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ABSTRACT

This work follows thegeneralframework of polymerinjectionmouldingsimulationwhoseobjectivesarethe
masteringof theinjectionmouldingprocess.Themodelsof numericalsimulationmake it possibleto predict
thepropagationof themoltenpolymerduring thefilling phasefrom thepositioningof onepoint of injection
or more.Theobjectiveof this paperis to proposea particularway to optimizethegeometryof moldcavity in
accordancewith physicallaws. A directcorrelationis pointedout betweengeometricparametersissuedfrom
skeletontransformationandHausdorff ’sdistanceandresultsprovidedby implementationof aclassicalmodel
basedon theHele-Shaw equationswhich arecurrentlyusedin themaincomputercodesof polymerinjection.
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INTRODUCTION

Injection molding of thermoplasticis a complex
processmainly due to the physicalpropertiesof the
polymers, the processingconditions and the mold
geometry. This complexity leadsto the development
of numericalmodels,the objectives of which is the
simulationof theprocess.Actually, numericalmodels
integrate the three phasesof injection process:the
filling phase,thepackingphase,andthecoolingphase
during which the material solidifies. In this paper,
we presentresults dedicatedto the optimization of
the filling phase.The presentedapproachconsistsof
finding the optimal location of injection points in
order to minimize the pressurerequired to fill the
mold shape.Furthermore,we describethe different
stepsto achieve this objective. Firstly, we proposea
numericalmodel basedon the Hele-Shaw equations
to simulatethe propagationof the polymer. We use
the finite volumemethodto generatea discreteform
of theequations.Secondly, we introducestereological
parameterssuchasskeletonandHausdorff ’s distance
which enable characterization of the geometric
properties of the mold shape. Finally, taking in
considerationsimple shapes,the goal is to show a
relevantcorrelationbetweentheflow simulationgiven
by numericalcomputationand geometricparameters
linkedto themold shape.

PHYSICAL MODEL

Hereafter, weintroducethetheoreticalbackground
for the presentedflow model.We give a brief review
of the generalequationsof fluid dynamicswhich are
thepointof departurefor flow modelling.Considering

the particular case of injection molding, we use
simplifications about material properties and flow
characteristics.In fact, the specificshell geometryof
moldsallowsusto considersimplificationscommonly
called Hele-Shaw assumptions.Furthermore, the
computationof polymer propagationnecessitatesto
estimate precisely the position of the polymer/air
interface. It allows us to define the boundary
conditionsof thephysicalmodelateachtimestep.

General equations of fluid dynamics

The fundamental equations of fluid dynamics
express the principles of conservation of mass,
momentum and energy. The three fundamental
equationsof conservation in their local form are the
following (Candel,1995):

– Equationof massconservation,

dρ
dt

� ρ ��� ∇ ���v��� 0 	 (1)

– Equationof momentumconservation,

ρ
d �v
dt

��
 ∇p
� ∇ � σn

� ρ �g 	 (2)

– Equationof conservationof energy,

ρ
d
dt

�
e
� 1

2
�v2 
 ��
 ∇ ���q � ∇ ��� σ ���v��
 ∇ � p �v � ρ �g ���v 	

(3)

with ρ the density, �v the velocity, p the pressure,σn
the viscousstresstensor, e the internalenergy, σ the
stresstensorand �q theheatflux.
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Assumptions about material properties

In the particular caseof injection molding, one
considersonlyveryhighviscousfluid. In consequence,
the inertial and gravitational terms will not be
taken into accountin the momentumequation.This
simplification leads to a well known equation: the

Stoke’s equation (Agassant et al., 1989). During
the filling phase, the polymer is assumedto be
incompressible.Theresultingequationsare:

∇ ���v � 0 	 (4)
 ∇p
� ∇ � σn � 0 � (5)

Fig. 1. Flow characteristics.

Hele-Shaw assumptions

During the filling phase,the flow into the mold
cavity is very similar to a laminarflow betweentwo
plateswith a very thin gap(Fig. 1).

