Fix x ∈ X and let T = T (x) denote the Terwilliger algebra of Γ with
respect to x. For any z ∈ X and for 0 ≤ i ≤ D, let Γi(z) = {w ∈ X : ∂(z, w) = i}. For
y ∈ Γ1(x), abbreviate Di

j = Di
j(x, y) = Γi(x) ∩ Γj(y) (0 ≤ i, j ≤ D). For 1 ≤ i ≤ D

and for a given y, we define maps Hi : D
i
i → Z and Vi : Di

i−1 ∪D
i−1
i → Z as follows:

Hi(z) = |Γ1(z) ∩Di−1
i−1|, Vi(z) = |Γ1(z) ∩Di−1

i−1|.

We assume that for every y ∈ Γ1(x) and for 2 ≤ i ≤ D, the corresponding mapsHi and Vi
are constant, and that these constants do not depend on the choice of y. We further assume
that the constant value of Hi is nonzero for 2 ≤ i ≤ D. We show that every irreducible
T -module of endpoint 1 is thin. Furthermore, we show Γ has exactly three irreducible
T -modules of endpoint 1, up to isomorphism, if and only if three certain combinatorial
conditions hold. As examples, we show that the Johnson graphs J(n,m) where n ≥ 7,
3 ≤ m < n/2 satisfy all of these conditions.
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1 Introduction
This paper is motivated by a desire to find a combinatorial characterization of the distance-
regular graphs with exactly three irreducible modules (up to isomorphism) of the Ter-
williger algebra with endpoint 1, all of which are thin (see Sections 2, 3 for formal def-
initions). This is a difficult problem which we will not complete in this paper. To begin, we
find combinatorial conditions under which a distance-regular graph is 1-thin. When these
combinatorial conditions hold, we identify additional combinatorial conditions that hold if
and only if the distance-regular graph has exactly three irreducible T -modules of endpoint
1, up to isomorphism.

Let Γ denote a distance-regular graph with diameter D ≥ 3 and valency k ≥ 3. Let
X denote the vertex set of Γ. For x ∈ X , let T = T (x) denote the Terwilliger algebra
of Γ with respect to x. It is known that there exists a unique irreducible T -module with
endpoint 0, and this module is thin [5, Proposition 8.4]. It is also known that Γ is bipartite
or almost-bipartite if and only if Γ has exactly one irreducible T -module of endpoint 1,
up to isomorphism, and this module is thin [4, Theorem 1.3]. Furthermore, Curtin and
Nomura have shown that Γ is pseudo-1-homogeneous with respect to x with a1 6= 0 if and
only if Γ has exactly two irreducible T -modules of endpoint 1, up to isomorphism, both of
which are thin [4, Theorem 1.6].

For any z ∈ X and any integer i ≥ 0, let Γi(z) = {w ∈ X : ∂(z, w) = i}. For y ∈
Γ1(x) and integers i, j ≥ 0, abbreviate Di

j = Di
j(x, y) = Γi(x) ∩ Γj(y). For 1 ≤ i ≤ D

and for a given y, we define maps Hi : D
i
i → Z, Ki : D

i
i → Z and Vi : Di

i−1 ∪D
i−1
i → Z

as follows:

Hi(z) = |Γ1(z) ∩Di−1
i−1|, Ki(z) = |Γ1(z) ∩Di+1

i+1|, Vi(z) = |Γ1(z) ∩Di−1
i−1|.

Our main result is the following.

Theorem 1.1. Let Γ = (X,R) denote a non-bipartite distance-regular graph with diame-
ter D ≥ 3 and valency k ≥ 3, and fix vertex x ∈ X . Assume that for every y ∈ Γ1(x) and
for 2 ≤ i ≤ D, the corresponding maps Hi and Vi are constant, and that these constants
do not depend on the choice of y. Also assume that the constant value of Hi is nonzero for
2 ≤ i ≤ D. Then Γ is 1-thin with respect to x.

We need the following definition.

Definition 1.2. With the assumptions of Theorem 1.1, for y ∈ Γ1(x) let Di
j = Di

j(x, y)
(0 ≤ i, j ≤ D) and let K1 denote the corresponding map. Let B = B(y) denote the
adjacency matrix of the subgraph of Γ induced on D1

1 . Observe that B ∈ MatD1
1
(C), and

so the rows and the columns of B are indexed by the elements of D1
1 . Let j ∈ CD1

1 denote
the all-ones column vector with rows indexed by the elements of D1

1 .

With reference to Definition 1.2, we denote by P1, P2 and P3 the following properties
of Γ:

P1: There exists y ∈ Γ1(x) such that K1 is not a constant.

P2: For every y, z ∈ Γ1(x) with ∂(y, z) ∈ {0, 2}, the number of walks of length 3 inside
Γ1(x) from y to z is a constant number, which depends only on ∂(y, z) (and not on
the choice of y, z).
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P3: There exist scalars α, β such that for every y ∈ Γ1(x) we have

B2j = αBj + βj.

We prove the following.

Theorem 1.3. With reference to Definition 1.2, Γ has exactly three irreducible T -modules
of endpoint 1, up to isomorphism, if and only if properties P1, P2, and P3 hold. We note
these three T -modules are all thin by Theorem 1.1.

Finally, we show that the Johnson graphs J(n,m) where n ≥ 7, 3 ≤ m < n/2 satisfy
the assumptions in Theorem 1.1 and the equivalent conditions in Theorem 1.3.

2 Preliminaries
In this section we review some definitions and basic results concerning distance-regular
graphs. See the book of Brouwer, Cohen and Neumaier [2] for more background informa-
tion.

Let C denote the complex number field and let X denote a nonempty finite set. Let
MatX(C) denote the C-algebra consisting of all matrices whose rows and columns are
indexed by X and whose entries are in C. Let V = CX denote the vector space over C
consisting of column vectors whose coordinates are indexed by X and whose entries are
in C. We observe MatX(C) acts on V by left multiplication. We call V the standard
module. We endow V with the Hermitian inner product 〈 , 〉 that satisfies 〈u, v〉 = utv for
u, v ∈ V , where t denotes transpose and denotes complex conjugation. For y ∈ X let
ŷ denote the element of V with a 1 in the y coordinate and 0 in all other coordinates. We
observe {ŷ | y ∈ X} is an orthonormal basis for V . The following will be useful: for each
B ∈ MatX(C) we have

〈u,Bv〉 = 〈Btu, v〉 (u, v ∈ V ). (2.1)

Let Γ = (X,R) denote a finite, undirected, connected graph, without loops or multiple
edges, with vertex set X and edge set R. Let ∂ denote the path-length distance function
for Γ, and set D := max{∂(x, y) | x, y ∈ X}. We call D the diameter of Γ. For a vertex
x ∈ X and an integer i ≥ 0 let Γi(x) denote the set of vertices at distance i from x.
We abbreviate Γ(x) = Γ1(x). For an integer k ≥ 0 we say Γ is regular with valency k
whenever |Γ(x)| = k for all x ∈ X . We say Γ is distance-regular whenever for all integers
h, i, j (0 ≤ h, i, j ≤ D) and for all vertices x, y ∈ X with ∂(x, y) = h, the number

phij = |Γi(x) ∩ Γj(y)|

is independent of x and y. The phij are called the intersection numbers of Γ.
For the rest of this paper we assume Γ is distance-regular with diameter D ≥ 3. Note

that phij = phji for 0 ≤ h, i, j ≤ D. For convenience set ci := pi1,i−1 (1 ≤ i ≤ D),
ai := pi1i (0 ≤ i ≤ D), bi := pi1,i+1 (0 ≤ i ≤ D − 1), ki := p0

ii (0 ≤ i ≤ D), and
c0 = bD = 0. By the triangle inequality the following hold for 0 ≤ h, i, j ≤ D: (i) phij = 0

if one of h, i, j is greater than the sum of the other two; (ii) phij 6= 0 if one of h, i, j equals
the sum of the other two. In particular ci 6= 0 for 1 ≤ i ≤ D and bi 6= 0 for 0 ≤ i ≤ D−1.
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We observe that Γ is regular with valency k = k1 = b0 and that ci + ai + bi = k for
0 ≤ i ≤ D. Note that ki = |Γi(x)| for x ∈ X and 0 ≤ i ≤ D.

We recall the Bose-Mesner algebra of Γ. For 0 ≤ i ≤ D let Ai denote the matrix in
MatX(C) with (x, y)-entry

(Ai)xy =

{
1 if ∂(x, y) = i,

0 if ∂(x, y) 6= i
(x, y ∈ X). (2.2)

We call Ai the ith distance matrix of Γ. We abbreviate A := A1 and call this the adjacency
matrix of Γ. We observe (ai) A0 = I; (aii)

∑D
i=0Ai = J ; (aiii) Ai = Ai (0 ≤ i ≤ D);

(aiv) Ati = Ai (0 ≤ i ≤ D); (av) AiAj =
∑D
h=0 p

h
ijAh (0 ≤ i, j ≤ D), where I (resp.

