



Also available at http://amc.imfm.si ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 3 (2010) 49–58

# On vertex-stabilizers of bipartite dual polar graphs

Štefko Miklavič

Faculty of Mathematics, Natural Sciences and Information Technologies University of Primorska, SI-6000 Koper, Slovenia

Received 18 September 2009, accepted 15 December 2009, published online 3 February 2010

#### Abstract

Let X, Y denote vertices of a bipartite dual polar graph, and let  $G_X$  and  $G_Y$  denote the stabilizers of X and Y in the full automorphism group of this graph. In this paper, a description of the orbits of  $G_X \cap G_Y$  in the cases when the distance between X and Y is 1 or 2, is given.

*Keywords: Dual polar graphs, automorphism group, quadratic form, isotropic subspace. Math. Subj. Class.: 05E18, 05E30* 

## 1 Preliminaries and introductory remarks

Let q denote a prime power, let GF(q) denote a finite field with q elements, and let d denote a positive integer. Let  $V = GF(q)^{2d}$  denote the vector space over GF(q) of dimension 2d, consisting of column vectors with entries in GF(q). We define a map  $Q : V \to GF(q)$  as follows. For  $u = (u_1, u_2, ..., u_{2d})^t \in V$  we let

$$Q(u) = \sum_{i=1}^{d} u_{2i-1} u_{2i}.$$
(1.1)

The form Q is a quadratic form on V, that is,  $Q(\lambda u) = \lambda^2 Q(u) \ (\lambda \in GF(q), u \in V)$ , and

$$f(u,v) = Q(u+v) - Q(u) - Q(v) \qquad (u,v \in V)$$
(1.2)

is a symmetric bilinear form on V. The form Q is usually called *hyperbolic quadric*. Note that for vectors  $u = (u_1, u_2, ..., u_{2d})^t$  and  $v = (v_1, v_2, ..., v_{2d})^t$  of V we have

$$f(u,v) = \sum_{i=1}^{d} (u_{2i-1}v_{2i} + u_{2i}v_{2i-1}).$$
(1.3)

E-mail address: stefko.miklavic@upr.si (Štefko Miklavič)

A vector  $v \in V$  is called *isotropic*, if Q(v) = 0. A subspace U of V is called *isotropic*, if Q(u) = 0 for every  $u \in U$ , and it is called *maximal isotropic*, if it is maximal (with respect to inclusion) in the set of all isotropic subspaces of V. It turns out that the dimension of every maximal isotropic subspace is d (see, for example, [1, Theorem 3.10] or [10, Lemma 3]). Observe that if  $u, v \in V$  belong to the same isotropic subspace of V, than  $Q(\lambda u + \mu v) = 0$  for every  $\lambda, \mu \in GF(q)$ . Furthermore,

$$f(u, v) = Q(u + v) - Q(u) - Q(v) = 0.$$
(1.4)

Conversely, if u and v are isotropic with f(u, v) = 0, then  $\langle u, v \rangle$  is an isotropic subspace of V. Indeed, for  $\lambda, \mu \in GF(q)$  we have

$$Q(\lambda u + \mu v) = \lambda^2 Q(u) + \mu^2 Q(v) + \lambda \mu f(u, v) = 0.$$
 (1.5)

We now define the dual polar graph  $D_d(q)$  on V. The vertex-set  $V(D_d(q))$  of  $D_d(q)$  is the set of all maximal isotropic subspaces of V. Vertices  $X, Y \in V(D_d(q))$  are adjacent in  $D_d(q)$  if and only if the dimension of  $X \cap Y$  is d-1. Let  $\partial$  denote the path-length distance function on  $D_d(q)$ . It is easy to see that  $\partial(X, Y) = i$  if and only if  $\dim(X \cap Y) = d - i$  $(X, Y \in V(D_d(q)))$ . The following facts about  $D_d(q)$  can be found, for example, in [2, Section 9.4]. The graph  $D_d(q)$  is bipartite with diameter d and with  $\prod_{i=0}^{d-1}(q^{d-i-1}+1)$ vertices. For convenience let

$$b_i = q^i \frac{q^{d-i} - 1}{q - 1}, \qquad c_i = \frac{q^i - 1}{q - 1} \qquad \text{and} \qquad k_i = \frac{b_0 b_1 \cdots b_{i-1}}{c_1 c_2 \cdots c_i}$$
(1.6)

for  $0 \le i \le d$ . The graph  $D_d(q)$  is regular with valency  $b_0 = k_1$ . For  $X \in V(D_d(q))$  and an integer  $0 \le i \le d$  we set  $S_i(X) = \{Z \in V(D_d(q)) \mid \partial(X, Z) = i\}$ .