We consider a cartesiancoordinatesystem, as
shown in theFig.1 (wherethez-axisis in thethickness
direction and the x-y plane is on the mid plane of
the cavity) and the velocity componentsu,v and w
are respectively taken in the x, y and z directions.
The Hele-Shaw flow modelconsistsof the following
assumptions(Kennedy,1995):

– Thew componentof thevelocity is neglectedwith
respectto theotherscomponents.

– Thepressureconstantin thickness,is a functionof
x andy.

– The velocity gradientin the x andy directionsis
negligible with respectto z direction.

Applying the Hele-Shaw assumptionsto the Stokes’s
equation,we obtainthesimplifiedequations:

∂ p
∂x

� ∂
∂z

�
η

∂u
∂z

 	 (6)

∂ p
∂y

� ∂
∂z

�
η

∂v
∂z

 	 (7)

∂ p
∂z

� 0 	 (8)

with η the viscosity. By integratingthe massandthe
momentumequationswith respectto the thickness
direction, we obtain a single equationfor pressure
which combinesmassconservation and momentum
conservation. The final result gives the following
Laplace’sequation(Kennedy,1995).

∂
∂x

�
S

∂ p
∂x

 � ∂

∂y

�
S

∂ p
∂y

 � 0 	 (9)

with:

S � h�
0

z2

η
dz � (10)

Eq. (8) meansthat, at eachtime step, the pressure
field is the solution of equation (9) with a zero
pressureDirichlet boundarycondition appliedat the
free-surface.

DISCRETE MODEL

The presenteddiscrete model is basedon the
finite volumemethodandthevolumeof fluid method
commonlyusedfor tracking free surfacefor moving
boundaryproblem.The spatialdomainis discretized
from a structuredmeshwhereeachcontrol volumeis
definedasshown in Fig. 2a.
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(a) (b)

Fig. 2. (a) Control volumeandflux. (b) Illustrationof freesurfacecells.

The finite volume method(Eymardet al., 1997)
allows us to provide an accuratenumericalscheme
for the resolution of the pressureEq. (9) which
drives the flow during the propagation.The volume
of fluid methodusesa scalarquantityC, calledcell’s
concentrationdefiningthe positionof the fluid in the
domain. The value C is equal to 1 if the cell is
completelyoccupiedby the fluid and0 if empty. The
free surfacelocation is given by the set of empty or
partially full cells which are neighbourto full cells.
Thesecells are called free surface cells (Fig. 2b).
Consideringthepositionof thefluid at timet, wesolve
the pressureequationby applyingDirichlet boundary

conditionson free surfacecells and a constantflow
rateat the injectionpoint location.Dirichlet boundary
conditions correspondto a zero value for pressure
on free surfacecells. The concentrationsareupdated
in accordancewith the volumeof fluid method(Hirt
et al., 1981). The new concentrationvalues define
the new position of the fluid and new boundary
conditionsfor the pressureequation.The movement
of the fluid is performedby successive iterations.An
illustration of one iteration is provided in Fig. 3. A
resultof computationis shown (Fig. 4) for anisotherm
newtonianviscosity’s law.

Fig. 3. Filling algorithmstrategy.

Fig. 4. Pressurefieldsfor differentstepsduring thefilling phase.
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Fig. 5. InjectionpressurePianalytical andPinumerical .

VALIDATION ACCORDING TO
A REFERENCE MODEL

In orderto estimatetheaccuracy of thenumerical
model, we chooseto compareit with a well known
analyticalmodel:thediskmold.Theprincipleconsists
of studying the radial flow between two parallel
plates from a central injection point. The equation
of injection pressurePi and the front position are
expressedas(Agassantet al., 1989):

Ranalytical � t ��� � Qt
2πh

�
R2

0 	 (11)

Pianalytical � 3ηQ
4πh3

ln

�
R
R0


 	 (12)

whereQ is theflow rate,h thehalf thicknessbetween
theplates,t thetime,η theviscosityandR0 theinitial
front radius.Theassumptionsarethoseof Hele-Shaw
for an isothermnewtonianfluid. Firstly a comparison
betweenthe numerical front propagationradius for
differentresolutionsandtheradiuscurve providedby
theanalyticalmodelgivesahighcorrelation.Secondly
in the sameway, we show the differencebetween
theanalyticalinjectionpressureandnumericalresults
(Fig. 5). It is dueto thespatialresolution.To avoid this
differenceameshrefinementmustbeperformed.