J) denotes the identity matrix (resp. all 1’s matrix) in MatX(C). Using these facts we find
A0, A1, . . . , AD is a basis for a commutative subalgebra M of MatX(C). We call M the
Bose-Mesner algebra of Γ. It turns out that A generates M [1, p. 190]. By [2, p. 45],
M has a second basis E0, E1, . . . , ED such that (ei) E0 = |X|−1J ; (eii)

∑D
i=0Ei = I;

(eiii) Ei = Ei (0 ≤ i ≤ D); (eiv) Eti = Ei (0 ≤ i ≤ D); (ev) EiEj = δijEi (0 ≤ i, j ≤
D). We call E0, E1, . . . , ED the primitive idempotents of Γ.

3 The Terwilliger algebra
Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3 and valency k ≥ 3.
In this section we recall the dual Bose-Mesner algebra and the Terwilliger algebra of Γ. Fix
a vertex x ∈ X. We view x as a “base vertex.” For 0 ≤ i ≤ D let E∗i = E∗i (x) denote the
diagonal matrix in MatX(C) with (y, y)-entry

(E∗i )yy =

{
1 if ∂(x, y) = i,

0 if ∂(x, y) 6= i
(y ∈ X).

We call E∗i the ith dual idempotent of Γ with respect to x [11, p. 378]. We observe
(i)
∑D
i=0E

∗
i = I; (ii) E∗i = E∗i (0 ≤ i ≤ D); (iii) E∗ti = E∗i (0 ≤ i ≤ D);

(iv) E∗i E
∗
j = δijE

∗
i (0 ≤ i, j ≤ D). By these facts E∗0 , E

∗
1 , . . . , E

∗
D form a basis for

a commutative subalgebra M∗ = M∗(x) of MatX(C). We call M∗ the dual Bose-Mesner
algebra of Γ with respect to x [11, p. 378]. For 0 ≤ i ≤ D we have

E∗i V = span{ŷ | y ∈ Γi(x)}

so dimE∗i V = ki. We call E∗i V the ith subconstituent of Γ with respect to x. Note that

V = E∗0V + E∗1V + · · ·+ E∗DV (orthogonal direct sum).

Moreover E∗i is the projection from V onto E∗i V for 0 ≤ i ≤ D.
We recall the Terwilliger algebra of Γ. Let T = T (x) denote the subalgebra of

MatX(C) generated by M , M∗. We call T the Terwilliger algebra of Γ with respect to x
[11, Definition 3.3]. Recall M (resp. M∗) is generated by A (resp. E∗0 , E

∗
1 , . . . , E

∗
D) so T

is generated by A,E∗0 , E
∗
1 , . . . , E

∗
D. We observe T has finite dimension. By construction

T is closed under the conjugate-transpose map so T is semi-simple [11, Lemma 3.4(i)].
By a T -module we mean a subspace W of V such that SW ⊆ W for all S ∈ T . Let

W denote a T -module. Then W is said to be irreducible whenever W is nonzero and W
contains no T -modules other than 0 and W .
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By [6, Corollary 6.2] any T -module is an orthogonal direct sum of irreducible T -
modules. In particular the standard module V is an orthogonal direct sum of irreducible
T -modules. Let W, W ′ denote T -modules. By an isomorphism of T -modules from W to
W ′ we mean an isomorphism of vector spaces σ : W → W ′ such that (σS − Sσ)W = 0
for all S ∈ T . The T -modules W , W ′ are said to be isomorphic whenever there ex-
ists an isomorphism of T -modules from W to W ′. By [3, Lemma 3.3] any two non-
isomorphic irreducible T -modules are orthogonal. Let W denote an irreducible T -module.
By [11, Lemma 3.4(iii)] W is an orthogonal direct sum of the nonvanishing spaces among
E∗0W,E

∗
1W, . . . , E

∗
DW . By the endpoint ofW we mean min{i | 0 ≤ i ≤ D, E∗iW 6= 0}.

By the diameter of W we mean |{i | 0 ≤ i ≤ D, E∗iW 6= 0}| − 1. We say W is thin if
dim(E∗iW ) ≤ 1 for 0 ≤ i ≤ D. We say Γ is 1-thin with respect to x if every T -module
with endpoint 1 is thin.

By [5, Proposition 8.3, Proposition 8.4] Mx̂ is the unique irreducible T -module with
endpoint 0 and the unique irreducible T -module with diameter D. Moreover Mx̂ is the
unique irreducible T -module on which E0 does not vanish. We call Mx̂ the primary mod-
ule. We observe that vectors si (0 ≤ i ≤ D) form a basis for Mx̂, where

si =
∑

y∈Γi(x)

ŷ. (3.1)

Lemma 3.1. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3
and distance matrices Ai (0 ≤ i ≤ D). Fix a vertex x ∈ X and let E∗i = E∗i (x)
(0 ≤ i ≤ D) denote the dual idempotents with respect to x. For 0 ≤ h, i, j ≤ D, the
matrix E∗hAiE

∗
j = 0 whenever any one of h, i, j is bigger than the sum of the other two.

Proof. Routine using elementary matrix multiplication.

The following result will be crucial later in the paper.

Lemma 3.2. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3. Fix a
vertex x ∈ X and let E∗i = E∗i (x) (0 ≤ i ≤ D) denote the dual idempotents with respect
to x. Let T = T (x) denote the Terwilliger algebra of Γ with respect to x. Assume that (up
to isomorphism) Γ has exactly three irreducible T -modules with endpoint 1, and that these
modules are all thin. Let F1, F2, F3, F4, F5 ∈ T and pick an integer i, 1 ≤ i ≤ D. Then
the matrices

E∗i F1E
∗
1 , E

∗
i F2E

∗
1 , E

∗
i F3E

∗
1 , E

∗
i F4E

∗
1 , E

∗
i F5E

∗
1

are linearly dependent.

Proof. Let V0 denote the primary module of Γ, and let V` (1 ≤ ` ≤ 3) denote pairwise
non-isomorphic irreducible T -modules with endpoint 1. Define vectors v` (0 ≤ ` ≤ 3) as
follows. If E∗i V` = 0, then let v` = 0. Otherwise, let v` be an arbitrary nonzero vector of
E∗i V`. Furthermore, for 0 ≤ ` ≤ 3 fix a nonzero u` ∈ E∗1V`. As modules V` (0 ≤ ` ≤ 3)
are thin, there exist scalars λ`j (1 ≤ j ≤ 5, 0 ≤ ` ≤ 3) such that

E∗i FjE
∗
1u` = λ`jv`.
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Consider now the following homogeneous system of linear equations:


λ0

1 λ0
2 λ0

3 λ0
4 λ0

5

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5

λ3
1 λ3

2 λ3
3 λ3

4 λ3
5



α1

α2

α3

α4

α5

 =


0
0
0
0

 . (3.2)

Observe that the above system has a nontrivial solution, and let (µ1, µ2, µ3, µ4, µ5)t denote
one of its nontrivial solutions. We will now show that

∑5
j=1 µjE

∗
i FjE

∗
1 = 0. First, pick

an arbitrary u ∈ E∗1V`, for some ` (0 ≤ ` ≤ 3). As module V` is thin, there exists a scalar
λ, such that u = λu`. Now we have

5∑
j=1

µjE
∗
i FjE

∗
1u = λ

5∑
j=1

µjE
∗
i FjE

∗
1u` = λ

5∑
j=1

µjλ
`
jv` = λv`

5∑
j=1

µjλ
`
j = 0. (3.3)

Assume now that W is an irreducible T -module with endpoint 1 and note that W is iso-
morphic to V` for some 1 ≤ ` ≤ 3. Pick arbitrary w ∈ E∗1W . Let σ : V` 7→ W be a
T -module isomorphism and let u ∈ E∗1V` be such that w = σ(u). Now by (3.3) we have
that

5∑
j=1

µjE
∗
i FjE

∗
1w =

5∑
j=1

µjE
∗
i FjE

∗
1σ(u) = σ

( 5∑
j=1

µjE
∗
i FjE

∗
1u

)
= 0. (3.4)

For 1 ≤ ` ≤ 3 let V` denote the sum of all irreducible T -modules with endpoint 1, which
are isomorphic to V`. Observe that

E∗1V = E∗1V0 + E∗1V1 + E∗1V2 + E∗1V3 (orthogonal sum). (3.5)

Pick now an arbitrary v ∈ E∗1V . Note that by (3.5) v is a sum of vectors vξ, where ξ belongs
to some index set Ξ, and each vξ is contained in E∗1Wξ, where Wξ is either V0, or isomor-
phic to V` for some 1 ≤ ` ≤ 3. By (3.4) we have that

∑5
j=1 µjE

∗
i FjE

∗
1vξ = 0 for each

ξ ∈ Ξ, and consequently
∑5
j=1 µjE

∗
i FjE

∗
1v = 0. This shows that

∑5
j=1 µjE

∗
i FjE

∗
1 = 0.

As at least one of µj (1 ≤ j ≤ 5) is nonzero (recall that (µ1, µ2, µ3, µ4, µ5)t is a nontrivial
solution of (3.2)), the result follows.

4 The local eigenvalues
In order to discuss the thin irreducible T -modules with endpoint 1, we first recall some
parameters called the local eigenvalues. We will use the notation from [7].

