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ABSTRACT

This work follows the generaframework of polymerinjection mouldingsimulationwhoseobjectvesarethe
masteringof theinjectionmouldingprocess.The modelsof numericalsimulationmale it possibleto predict
the propagatiorof the moltenpolymerduring thefilling phasefrom the positioningof onepoint of injection
or more. The objective of this paperis to proposea particularway to optimizethe geometryof mold cavity in

accordancsvith physicallaws. A directcorrelationis pointedout betweergeometricparametersssuedfrom

skeletontransformatiorandHausdorf’s distanceandresultsprovidedby implementatiorof a classicaimodel
basedn the Hele-Shav equationswhich arecurrentlyusedin the maincomputercodesof polymerinjection.
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INTRODUCTION

Injection molding of thermoplasticis a complex
processmainly due to the physicalpropertiesof the
polymers, the processingconditions and the mold
geometry This compleity leadsto the development
of numericalmodels,the objectives of which is the
simulationof the processActually, numericalmodels
integrate the three phasesof injection process:the
filling phasethepackingphaseandthecoolingphase
during which the material solidifies. In this paper
we presentresults dedicatedto the optimization of
the filling phase.The presentedapproachconsistsof
finding the optimal location of injection points in
order to minimize the pressurerequiredto fill the
mold shape.Furthermore ,we describethe different
stepsto achieve this objectie. Firstly, we proposea
numericalmodel basedon the Hele-Shav equations
to simulatethe propagationof the polymer We use
the finite volume methodto generatea discreteform
of the equationsSecondlywe introducestereological
parametersuchasskeletonand Hausdorf’s distance
which enable characterizationof the geometric
properties of the mold shape. Finally, taking in
considerationsimple shapesthe goal is to shov a
relevantcorrelationbetweertheflow simulationgiven
by numericalcomputationand geometricparameters
linkedto themold shape.

PHYSICAL MODEL

Hereafterweintroducethetheoreticabackground
for the presentedlow model.We give a brief review
of the generalequationsof fluid dynamicswhich are
the point of departurdor flow modelling.Considering

the particular case of injection molding, we use
simplifications about material properties and flow
characteristicsln fact, the specificshell geometryof
moldsallows usto considersimplificationscommonly
called Hele-Shav assumptions. Furthermore, the
computationof polymer propagationnecessitate$o
estimate precisely the position of the polymer/air
interface. It allows us to define the boundary
conditionsof the physicalmodelat eachtime step.

General equations of fluid dynamics

The fundamental equations of fluid dynamics
express the principles of conseration of mass,
momentum and enegy. The three fundamental
equationsof conserationin their local form are the
following (Candel,1995):

— Equationof massconseration,

dp

— (0V) = 1
g TP-(0V =0, ()
— Equationof momentunconseration,
dv

Equationof conserationof enegy,

p% (e+ %v2> =—[0.g+0.(a.V) - O.pV+pg.v,
3)

with p the density V the velocity, p the pressureg,
the viscousstresstensor e the internalenepy, g the
stresgensorandd the heatflux.
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Assumptions about material properties
In the particular caseof injection molding, one

consider®nly veryhighviscousfluid. In consequence,

the inertial and gravitational terms will not be
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Stoke’s equation (Agassantet al.,, 1989). During

the filling phase, the polymer is assumedto be

incompressibleTheresultingequationsare:

taken into accountin the momentumequation.This v =0, (4)
simplification leadsto a well known equation:the —Up+0-0, = 0. (5)
z
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Fig. 1. Flow characteristics.

Hele-Shaw assumptions

During the filling phase,the flow into the mold
cavity is very similar to a laminarflow betweentwo
plateswith averythin gap(Fig. 1).

We considera cartesiancoordinate system, as
shavnin theFig. 1 (wherethez-axisis in thethickness
direction and the x-y planeis on the mid plane of
the cavity) and the velocity componentau,v and w
are respectiely taken in the x, y and z directions.
The Hele-Shav flow model consistsof the following
assumptiongKennedy 1995):

— Thew componentf thevelocity is neglectedwith
respecto the otherscomponents.

— Thepressureonstanin thicknessjs afunctionof
x andy.

— Thevelocity gradientin the x andy directionsis
negligible with respecto z direction.

Applying the Hele-Shav assumptiongo the Stokes's
equationwe obtainthe simplified equations:

op _ d [ du

ax _ 9z (’75> ; (6)
op 9 [ ov

oy oz <nd_z> ) (7)
op

with n the viscosity By integratingthe massandthe

momentumequationswith respectto the thickness
direction, we obtain a single equationfor pressure
which combinesmassconseration and momentum
conseration. The final result gives the following

Laplaces equationKennedy 1995).

a (.0p\ . 9 (9p) _
w5ty (sy)-0 @
with:
h
2
S:/—dz. 10
/5 (10)

Eqg. (8) meansthat, at eachtime step, the pressure
field is the solution of equation (9) with a zero
pressureDirichlet boundarycondition applied at the
free-surhce.

DISCRETE MODEL

The presenteddiscrete model is basedon the
finite volume methodandthe volume of fluid method
commonlyusedfor tracking free surfacefor moving
boundaryproblem. The spatialdomainis discretized
from a structuredmeshwhereeachcontrol volumeis
definedasshawn in Fig. 2a.
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Fig. 2. (a) Control volumeandflux. (b) lllustration of freesurfacecells.