SKELETON AND HAUSDORFF’S
DISTANCE

In this section, we introduce a mathematical
morphologytransformation(Serra,1988)andametric
in order to characterizemold shapes.The considered
transformation is the well known skeleton. The
skeletonof thesetA is definedby thefamily of centers

of all maximaldisksdefinedin A (Fig. 6c to Fig. 9c).
A maximaldiskD � x 	 r � is onewhich is includedin the
set A, but not strictly included in any other disk in
A. The consideredmetric is the Hausdorff ’s distance
(Rucklidge,1995) allowing to measurethe distance
betweentwo setsof points.Given two setsA andB,
thedefinitionof theHausdorff ’sdistanceis definedas:

H � A 	 B��� max � h � A 	 B��	 h � B 	 A����	 (13)

h � A 	 B��� max
a � A

min
b � B

d � a 	 b��	 (14)

h � B 	 A��� max
b � B

min
a � A

d � a 	 b��	 (15)

whered � a 	 b� is the Euclideandistance.The function
h � A 	 B� is calledthedirectedHausdorff ’sdistancefrom
A to B. Taking into accounta mold and its injection
point, the set A is the boundaryof the mold and
the set B is the injection point. The distancemap
(Fig.6bto Fig.9b) is theresultof Hausdorff ’sdistance
computationwhen injection point takes successively
all the possibleposition inside the shape.Eachlevel
setcorrespondsto the setof injection point locations
which leadsto thesameHausdorff ’sdistancevalue.In
thecaseof Figs.8band9bthecomputationis matched
in thesensethatwe cannotusetheEuclideandistance
but thegeodesicdistance.

NUMERICAL RESULTS

Thesetof Figs.6ato 9adepictsthefinal injection
pressurevaluewheninjectionpoint takessuccessively
all the possiblepositionsinsidethe shape.The result
provides a map which allows us to determinethe
optimal injection point location given the minimum
pressure.
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(a) (b) (c)

Fig. 6. Squareshape.

(a) (b) (c)

Fig. 7. Rectangularshape.

(a) (b) (c)

Fig. 8. SymmetricalL shape.

(a) (b) (c)

Fig. 9. L shape.

Scales:Pressure- Max Min / Hausdorff ’sdistance- Max Min

The numericalresultsareperformedfor different
shapes:square shape (Fig. 6), rectangular shape
(Fig. 7), symmetricalL shape(Fig. 8) anda L shape
(Fig. 9).

INTERPRETATION OF RESULTS
AND CONCLUSION

In the caseof Figs. 6 and7, we observe a direct
spatialcorrelationbetweengeometricparametersand
thelocusof minimuminjectionpressures.Concerning
geometricparameters,we associatethe minimum of
the Hausdorff ’s distanceto the centerof the maximal

disk definedon the skeleton.The interpretationthat
we give is thefollowing: Firstly, thediscof maximum
radius linked to the skeleton takes place within the
framework of radial flow (Disk mold) corresponding
to anoptimalconfiguration.Secondly, in ourparticular
case,the Hausdorff ’s distancecan be viewed as the
optimal centeringof the injection point. For Figs. 8
and9, thesituationis somewhatdifferentin thesense
that the minimum injection pressurecorrespondsto
the point of the skeleton for which the Hausdorff ’s
distanceis minimum. The direct applicationof these
resultsis theoptimizationof injectionpoint location.
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