Definition 4.1. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3,
valency k ≥ 3 and adjacency matrix A. Fix a vertex x ∈ X . We let ∆ = ∆(x) denote the
graph (X̆, R̆), where

X̆ = {y ∈ X | ∂(x, y) = 1},
R̆ = {yz | y, z ∈ X̆, ∂(y, z) = 1}.
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The graph ∆ has exactly k vertices and is regular with valency a1. We let Ă denote
the adjacency matrix of ∆. The matrix Ă is symmetric with real entries, and thus Ă is
diagonalizable with real eigenvalues. We let η1, η2, . . . , ηk denote the eigenvalues of Ă.
We call η1, η2, . . . , ηk the local eigenvalues of Γ with respect to x.

We now consider the first subconstituent E∗1V . We recall the dimension of E∗1V is k.
Observe E∗1V is invariant under the action of E∗1AE

∗
1 . We note that for an appropriate

ordering of the vertices of Γ, we have

E∗1AE
∗
1 =

(
Ă 0
0 0

)
,

where Ă is from Definition 4.1. Hence the action of E∗1AE
∗
1 on E∗1V is essentially the

adjacency map for ∆. In particular the action of E∗1AE
∗
1 on E∗1V is diagonalizable with

eigenvalues η1, η2, . . . , ηk. We observe the vector s1 from (3.1) is contained in E∗1V . One
may easily show that s1 is an eigenvector for E∗1AE

∗
1 with eigenvalue a1. Reordering the

eigenvalues if necessary, we have η1 = a1. For the rest of this paper, we assume the local
eigenvalues are ordered in this way. Now consider the the orthogonal complement of s1 in
E∗1V . By (2.1), this space is invariant under multiplication byE∗1AE

∗
1 . Thus the restriction

of the matrix E∗1AE
∗
1 to this space is diagonalizable with eigenvalues η2, η3, . . . , ηk.

Definition 4.2. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3,
valency k ≥ 3 and adjacency matrix A. Fix a vertex x ∈ X , and let T = T (x) denote the
Terwilliger algebra of Γ with respect to x. Let W denote a thin irreducible T -module with
endpoint 1. Observe E∗1W is a 1-dimensional eigenspace for E∗1AE

∗
1 ; let η denote the cor-

responding eigenvalue. We observeE∗1W is contained inE∗1V so η is one of η2, η3, . . . , ηk.
We refer to η as the local eigenvalue of W .

Theorem 4.3 ([14, Theorem 12.1]). Let Γ = (X,R) denote a distance-regular graph with
diameter D ≥ 3 and valency k ≥ 3. Fix a vertex x ∈ X , and let T = T (x) denote
the Terwilliger algebra of Γ with respect to x. Let W denote a thin irreducible T -module
with endpoint 1 and local eigenvalue η. Let W ′ denote an irreducible T -module. Then the
following (i), (ii) are equivalent.

(i) W and W ′ are isomorphic as T -modules.

(ii) W ′ is thin with endpoint 1 and local eigenvalue η.

Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3 and valency k ≥
3. Fix a vertex x ∈ X , and let T = T (x) denote the Terwilliger algebra of Γ with respect to
x. Recall that in Section 3, we said that the standard module V is an orthogonal direct sum
of irreducible T -modules. Let W denote an irreducible T -module. By the multiplicity of
W , we mean the number of irreducible T -modules in the above decomposition which are
isomorphic to W . It is well-known that this number is independent of the decomposition
of V .

Theorem 4.4 ([14, Theorem 12.9]). Let Γ = (X,R) denote a distance-regular graph with
diameter D ≥ 3 and valency k ≥ 3. Fix a vertex x ∈ X , and let T = T (x) denote the
Terwilliger algebra of Γ with respect to x. With reference to Definition 4.1, the following
are equivalent.
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(i) For every i (2 ≤ i ≤ k), there exists a thin irreducible T -module W of endpoint
1 with local eigenvalue ηi. Moreover, the multiplicity with which ηi appears in the
list η2, η3, . . . , ηk is equal to the multiplicity with which W appears in the standard
decomposition of V .

(ii) Γ is 1-thin with respect to x.

With reference to Theorem 4.4, we note that if Γ is 1-thin with respect to x, then the
number of non-isomorphic irreducible T -modules of endpoint 1 is equal to the number of
distinct local eigenvalues in the list η2, η3, . . . , ηk. We will need this fact later in the paper.

5 The matrices L, F , R
Let Γ = (X,R) denote a distance-regular graph with diameterD ≥ 3. Fix a vertex x ∈ X .
In this section we recall certain matrices L, F , R of the Terwilliger algebra T = T (x).

Definition 5.1. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3 and
adjacency matrix A. Fix a vertex x ∈ X and let E∗i = E∗i (x) (0 ≤ i ≤ D) denote the dual
idempotents with respect to x. We define matrices L = L(x), F = F (x), R = R(x) by

L =

D∑
h=1

E∗h−1AE
∗
h, F =

D∑
h=0

E∗hAE
∗
h, R =

D−1∑
h=0

E∗h+1AE
∗
h.

Note that A = L + F + R [3, Lemma 4.4]. We call L, F , and R the lowering matrix, the
flat matrix, and the raising matrix of Γ with respect to x, respectively.

Lemma 5.2. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3 and
valency k ≥ 3. We fix x ∈ X and let L = L(x), F = F (x) and R = R(x) be as in
Definition 5.1. For y, z ∈ X the following (i)–(iii) hold.

(i) Lzy = 1 if ∂(z, y) = 1 and ∂(x, z) = ∂(x, y)− 1, and 0 otherwise.

(ii) Fzy = 1 if ∂(z, y) = 1 and ∂(x, z) = ∂(x, y), and 0 otherwise.

(iii) Rzy = 1 if ∂(z, y) = 1 and ∂(x, z) = ∂(x, y) + 1, and 0 otherwise.

Proof. Immediate from Definition 5.1 and elementary matrix multiplication.

With the notation of Lemma 5.2, we display the (z, y)-entry of certain products of the
matrices L, F and R. To do this we need another definition.

A sequence of vertices [y0, y1, . . . , yt] of Γ is a walk in Γ if yi−1yi is an edge for
1 ≤ i ≤ t.

Lemma 5.3. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3 and
valency k ≥ 3. We fix x ∈ X and let L = L(x), F = F (x) and R = R(x) be as
in Definition 5.1. Choose y, z ∈ X and let m denote a positive integer. Assume that
y ∈ Γi(x). Then the following (i)–(vi) hold.

(i) The (z, y)-entry of Rm is equal to the number of walks [y = y0, y1, . . . , ym = z],
such that yj ∈ Γi+j(x) for 0 ≤ j ≤ m.

(ii) The (z, y)-entry ofRmL is equal to the number of walks [y = y0, y1, . . . , ym+1 = z],
such that yj ∈ Γi−2+j(x) for 1 ≤ j ≤ m+ 1.
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(iii) The (z, y)-entry ofLRm is equal to the number of walks [y = y0, y1, . . . , ym+1 = z],
such that yj ∈ Γi+j(x) for 0 ≤ j ≤ m and ym+1 ∈ Γi+m−1(x).

(iv) The (z, y)-entry of RmF is equal to the number of walks [y = y0, y1, . . . , ym+1 =
z], such that yj ∈ Γi−1+j(x) for 1 ≤ j ≤ m+ 1.

(v) The (z, y)-entry of FRm is equal to the number of walks [y = y0, y1, . . . , ym+1 =
z], such that yj ∈ Γi+j(x) for 0 ≤ j ≤ m and ym+1 ∈ Γi+m(x).

(vi) The (z, y)-entry of Fm is equal to the number of walks [y = y0, y1, . . . , ym = z],
such that yj ∈ Γi(x) for 0 ≤ j ≤ m.

Proof. Immediate from Lemma 5.2 and elementary matrix multiplication.

6 The sets D i
j

Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3. In this section we
display a certain partition of X that we find useful.

Definition 6.1. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3 and
valency k ≥ 3. Pick x ∈ X and y ∈ Γ(x). For 0 ≤ i, j ≤ D we define Di

j = Di
j(x, y) by

Di
j = Γi(x) ∩ Γj(y).

For notational convenience we set Di
j = ∅ if i or j is contained in {−1, D + 1}. Please

refer to Figure 1 for a diagram of this partition.

y

x
D12

D12

D23

D23

D11 D22

Di+1

Di+1

D -1
i

D -1
i

D -1
-1 Dii

D -2
-1

D -1
-2

D -1

D -1

D -1
-1 D

D -2
-1

D -1
-2
D

D
D

D

D
D

D

D
D

D
D

D
i

i

i

i

i
i

i
i

i
i

Figure 1: The partition with reference to Definition 6.1.

We now recall some properties of sets Di
j .

Lemma 6.2 ([10, Lemma 4.2]). With reference to Definition 6.1 the following (i), (ii) hold
for 0 ≤ i, j ≤ D.

(i) |Di
j | = p1

ij .

(ii) Di
j = ∅ if and only if p1

ij = 0.

Observe that for 1 ≤ i ≤ D we have p1
i,i−1 = ciki/k 6= 0 by [2, p. 134]. Therefore,

Di
i−1 and Di−1

i are nonempty for 1 ≤ i ≤ D.