The finite volume method(Eymardet al., 1997)
allows us to provide an accuratenumerical scheme
for the resolution of the pressureEq. (9) which
drives the flow during the propagation.The volume
of fluid methodusesa scalarquantityC, calledcell’'s
concentratiordefining the position of the fluid in the
domain. The value C is equalto 1 if the cell is
completelyoccupiedby the fluid andO if empty The
free surfacelocationis given by the set of empty or
partially full cells which are neighbourto full cells.
Thesecells are called free surface cells (Fig. 2b).
Consideringhepositionof thefluid attimet, we solve
the pressureequationby applying Dirichlet boundary

conditionson free surface cells and a constantflow
rateattheinjection pointlocation.Dirichlet boundary
conditions correspondto a zero value for pressure
on free surfacecells. The concentrationsre updated
in accordancevith the volume of fluid method(Hirt
et al., 1981). The new concentrationvalues define
the new position of the fluid and new boundary
conditionsfor the pressureaquation.The movement
of the fluid is performedby successie iterations.An
illustration of oneiterationis provided in Fig. 3. A
resultof computatioris shawvn (Fig. 4) for anisotherm
newtonianviscosity's law.
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Fig. 4. Pressuefieldsfor differentstepsduring thefilling phase
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VALIDATION ACCORDING TO
A REFERENCE MODEL

In orderto estimatethe accurag of the numerical
model, we chooseto compareit with a well known
analyticalmodel:thediskmold. Theprinciple consists
of studying the radial flow betweentwo parallel
plates from a central injection point. The equation
of injection pressureP, and the front position are
expressedis(Agassanttal., 1989):

QA | o
o RO
3nQ R

A In (Ro> , (12)
whereQ is the flow rate, h the half thicknesshetween
theplatest thetime, n theviscosityandR, theinitial
front radius.The assumptionarethoseof Hele-Shav
for anisothermnewtonianfluid. Firstly a comparison
betweenthe numerical front propagationradius for
differentresolutionsandthe radiuscurve provided by
theanalyticalmodelgivesa high correlation.Secondly
in the sameway, we showv the difference between
the analyticalinjection pressureandnumericalresults

(Fig.5). It is dueto the spatialresolution.To avoid this
differencea meshrefinemeninmustbe performed.

Rinaptical () (11)

Pi -

analytical

SKELETON AND HAUSDORFF'S
DISTANCE

In this section, we introduce a mathematical
morphologytransformatior(Serra,1988)anda metric
in orderto characterizenold shapesThe considered
transformation is the well known skeleton. The
skeletonof thesetA is definedby thefamily of centers

1,50

Time {s)

of all maximaldisksdefinedin A (Fig. 6¢to Fig. 9c).
A maximaldisk D(x, r) is onewhichis includedin the
setA, but not strictly includedin ary other disk in
A. The consideredmetricis the Hausdorf’s distance
(Rucklidge, 1995) allowing to measurethe distance
betweentwo setsof points. Given two setsA and B,
thedefinitionof the Hausdorf’ s distances definedas:

H(AB) = max(h(A B),h(B,A)), (13)
h(A,B) = r;\&xr&igd(a, b), (14)
h(B,A) = rpeanTeipd(a, b), (15)

whered(a,b) is the Euclideandistance.The function
h(A, B) is calledthedirectedHausdorf’sdistancdrom
A to B. Takinginto accounta mold andits injection
point, the set A is the boundaryof the mold and
the set B is the injection point. The distancemap
(Fig.6bto Fig. 9b)is theresultof Hausdorf’ sdistance
computationwhen injection point takes successiely
all the possibleposition inside the shape.Eachlevel
setcorrespondso the setof injection point locations
whichleadsto the sameHausdorf’s distancevalue.In
thecaseof Figs.8b and9bthe computatioris matched
in the sensehatwe cannotusethe Euclideandistance
but thegeodesialistance.

NUMERICAL RESULTS

Thesetof Figs.6ato 9adepictsthefinal injection
pressurevaluewheninjection pointtakessuccessiely
all the possiblepositionsinside the shape.The result
provides a map which allows us to determinethe
optimal injection point location given the minimum
pressure.
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Fig. 6. Squae shape
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Fig. 7. Rectangulashape
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Fig. 8. Symmetrical shape
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Fig. 9. L shape
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The numericalresultsare performedfor different
shapes: square shape (Fig. 6), rectangularshape
(Fig. 7), symmetricalL shape(Fig. 8) anda L shape
(Fig. 9).

INTERPRETATION OF RESULTS
AND CONCLUSION

In the caseof Figs. 6 and7, we obsene a direct
spatialcorrelationbetweengeometricparametersand
thelocusof minimuminjection pressuresConcerning
geometricparametersye associatehe minimum of
the Hausdorf’s distanceto the centerof the maximal

disk definedon the skeleton. The interpretationthat
we give is thefollowing: Firstly, the disc of maximum
radius linked to the skeleton takes place within the
framework of radial flow (Disk mold) corresponding
to anoptimalconfiguration Secondlyin our particular
case,the Hausdorf’s distancecan be viewed as the
optimal centeringof the injection point. For Figs. 8
and9, the situationis someavhatdifferentin the sense
that the minimum injection pressurecorrespondgo
the point of the skeleton for which the Hausdorf's
distanceis minimum. The direct applicationof these
resultsis the optimizationof injection pointlocation.
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