Lemma 6.3 ([9, Lemma 2.11]). With reference to Definition 6.1 pick an integer i (1 ≤ i ≤
D). Then the following (i), (ii) hold.
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(i) Each z ∈ Di
i−1 (resp. Di−1

i ) is adjacent to
(a) precisely ci−1 vertices in Di−1

i−2 (resp. Di−2
i−1),

(b) precisely ci − ci−1 − |Γ(z) ∩Di−1
i−1| vertices in Di−1

i (resp. Di
i−1),

(c) precisely ai−1 − |Γ(z) ∩Di−1
i−1| vertices in Di

i−1 (resp. Di−1
i ),

(d) precisely bi vertices in Di+1
i (resp. Di

i+1),
(e) precisely ai − ai−1 + |Γ(z) ∩Di−1

i−1| vertices in Di
i .

(ii) Each z ∈ Di
i is adjacent to

(a) precisely ci − |Γ(z) ∩Di−1
i−1| vertices in Di

i−1,
(b) precisely ci − |Γ(z) ∩Di−1

i−1| vertices in Di−1
i ,

(c) precisely bi − |Γ(z) ∩Di+1
i+1| vertices in Di+1

i ,
(d) precisely bi − |Γ(z) ∩Di+1

i+1| vertices in Di
i+1,

(e) precisely ai − bi − ci + |Γ(z) ∩Di−1
i−1|+ |Γ(z) ∩Di+1

i+1| vertices in Di
i .

In view of the above lemma we have the following definition.

Definition 6.4. With reference to Definition 6.1, for 1 ≤ i ≤ D we define mapsHi : D
i
i →

Z, Ki : D
i
i → Z and Vi : Di

i−1 ∪D
i−1
i → Z as follows:

Hi(z) = |Γ(z) ∩Di−1
i−1|, Ki(z) = |Γ(z) ∩Di+1

i+1|, Vi(z) = |Γ(z) ∩Di−1
i−1|.

We have the following observation.

Lemma 6.5. With reference to Definition 6.4, fix an integer i (2 ≤ i ≤ D) and assume that
there exist integers m1,m2, such that Vi(z) = m1 for every z ∈ Di−1

i and Vi(z) = m2 for
every z ∈ Di

i−1. Then m1 = m2.

Proof. By Lemma 6.3(i) and using a simple double-counting argument we find that

|Di−1
i |(ci − ci−1 −m1) = |Di

i−1|(ci − ci−1 −m2).

As |Di−1
i | = |Di

i−1| 6= 0 by the comment below Lemma 6.2, the result follows.

For the rest of the paper we assume the following situation.

Definition 6.6. Let Γ = (X,R) denote a non-bipartite distance-regular graph with diame-
ter D ≥ 3, valency k ≥ 3, and distance matrices Ai (0 ≤ i ≤ D). We abbreviate A := A1.
Fix x ∈ X and let E∗i = E∗i (x) (0 ≤ i ≤ D) denote the dual idempotents with respect
to x. Let T = T (x) denote the Terwilliger algebra with respect to x. Let ∆ = ∆(x)
be as in Definition 4.1. Let matrices L = L(x), F = F (x), R = R(x) be as defined in
Definition 5.1. For y ∈ Γ(x), let sets Di

j(x, y) (0 ≤ i, j ≤ D) and the corresponding maps
Hi,Ki, Vi (1 ≤ i ≤ D) be as defined in Definition 6.1 and Definition 6.4. We assume
that for every y ∈ Γ(x) and for every 2 ≤ i ≤ D, the corresponding maps Hi and Vi are
constant, and that these constants do not depend on the choice of y. We denote the constant
value of Hi (Vi, respectively) by hi (vi, respectively). We further assume that hi 6= 0 for
2 ≤ i ≤ D.

Remark 6.7. With reference to Definition 6.6, pick y ∈ Γ(x) and let Di
j = Di

j(x, y)
(0 ≤ i, j ≤ D). Since Γ is assumed to be non-bipartite, aj 6= 0 for some integer j
(1 ≤ j ≤ D). It follows that Dj

j 6= ∅ by Lemma 6.2(ii) and [2, p. 127]. But since each
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hi 6= 0 (2 ≤ i ≤ D), we conclude each of sets Dj−1
j−1, D

j−2
j−2, . . . , D

1
1 is nonempty. Since

D1
1 6= ∅, we have a1 6= 0. Now by [2, Proposition 5.5.1], we find ai 6= 0 for 1 ≤ i ≤ D−1.

Thus Di
i 6= ∅ for 1 ≤ i ≤ D − 1. However, with our assumptions of Definition 6.6, it is

possible that aD = 0 and DD
D = ∅. In this case, we make the convention that hD := 1.

Finally, we wish to make clear that while we are assuming the maps Hi and Vi are constant
for 2 ≤ i ≤ D, we are not making any such global assumptions about the maps Ki.

7 Some products in T

With reference to Definition 6.6, in this section we display the values of the entries of
certain products in T .

Lemma 7.1. With reference to Definition 6.6, pick y ∈ Γ(x) and let Di
j = Di

j(x, y)
(0 ≤ i, j ≤ D). Pick an integer i (1 ≤ i ≤ D), and let z ∈ Γi(x). Then the following
(i)–(iii) hold.

(i) (Ri−1)zy =

{
ci−1ci−2 · · · c1 if z ∈ Di

i−1,

0 otherwise.

(ii) (RiL)zy = cici−1 · · · c1.

(iii) (LRi)zy =


bicici−1 · · · c1 if z ∈ Di

i−1,

(bi −Ki(z))cici−1 · · · c1 if z ∈ Di
i,

(ci+1 − ci − vi+1)cici−1 · · · c1 if z ∈ Di
i+1.

Proof. First we observe that, by the triangle inequality, we have ∂(y, z) ∈ {i− 1, i, i+ 1}.
(i): By Lemma 5.3(i), the (z, y)-entry of Ri−1 is equal to the number of walks [y =

y0, y1, . . . , yi−1 = z], such that yj ∈ Γ1+j(x) for 0 ≤ j ≤ i − 1. Observe that there
are no such walks if ∂(y, z) ≥ i. If ∂(y, z) = i − 1, then it is easy to see that yj ∈
Γj+1(x) ∩ Γj(y) = Dj+1

j for 0 ≤ j ≤ i − 1. Lemma 6.3(i) now implies that the number
of such walks is equal to ci−1ci−2 · · · c1.

(ii): By Lemma 5.3(ii), the (z, y)-entry of RiL is equal to the number of walks [y =
y0, y1, . . . , yi+1 = z], such that yj ∈ Γj−1(x) for 1 ≤ j ≤ i + 1. Observe that this
implies that y1 = x. On the other hand, since z ∈ Γi(x), there are cici−1 · · · c1 walks
[x = y1, y2, . . . , yi+1 = z], such that yj ∈ Γj−1(x) for 1 ≤ j ≤ i+ 1. The result follows.

(iii): By Lemma 5.3(iii), the (z, y)-entry of LRi is equal to the number of walks [y =
y0, y1, . . . , yi+1 = z], such that yj ∈ Γj+1(x) for 0 ≤ j ≤ i. It follows that yj ∈ Dj+1

j

for 0 ≤ j ≤ i. Furthermore, observe that by Lemma 6.3, z has exactly ci+1 − ci − vi+1

neighbours inDi+1
i if ∂(y, z) = i+1 (that is, if z ∈ Di

i+1), exactly bi−Ki(z) neighbours in
Di+1
i if ∂(y, z) = i (that is, if z ∈ Di

i), and exactly bi neighbours inDi+1
i if ∂(y, z) = i−1

(that is, if z ∈ Di
i−1). Moreover, by Lemma 6.3(i), for any vertex yi ∈ Di+1

i , the number
of walks [y = y0, y1, . . . , yi], such that yj ∈ Dj+1

j for 0 ≤ j ≤ i, is equal to cici−1 · · · c1.
The result follows.

Lemma 7.2. With reference to Definition 6.6, pick y ∈ Γ(x) and let Di
j = Di

j(x, y)
(0 ≤ i, j ≤ D). Pick an integer i (1 ≤ i ≤ D), and let z ∈ Γi(x). Then the following (i),
(ii) hold.
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(i) (Ri−1F )zy =


∑i−1
j=1 ci−1ci−2 · · · cj+1vj+1hjhj−1 · · ·h2 if z ∈ Di

i−1,

hihi−1 · · ·h2 if z ∈ Di
i,

0 if z ∈ Di
i+1.

(ii) (FRi−1)zy =


(ai−1 − vi)ci−1ci−2 · · · c1 if z ∈ Di

i−1,

(ci − hi)ci−1ci−2 · · · c1 if z ∈ Di
i,

0 if z ∈ Di
i+1.

Proof. The proof is very similar to the proof of Lemma 7.1, so we omit the details. We
only provide a sketch of the proof.

(i): We would like to count the number of walks of length i−1 from z toD1
1 . First, this

number is 0 if z ∈ Di
i+1. If z ∈ Di

i , then this walk must pass through sets Di−1
i−1, D

i−2
i−2,

. . . , D2
2 . Observe the number of such walks is equal to hihi−1 · · ·h2. Finally, suppose

z ∈ Di
i−1. For any walk of length i − 1 from z to D1

1 , there must exist some in-
teger 1 ≤ j ≤ i − 1 such that this walk passes through sets Di−1

i−2, D
i−2
i−3, . . . , D

j+1
j ,

Dj
j , D

j−1
j−1, . . . , D

2
2, D

1
1 . By Lemma 6.3, the number of such walks (for a fixed j) is

ci−1ci−2 · · · cj+1vj+1hjhj−1 · · ·h2. The result follows.
(ii): Here we note that z has 0 neighbours in Di

i−1 if z ∈ Di
i+1, ci − hi neighbours

in Di
i−1 if z ∈ Di

i , and ai−1 − vi neighbours in Di
i−1 if z ∈ Di

i−1. Moreover, there are
ci−1ci−2 · · · c1 walks of length i− 1 from each vertex of Di

i−1 to y.

8 Proof of the main result
In this section we will prove our main result. With reference to Definition 6.6, we will
show that Γ is 1-thin with respect to x.

Lemma 8.1. With reference to Definition 6.6, fix an integer i (1 ≤ i ≤ D). Then there
exist scalars λ1, λ2 such that

E∗i FR
i−1E∗1 = λ1E

∗
i R

i−1E∗1 + λ2E
∗
i R

i−1FE∗1 . (8.1)

Proof. Let z, y ∈ X . We shall show the (z, y)-entry of both sides of (8.1) agree. Note that
we may assume z ∈ Γi(x), y ∈ Γ(x); otherwise the (z, y)-entry of both sides of (8.1) is
zero. Let D`

j = D`
j(x, y) (0 ≤ `, j ≤ D) and define scalars λ1, λ2 as follows:

λ1 = ai−1 − vi −
(ci − hi)

∑i−1
j=1 ci−1ci−2 · · · cj+1vj+1hjhj−1 · · ·h2

hihi−1 · · ·h2
,

λ2 =
(ci − hi)ci−1ci−2 · · · c1

hihi−1 · · ·h2
.

Treating separately the cases where z ∈ Di
i−1, D

i
i, D

i
i+1, it’s now routine using Lem-

ma 7.1(i) and Lemma 7.2 to check that the (z, y)-entry of both sides of (8.1) agree.

Lemma 8.2. With reference to Definition 6.6,

E∗i Ai−1E
∗
1 =

1

c1c2 · · · ci−1
E∗i R

i−1E∗1 (1 ≤ i ≤ D). (8.2)
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Proof. Let z, y ∈ X . Observe the (z, y)-entries of both sides of (8.2) are zero unless
z ∈ Γi(x), y ∈ Γ(x). When z ∈ Γi(x), y ∈ Γ(x), the (z, y)-entries of both sides of (8.2)
are equal by (2.2) and Lemma 7.1(i). The result follows.

Lemma 8.3. With reference to Definition 6.6, assume v ∈ E∗1V is an eigenvector for F .
Then

E∗i AiE
∗
1v ∈ span{Ri−1v} (1 ≤ i ≤ D). (8.3)

Proof. We proceed by induction on i. For i = 1, the result is immediate since v is an
eigenvector for F . Now assume the result is true for a fixed i, 1 ≤ i ≤ D − 1. By [2,
p. 127],

ci+1Ai+1 = AAi − aiAi − bi−1Ai−1.

Using this equation, Lemma 3.1, Definition 5.1, and Lemma 8.2, we find

ci+1E
∗
i+1Ai+1E

∗
1v = E∗i+1AAiE

∗
1v − aiE∗i+1AiE

∗
1v

= E∗i+1(R+ F + L)AiE
∗
1v −

ai
c1c2 · · · ci

E∗i+1R
iE∗1v

= RE∗i AiE
∗
1v + FE∗i+1AiE

∗
1v −

ai
c1c2 · · · ci

E∗i+1R
iE∗1v.

(8.4)

Observe FE∗i+1AiE
∗
1v = (c1c2 · · · ci)−1E∗i+1FR

iE∗1v by (8.2), and E∗i+1FR
iE∗1v ∈

span{Riv} by Lemma 8.1 and the fact that v is an eigenvector for F . Using this informa-
tion along with (8.4) and the inductive hypothesis, we find E∗i+1Ai+1E

∗
1v ∈ span{Riv},

as desired.

Lemma 8.4. With reference to Definition 6.6, let U denote the sum of all T -modules of
endpoint 1. Assume v ∈ E∗1U is an eigenvector for F . Then Lv = 0 and LRiv ∈
span{Ri−1v} for 1 ≤ i ≤ D − 1.

Proof. Since v is contained in a sum of irreducible T -modules of endpoint 1, we find
Lv = 0. By [5, Propositions 8.3(ii), 8.4], the primary module is the unique irreducible
T -module upon which J does not vanish. Thus JE∗1v = 0, and for 1 ≤ j ≤ D − 1,

0 = E∗j JE
∗
1v = E∗j (

D∑
t=0

At)E
∗
1v

= E∗jAj−1E
∗
1v + E∗jAjE

∗
1v + E∗jAj+1E

∗
1v.

Thus E∗jAj+1E
∗
1v = −E∗jAj−1E

∗
1v − E∗jAjE∗1v, and so by Lemma 8.2 and Lemma 8.3,

E∗jAj+1E
∗
1v ∈ span{Rj−1v} (1 ≤ j ≤ D − 1). (8.5)

Now fix an integer i (1 ≤ i ≤ D − 1). By [2, p. 127],

AAi = ci+1Ai+1 + aiAi + bi−1Ai−1.

Thus
E∗i AAiE

∗
1v = ci+1E

∗
i Ai+1E

∗
1v + aiE

∗
i AiE

∗
1v + bi−1E

∗
i Ai−1E

∗
1v. (8.6)

In view of (8.6), and using (8.5), (8.3), (8.2), we find

E∗i AAiE
∗
1v ∈ span{Ri−1v}. (8.7)
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Now using Definition 5.1 and (8.2),

E∗i AAiE
∗
1v = E∗i (R+ F + L)AiE

∗
1v

= RE∗i−1AiE
∗
1v + FE∗i AiE

∗
1v + LE∗i+1AiE

∗
1v

= RE∗i−1AiE
∗
1v + FE∗i AiE

∗
1v +

1

c1c2 · · · ci
LRiv.

Thus
LRiv = c1c2 · · · ci(E∗i AAiE∗1v −RE∗i−1AiE

∗
1v − FE∗i AiE∗1v).

Recalling that v is an eigenvector for F , the result now follows from (8.7), (8.5), (8.3),
(8.1).

We now present our main result. With reference to Definition 6.6, let W denote an
irreducible T -module of endpoint 1, and observe by Definition 5.1 that FE∗1W ⊆ E∗1W .
Thus, there is a nonzero vector v ∈ E∗1W such that v is an eigenvector for F . We shall
show W is thin.

Theorem 8.5. With reference to Definition 6.6, letW denote an irreducible T -module with
endpoint 1. Choose nonzero v ∈ E∗1W which is an eigenvector for F . Then the following
set spans W :

{v,Rv,R2v, . . . , RD−1v}. (8.8)

In particular, W is thin.

Proof. We first show thatW is spanned by the vectors in (8.8). LetW ′ denote the subspace
of V spanned by the vectors in (8.8) and note that W ′ ⊆ W . We claim that W ′ is T -
invariant. Observe that since RE∗j V ⊆ E∗j+1V for 0 ≤ j ≤ D − 1, W ′ is invariant
under the action of E∗j for 0 ≤ j ≤ D, and so W ′ is M∗-invariant. By definition and
since RE∗DV = 0, W ′ is invariant under R. From Lemma 8.1, Lemma 8.4, and the fact
that v is an eigenvector for F , it follows that W ′ is also invariant under F and L. Since
A = R + F + L and since A generates M , W ′ is M -invariant. The claim follows. Hence
W ′ is a T -module, and it is nonzero since v ∈W ′. By the irreducibility of W we have that
W ′ = W . Since for 0 ≤ j ≤ D−1 we have Rjv ∈ E∗j+1W , it follows that W is thin.

9 Special case – two modules with endpoint 1
With reference to Definition 6.6, in this section we consider the case where Γ has (up to
isomorphism) exactly two irreducible T -modules with endpoint 1. Note that these modules
are thin by Theorem 8.5. Observe that in this case it follows from the comments of Section 4
that the local graph ∆ = ∆(x) has either two or three distinct eigenvalues. In the former
case ∆ is a disjoint union of complete graphs (with order a1 +1), while in the latter case ∆
is a strongly regular graph (see [8, Chapter 10, Lemma 1.5]). We observe that ∆ has one of
these two forms if and only if the map K1 is constant for every y ∈ Γ(x), and this constant
does not depend on y.

Proposition 9.1. With reference to Definition 6.6, assume that ∆ is a disjoint union of
k/(a1 + 1) cliques of order a1 + 1. Let W denote an irreducible T -module with endpoint
1. Then W is thin with local eigenvalue a1 or −1.
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Proof. Recall that W is thin by Theorem 8.5. Let η denote the local eigenvalue of W , and
note that η is an eigenvalue of ∆ by the comments of Section 4. But the eigenvalues of ∆
are a1 (with multiplicity k/(a1 + 1) > 1) and −1 (with multiplicity k − k/(a1 + 1) =
ka1/(a1 + 1)). The result follows.

Proposition 9.2. With reference to Definition 6.6, assume that ∆ is a connected strongly
regular graph with parameters (k, a1, λ, v2). Let W denote an irreducible T -module with
endpoint 1. Then W is thin with local eigenvalue η2 or η3, where

η2, η3 =
λ− v2 ±

√
(λ− v2)2 + 4(a1 − v2)

2
. (9.1)

Proof. Recall that W is thin by Theorem 8.5. Let η denote the local eigenvalue of W ,
and recall that η is an eigenvalue of ∆. Therefore, by the well-known formula for the
eigenvalues of a connected strongly regular graph, the eigenvalues of Γ(x) are η1 = a1

(with multiplicity 1), and scalars η2, η3 from (9.1). The result follows.

Theorem 9.3. With reference to Definition 6.6, assume that for every y ∈ Γ(x) the mapK1

is constant, and that this constant does not depend on y. Then Γ has (up to isomorphism)
exactly two irreducible T -modules with endpoint 1, both of which are thin. In particular,
for every 1 ≤ i ≤ D − 1, the map Ki is constant, and this constant does not depend on y
(in other words, Γ is pseudo-1-homogeneous with respect to x in the sense of Curtin and
Nomura [4]).

Proof. Recall that every irreducible T -module of Γ is thin by Theorem 8.5. Therefore, by
Theorem 4.3, two irreducible T -modules with endpoint 1 are isomorphic if and only if they
have the same local eigenvalue. As K1 is constant and this constant does not depend on y,
the local graph ∆ is either a disjoint union of cliques of order a1 +1, or connected strongly
regular graph. The first part of the above theorem now follows from Propositions 9.1 and
9.2. The second part follows from [4, Theorem 1.6].

10 Special case – three modules with endpoint 1
With reference to Definition 6.6, in this section we consider the case where Γ has (up
to isomorphism) exactly three irreducible T -modules with endpoint 1. Note that these
modules are thin by Theorem 8.5. It follows from the comments in Section 4 that this
situation occurs if and only if the local graph ∆ is either disconnected with exactly three
distinct eigenvalues, or connected with exactly four distinct eigenvalues. Moreover, ∆ is
not connected if and only if v2 = 0. But if v2 = 0, then it is easy to see that ∆ is a disjoint
union of complete graphs (with order a1 + 1), and has therefore 2 distinct eigenvalues.
This shows that v2 6= 0, and so ∆ is connected with exactly four distinct eigenvalues. To
describe this case we need the following definition.

Definition 10.1. With reference to Definition 6.6, for y ∈ Γ(x) let B = B(y) denote the
adjacency matrix of the subgraph of Γ induced on D1

1 . Observe that B ∈ MatD1
1
(C), and

so the rows and the columns of B are indexed by the elements of D1
1 . Let j ∈ CD1

1 denote
the all-ones column vector with rows indexed by the elements of D1

1 .

Lemma 10.2. With reference to Definition 10.1, pick y ∈ Γ(x). Then for every z ∈ D1
1 we

have
K1(z) = b1 − a1 + (Bj)z + 1.
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Proof. Observe that (Bj)z is equal to the number of neighbours that z has in D1
1 . There-

fore, z has a1−1−(Bj)z neighbours inD1
2 . But as z also hasK1(z) neighbours inD2

2 and
no neighbours in D3

2 , it must have b1 −K1(z) neighbours in D1
2 . The result follows.

With reference to Definition 10.1, we now describe three properties that Γ could have.

Definition 10.3. With reference to Definition 10.1, we denote by P1, P2 and P3 the fol-
lowing properties of Γ:

P1: There exists y ∈ Γ(x) such that K1 is not a constant.

P2: For every y, z ∈ Γ(x) with ∂(y, z) ∈ {0, 2}, the number of walks of length 3 from y
to z in graph ∆ is a constant number, which depends only on ∂(y, z) (and not on the
choice of y, z).

P3: There exist scalars α, β such that for every y ∈ Γ(x) we have

B2j = αBj + βj.

With reference to Definition 10.3, in the rest of this section we prove that Γ has proper-
ties P1, P2, P3 if and only if Γ has (up to isomorphism) exactly three irreducible T -modules
with endpoint 1.

Proposition 10.4. With reference to Definition 10.3, assume that Γ has (up to isomorphism)
exactly three irreducible T -modules with endpoint 1. Then Γ has property P1.

Proof. Assume on the contrary thatK1 is a constant for every y ∈ Γ(x). We claim that this
constant is independent of the choice of y ∈ Γ(x). Pick y ∈ Γ(x) and let Di

j = Di
j(x, y).

Denote the constant value of K1 = K1(y) by κ = κ(y). Observe that every vertex in
D1

2 has v2 neighbours in D1
1 , and that every vertex in D1

1 has b1 − κ neighbours in D1
2 .

As |D1
2| = b1 and |D1

1| = a1, this gives us a1(b1 − κ) = b1v2. This shows that κ is
independent of the choice of y ∈ Γ(x). By Theorem 9.3, Γ has up to isomorphism at
most two irreducible modules with endpoint 1, a contradiction. This shows that Γ has
property P1.

Lemma 10.5. With reference to Definition 10.3, assume that Γ has (up to isomorphism)
exactly three irreducible T -modules with endpoint 1. Then

E∗1F
3E∗1 = E∗1

(
µ1LR+ µ2RL+ µ3F + µ4F

2
)
E∗1 (10.1)

for some scalars µi (1 ≤ i ≤ 4).

Proof. By Lemma 3.2, there exist scalars λ1, λ2, λ3, λ4, λ5, not all zero, such that

E∗1
(
λ1LR+ λ2RL+ λ3F + λ4F

2 + λ5F
3
)
E∗1 = 0. (10.2)

We claim that λ5 6= 0. Assume on the contrary that λ5 = 0. By Proposition 10.4, there
exists y ∈ Γ(x) such that K1 = K1(y) is not a constant. Pick such y and let Di

j =

Di
j(x, y). Let z ∈ D1

1 . We now compute the (z, y)-entry of (10.2). By Lemma 7.1(ii),(iii),
the (z, y) entry of E∗1LRE

∗
1 (E∗1RLE

∗
1 , respectively) is b1 −K1(z) (1, respectively). By

Lemma 5.3(vi), the (z, y)-entry of E∗1FE
∗
1 is 1, and the (z, y)-entry of E∗1F

2E∗1 is equal
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to the number of neighbours of z in D1
1 . But by Lemma 10.2, the number of neighbours of

z in D1
1 is equal to a1 − 1− b1 +K1(z). It follows from the above comments that

λ1(b1 −K1(z)) + λ2 + λ3 + λ4(a1 − 1− b1 +K1(z)) = 0.

Note that by the assumption the map K1 is not constant, and so the above equality implies
λ4 = λ1. Therefore λ1(a1 − 1) + λ2 + λ3 = 0.

We now compute the (y, y)-entry of (10.2). Similarly as above we get

λ1(k − 1) + λ2 = 0.

Finally, pick z ∈ D1
2 . By computing the (y, z)-entry of (10.2) we get

λ1(c2 − 1) + λ2 = 0.

It follows easily from the above equations that λ1 = λ2 = λ3 = λ4 = 0, a contradiction.
This shows that λ5 6= 0 and so

E∗1F
3E∗1 = E∗1

(
µ1LR+ µ2RL+ µ3F + µ4F

2
)
E∗1 ,

where µi = −λi/λ5 for 1 ≤ i ≤ 4.

Theorem 10.6. With reference to Definition 10.3, assume that Γ has (up to isomorphism)
exactly three irreducible T -modules with endpoint 1. Then Γ has properties P2 and P3.

Proof. Note that for every y, z ∈ Γ(x), the (z, y)-entry of E∗1F
3E∗1 is equal to the number

of walks of length 3 from y to z in graph ∆. Pick y, z ∈ Γ(x) such that ∂(y, z) ∈ {0, 2}.
We compute the (z, y)-entry of (10.1). Using Lemma 5.3(vi) and Lemma 7.1(ii),(iii) we
find that

(E∗i F
3E∗1 )zy =

{
µ1b1 + µ2 + µ4a1 if z = y,

µ1(c2 − v2 − 1) + µ2 + µ4v2 if z 6= y.

This shows that Γ has property P2.
Pick now y, z ∈ Γ(x) such that ∂(y, z) = 1 and let Di

j = Di
j(x, y). Let K1 denote the

corresponding map, and let B = B(y). Let [y = y0, y1, y2, y3 = z] be a walk of length 3
from y to z in ∆. We will say that this walk is of type 0 if y2 = y, of type 1 if y2 ∈ D1

1 , and
of type 2 if y2 ∈ D1

2 . It is clear that we have a1 walks of type 0 and (a1 − 1 − (Bj)z)v2

walks of type 2. Similarly, there are (B2j)z walks of type 1. So there are in total

a1 + (a1 − 1− (Bj)z)v2 + (B2j)z

walks of length 3 from y to z in ∆.
We now compute the (z, y)-entry of the right side of (10.1). Using Lemma 7.1(iii) and

Lemma 10.2, we find that the (z, y)-entry of E∗1LRE
∗
1 is equal to

b1 −K1(z) = a1 − (Bj)z − 1.

It is easy to see that the (z, y)-entries ofE∗1RLE
∗
1 andE∗1FE

∗
1 are both equal to 1. Finally,

the (z, y)-entry of E∗1F
2E∗1 is equal to the number of neighbours of z in D1

1 , that is to
(Bj)z . It now follows from the above comments that

a1 + (a1 − 1− (Bj)z)v2 + (B2j)z = µ1(a1 − (Bj)z − 1) + µ2 + µ3 + µ4(Bj)z.
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This shows that
(B2j)z = α(Bj)z + β

for some scalars α, β, which are independent of the choice of vertices y, z. This proves that
Γ has property P3.

We now assume that Γ has properties P1, P2 and P3. We will show that this implies
that Γ has (up to isomorphism) exactly three irreducible T -modules with endpoint 1.

Definition 10.7. With reference to Definition 10.3, assume that Γ has properties P1, P2
and P3, and recall that X̆ = Γ(x). Recall also that for any y, z ∈ X̆ with ∂(y, z) ∈ {0, 2},
the number of walks of length 3 from y to z in ∆ is a constant number, which depends
just on the distance between y and z. We denote this number by w0 if y = z and by w2

if ∂(y, z) = 2. Recall that Ă = Ă(x) ∈ MatX̆(C) denotes the adjacency matrix of ∆.
Furthermore, let Ĭ denote the identity matrix of MatX̆(C) and let J̆ denote the all-ones
matrix of MatX̆(C).

We now display the entries of Ă, Ă2 and Ă3.

Proposition 10.8. With reference to Definition 10.7, the following (i)–(iii) hold for all
z, y ∈ X̆ .

(i)

(Ă)zy =

{
1 if ∂(y, z) = 1,

0 otherwise.

(ii)

(Ă2)zy =


a1 if y = z,

(Bj)z if ∂(y, z) = 1,

v2 if ∂(y, z) = 2,

where B = B(y).

(iii)

(Ă3)zy =


w0 if y = z,

a1 + v2(a1 − 1) + (Bj)z(α− v2) + β if ∂(y, z) = 1,

w2 if ∂(y, z) = 2,

where B = B(y) and α, β are from Definition 10.3.

Proof. Recall that for i ≥ 0, the (z, y)-entry of Ăi is equal to the number of walks of length
i from y to z in ∆. Parts (i), (ii) follow. We now prove part (iii).

Note that the result is clear if y = z or if ∂(y, z) = 2. Therefore, assume ∂(y, z) = 1.
Similarly as in the proof of Theorem 10.6, we split the walks of length 3 between y and
z into three types, depending on whether the third vertex of the walk is equal to y, or is
a neighbour of y, or is at distance 2 from y. There are a1 walks of the first type, (B2j)z
walks of the second type, and (a1 − 1 − (Bj)z)v2 walks of the third type. Recall that by
property P3 we have B2j = αBj + βj, and so the result follows.
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Proposition 10.9. With reference to Definition 10.7, we have

Ă3 = (α− v2)Ă2 + (a1 + β + v2(a1 − 1 + α− v2)− w2)Ă

+ (w0 − w2 + (α− v2)(v2 − a1))Ĭ + (w2 − (α− v2)v2)J̆ ,
(10.3)

where α, β are from Definition 10.3.

Proof. Pick y, z ∈ X̆ . It follows from Proposition 10.8 that the (z, y)-entry of the left side
and the right side of (10.3) agree. This proves the proposition.

Theorem 10.10. With reference to Definition 10.7, ∆ has exactly four distinct eigenvalues.

Proof. Observe that ∆ is connected and regular with valency a1, so a1 is an eigenvalue of
∆ with multiplicity 1. The corresponding eigenvector is the all-ones vector in CX̆ , which
we denote by j̆. Let θ denote an eigenvalue of ∆ which is different from a1, and let w
denote a corresponding eigenvector. Note that w and j̆ are orthogonal, and so applying
(10.3) to w we get

θ3w = (α− v2)θ2w + (a1 + β + v2(a1 − 1 + α− v2)− w2)θw

+ (w0 − w2 + (α− v2)(v2 − a1))w.

As w is nonzero, we have

θ3 = (α− v2)θ2 + (a1 +β+ v2(a1− 1 +α− v2)−w2)θ+w0−w2 + (α− v2)(v2−a1).

This shows that ∆ could have at most four different eigenvalues. Now if ∆ has fewer
than four different eigenvalues, then ∆ is strongly regular [8, Chapter 10, Lemma 1.5],
and so (Bj)z is constant for every y, z ∈ X̆ with z ∈ Γ(y), where B = B(y) and j
is from Definition 10.1. By Lemma 10.2, K1 is constant for every y ∈ X̆ , contradicting
property P1.

Theorem 10.11. With reference to Definition 10.7, Γ has (up to isomorphism) exactly three
irreducible T -modules with endpoint 1.

Proof. Recall that Γ is 1-thin with respect to x by Theorem 8.5. The result now follows
from Theorems 4.3, 4.4, and 10.10.

11 Example: Johnson graphs
Pick a positive integer n ≥ 2 and let m denote an integer (0 ≤ m ≤ n). The vertices of
the Johnson graph J(n,m) are the m-element subsets of {1, 2, . . . , n}. Vertices x, y are
adjacent if and only if the cardinality of x ∩ y is equal to m − 1. It follows that if x, y
are arbitrary vertices of J(n,m), then ∂(x, y) = m − |x ∩ y|. Therefore, the diameter
D of J(n,m) is equal to min{m,n −m}. Recall that J(n,m) is distance-transitive (see
[2, Theorem 9.1.2]), and so it is also distance-regular. It is well known that J(n,m) is
isomorphic to J(n, n −m), so we will assume that m ≤ n/2, which implies D = m. In
fact, if n is even and m = n/2, then J(2m,m) is 1-homogeneous (see [9]), and so we
assume from here on that m < n/2. As we are also assuming that D ≥ 3, we therefore
have m ≥ 3, n ≥ 7. For more details on Johnson graphs, see [2, Section 9.1].
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Pick adjacent vertices x, y of J(n,m), and let Di
j = Di

j(x, y) be as defined in Defini-
tion 6.1. For 1 ≤ i ≤ D let maps Hi, Ki and Vi be as defined in Definition 6.4. The main
purposes of this section are to describe maps Hi, Ki and Vi in detail and to show J(n,m)
satisfies the assumptions of Definitions 6.6 and 10.7. As J(n,m) is distance-transitive, it is
also arc-transitive, and so we can assume that x = {1, 2, . . . ,m}, y = {2, 3, . . . ,m + 1}.
We start with a description of the sets Di

j .

Proposition 11.1. Pick positive integers n and m with n ≥ 7, 3 ≤ m < n/2, and let x =
{1, 2, . . . ,m}, y = {2, 3, . . . ,m+ 1} be adjacent vertices of J(n,m). Let Di

j = Di
j(x, y)

be as defined in Definition 6.1. Then for 1 ≤ i ≤ D, the set Di−1
i (Di

i−1, respectively)
consists of vertices of the form {1} ∪ A ∪ B ({m + 1} ∪ A ∪ B, respectively), where
A ⊆ {2, 3, . . . ,m} with |A| = m− i and B ⊆ {m+ 2,m+ 3, . . . , n} with |B| = i− 1.

Proof. Routine.

To describe sets Di
i , we need the following definition.

Definition 11.2. Pick positive integers n and m with n ≥ 7, 3 ≤ m < n/2, and let
x = {1, 2, . . . ,m}, y = {2, 3, . . . ,m+ 1} be adjacent vertices of J(n,m).

(i) For 1 ≤ i ≤ D−1, define setDi
i(0) to be the set of vertices of the form {1,m+1}∪

A∪B, whereA ⊆ {2, 3, . . . ,m}with |A| = m−i−1 andB ⊆ {m+2,m+3, . . . , n}
with |B| = i− 1. We define D0

0(0) = DD
D(0) = ∅.

(ii) For 1 ≤ i ≤ D, define set Di
i(1) to be the set of vertices of the form A ∪ B, where

A ⊆ {2, 3, . . . ,m} with |A| = m− i, andB ⊆ {m+2,m+3, . . . , n} with |B| = i.
We define D0

0(1) = ∅.

Please refer to Figure 2 for a diagram of this partition.

y

x
D12

D12

D23

D23

Di+1

Di+1

D -1
i

D -1i

D -2
-1

D -1
-2

D -1

D -1

D -2
-1

D -1
-2
D

D

D
D

DD
D

D

i
i

i

i
ii

i

i

DDD (1)-1
-1Dii(1) DDD(1)

DDD (0)-1
-1Dii(0)Dii (0)-1

-1

Dii (1)-1
-1

D11(0)

D11(1)

D22(0)

D22(1)

Figure 2: The partition with reference to Definition 11.2. For further information about
which sets in the diagram are connected by edges, please refer to the propositions and
corollaries later in this section.

Proposition 11.3. Pick positive integers n and m with n ≥ 7, 3 ≤ m < n/2, and let
x = {1, 2, . . . ,m}, y = {2, 3, . . . ,m + 1} be adjacent vertices of J(n,m). Let Di

j =

Di
j(x, y) be as defined in Definition 6.1 and let Di

i(0), Di
i(1) be as in Definition 11.2.

Then for 1 ≤ i ≤ D−1 we have thatDi
i is a disjoint union ofDi

i(0) andDi
i(1). Moreover,

DD
D = DD

D(1).

Proof. Routine.
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We now first describe the maps Vi.

Proposition 11.4. With the notation of Proposition 11.3, let the maps Vi be as defined in
Definition 6.4. Then for 1 ≤ i ≤ D and any z ∈ Di

i−1 ∪D
i−1
i we have

Vi(z) = 2(i− 1).

In particular, the maps Vi are constant.

Proof. Note that the result is clear for i = 1, so pick 2 ≤ i ≤ D and assume z ∈ Di−1
i (case

z ∈ Di
i−1 is treated similarly and we omit the details). First recall that by the definition of

map Vi and by Proposition 11.3 we have

Vi(z) = |Γ(z) ∩Di−1
i−1| = |Γ(z) ∩Di−1

i−1(0)|+ |Γ(z) ∩Di−1
i−1(1)|.

Recall also that by Proposition 11.1 there exist subsetsA ⊆ {2, 3, . . . ,m}with |A| = m−i
and B ⊆ {m + 2,m + 3, . . . , n} with |B| = i − 1, such that z = {1} ∪ A ∪ B. We first
count the number of neighbours of z in Di−1

i−1(1). As vertices contained in Di−1
i−1(1) do not

contain the number 1 as an element, vertex w ∈ Di−1
i−1(1) will be adjacent with z if and

only if
w = A ∪B ∪ {`}

for some ` ∈ {2, 3, . . . ,m} \ A. Therefore, there are exactly m − 1 − (m − i) = i − 1
neighbours of z in Di−1

i−1(1). We now count the number of neighbours of z in Di−1
i−1(0).

As vertices contained in Di−1
i−1(0) contain numbers 1 and m + 1 as elements, vertex w ∈

Di−1
i−1(0) will be adjacent with z if and only if

w = ({1,m+ 1} ∪A ∪B) \ {`}

for some ` ∈ B. Therefore, there are exactly i− 1 neighbours of z in Di−1
i−1(0). The result

follows.

Proposition 11.5. With the notation of Proposition 11.3, for 1 ≤ i ≤ D − 1 and for any
z ∈ Di

i(0) the following (i), (ii) hold.

(i) |Γ(z) ∩Di−1
i−1(0)| = i(i− 1).

(ii) |Γ(z) ∩Di−1
i−1(1)| = 0.

Proof. Note that the result is clear for i = 1, so pick 2 ≤ i ≤ D−1 and z ∈ Di
i(0). Recall

that z = {1,m+ 1} ∪ A ∪ B for some subsets A ⊆ {2, 3, . . . ,m} with |A| = m− i− 1
and B ⊆ {m+ 2,m+ 3, . . . , n} with |B| = i− 1.

(i): Note that w ∈ Di−1
i−1(0) is adjacent with z if and only if w = {1,m+ 1}∪A′ ∪B′,

whereA′ = A∪{`1} for some `1 ∈ {2, 3, . . . ,m}\A andB′ = B\{`2} for some `2 ∈ B.
We have m− 1− (m− i− 1) = i choices for `1 and i− 1 choices for `2. It follows that z
has i(i− 1) neighbours in Di−1

i−1(0).
(ii): Recall that if w is an element of Di−1

i−1(1), then 1 and m+ 1 are not elements of w.
On the other hand, 1 and m+ 1 are elements of z, and so z and w are not adjacent.

Proposition 11.6. With the notation of Proposition 11.3, for 1 ≤ i ≤ D and for any
z ∈ Di

i(1) the following (i), (ii) hold.
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(i) |Γ(z) ∩Di−1
i−1(1)| = i(i− 1).

(ii) |Γ(z) ∩Di−1
i−1(0)| = 0.

Proof. Similar to the proof of Proposition 11.5.

Corollary 11.7. With the notation of Proposition 11.3, let the maps Hi be as defined in
Definition 6.4. Then for 1 ≤ i ≤ D and any z ∈ Di

i we have

Hi(z) = i(i− 1).

In particular, the maps Hi are constant.

Proof. Immediate from Propositions 11.5 and 11.6 and since Di
i is a disjoint union of

Di
i(0) and Di

i(1).

Proposition 11.8. With the notation of Proposition 11.3, for 1 ≤ i ≤ D − 1 and for any
z ∈ Di

i(0) the following (i), (ii) hold.

(i) |Γ(z) ∩Di+1
i+1(0)| = (m− i− 1)(n−m− i).

(ii) |Γ(z) ∩Di+1
i+1(1)| = 0.

Proof. Pick 1 ≤ i ≤ D − 1 and z ∈ Di
i(0). Recall that z = {1,m+ 1} ∪A ∪B for some

subsets A ⊆ {2, 3, . . . ,m} with |A| = m − i − 1 and B ⊆ {m + 2,m + 3, . . . , n} with
|B| = i− 1.

(i): Note that w ∈ Di+1
i+1(0) is adjacent with z if and only if w = {1,m+ 1}∪A′ ∪B′,

where A′ = A \ {`1} for some `1 ∈ A and B′ = B ∪ {`2} for some `2 ∈ {m + 2,m +
3, . . . , n}\B. We therefore havem−i−1 choices for `1 and (n−m−1)−(i−1) = n−m−i
choices for `2. It follows that z has (m− i− 1)(n−m− i) neighbours in Di+1

i+1(0).
(ii): Immediate from Proposition 11.6(ii).

Proposition 11.9. With the notation of Proposition 11.3, for 1 ≤ i ≤ D − 1 and for any
z ∈ Di

i(1) the following (i), (ii) hold.

(i) |Γ(z) ∩Di+1
i+1(1)| = (m− i)(n−m− i− 1).

(ii) |Γ(z) ∩Di+1
i+1(0)| = 0.

Proof. Similar to the proof of Proposition 11.8.

Corollary 11.10. With the notation of Proposition 11.3, let the maps Ki be as defined in
Definition 6.4. Then for 1 ≤ i ≤ D − 1 and any z ∈ Di

i we have

Ki(z) =

{
(m− i− 1)(n−m− i) if z ∈ Di

i(0),

(m− i)(n−m− i− 1) if z ∈ Di
i(1).

In particular, maps Ki are not constant.

Proof. The first part of the corollary follows immediately from Propositions 11.8 and 11.9
and since Di

i is a disjoint union of Di
i(0) and Di

i(1). For the second part, observe that if
Ki is a constant, then we have n = 2m, contradicting our assumption m < n/2.

Proposition 11.11. With the notation of Proposition 11.3, the following (i)–(iii) hold.
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(i) Every z ∈ D1
2 has 1 neighbour inD1

1(0), 1 neighbour inD1
1(1), and n−4 neighbours

in D1
2 .

(ii) Every z ∈ D1
1(0) has n−m− 1 neighbours in D1

2 , m− 2 neighbours in D1
1(0), and

no neighbours in D1
1(1).

(iii) Every z ∈ D1
1(1) has m− 1 neighbours in D1

2 , n−m− 2 neighbours in D1
1(1), and

no neighbours in D1
1(0).

Consequently, the partition {{y}, D1
1(0), D1

1(1), D1
2} of Γ(x) is equitable.

Proof. First observe that it follows from the proof of Proposition 11.4 that each z ∈ D1
2

has 1 neighbour in D1
1(0) and 1 neighbour in D1

1(1). Consequently, z has a1 − 2 = n− 4
neighbours in D1

2 . Next observe that each vertex from D1
1(0) contains 1 and m + 1 as

elements, while 1 and m + 1 are not elements of any vertex from D1
1(1). Consequently,

there are no edges between vertices ofD1
1(0) andD1

1(1). Furthermore, by Corollary 11.10,
each vertex inD1

1(0) has (m−2)(n−m−1) neighbours inD2
2 , while each vertex inD1

1(1)
has (m− 1)(n−m− 2) neighbours in D2

2 . The other claims of the above proposition now
follow from the fact that intersection numbers a1 and b1 of J(n,m) are equal to n− 2 and
(m− 1)(n−m− 1), respectively.

Theorem 11.12. Pick positive integers n and m with n ≥ 7, 3 ≤ m < n/2, and let
Γ = J(n,m). Pick x ∈ V (Γ) and let T = T (x). Then Γ has (up to isomorphism) exactly
three irreducible T -modules with endpoint 1, and these modules are all thin.

Proof. As Γ is arc transitive, it follows from Proposition 11.4 and Corollary 11.7 that maps
Vi and Hi (2 ≤ i ≤ D) are constant for every y ∈ Γ(x), and that these constants are
nonzero and independent of the choice of y. By Theorem 8.5, Γ is 1-thin. By Corol-
lary 11.10, the map K1 is not constant for any y ∈ Γ(x). Pick y, z ∈ Γ(x) and let
B = B(y) be as defined in Definition 10.1. It follows from Proposition 11.11 that the
number of walks of length 3 from y to z in ∆ = ∆(x) depends only on the distance be-
tween y and z when ∂(y, z) ∈ {0, 2}. Finally, by Proposition 11.11 we also have that
B2j = αBj + βj, where α = n − 4, β = −(n −m − 2)(m − 2), and j is from Defini-
tion 10.1. Therefore Γ has properties P1, P2 and P3, and so, by Theorem 10.11, Γ has (up
to isomorphism) exactly three irreducible T -modules with endpoint 1.
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