Let GL(V) denote the general linear group of V. Then  $\sigma \in GL(V)$  is called *isometry* of V, if  $Q(\sigma(v)) = Q(v)$  for every  $v \in V$ . It follows from (1.2) that if  $\sigma$  is an isometry of V, then  $f(u, v) = f(\sigma(u), \sigma(v))$  for  $u, v \in V$ . The group of all isometries of V is called the *orthogonal group* for Q, and is denoted by  $O_{2d}^+(q)$ . Note that every  $\sigma \in O_{2d}^+(q)$  acts on  $V(D_d(q))$  as an automorphism of  $D_d(q)$ . The full automorphism group G of  $D_d(q)$  acts distance-transitively on  $V(D_d(q))$ , that is, for  $X, Y, Z, W \in V(D_d(q))$  with  $\partial(X, Y) =$  $\partial(Z, W)$  there exists  $\sigma \in G$  such that  $\sigma(X) = Z$  and  $\sigma(Y) = W$  (see, for example, [2, Table 6.1]). Recall that every distance-transitive graph is also distance-regular in the sense of [2, Section 4.1].

Pick  $X, Y \in V(D_d(q))$  and let  $G_X$  and  $G_Y$  denote the stabilizers of X and Y in G, respectively. Since G acts distance-transitively on  $V(D_d(q))$ , the orbits of  $G_X$  are precisely the sets  $S_i(X)$   $(0 \le i \le d)$ . In this paper we examine the orbits of  $G_X \cap G_Y$ . These orbits play an important role in the theory of Terwilliger algebras of  $D_d(q)$ . This role is especially important in the case when  $\partial(X, Y) \in \{1, 2\}$ , see [6]. For the definition and more background on Terwilliger algebras of distance-regular graphs see [3, 4, 7, 8, 9].

In this paper we give a description of the orbits of  $G_X \cap G_Y$  when  $\partial(X, Y) \in \{1, 2\}$ . To do this, we consider the following situation for the rest of this paper.

**Notation 1.1.** Let q denote a prime power, let GF(q) denote a finite field with q elements, and let d denote a positive integer. Let  $V = GF(q)^{2d}$  denote the vector space over GF(q)of dimension 2d, consisting of column vectors with entries in GF(q). Let Q and f be as defined in (1.1) and (1.2). Let  $D_d(q)$  denotes the bipartite dual polar graph over V, and let  $b_i, c_i$  and  $k_i$  be as in (1.6). Fix  $X, Y \in V(D_d(q))$ . For  $0 \le i, j \le d$  let  $D_j^i = D_j^i(X,Y) = S_i(X) \cap S_j(Y)$ . Let  $G_X$  and  $G_Y$  denote the stabilizers of X and Y in the full automorphism group G of  $D_d(q)$ .

Our paper is organised as follows. In Section 2 we state some results about maximal isotropic subspaces that we need later. In Section 3 (Section 4, respectively) we describe the orbits of  $G_X \cap G_Y$  in the case when  $\partial(X, Y) = 1$  ( $\partial(X, Y) = 2$ , respectively). In what follows we use the same symbols (capital letters) for the vertices of  $D_d(q)$  and for the maximal isotropic subspaces of V; this should cause no confusion.

### 2 Maximal isotropic subspaces

In this section we state some results about maximal isotropic subspaces of V that we need later. The first one is known as *Witt's lemma* (see, for example, [1, Theorem 3.9]).

**Lemma 2.1.** With reference to Notation 1.1, let U and W be subspaces of V, and let  $\sigma_U : U \to W$  be a bijective linear map satisfying  $Q(\sigma_U(u)) = Q(u)$  for every  $u \in U$ . Then there is an isometry of V which extends  $\sigma_U$ .

**Lemma 2.2.** With reference to Notation 1.1, let U and W be maximal isotropic subspaces of V with dim $(U \cap W) = d - i$  for some  $1 \le i \le d$ . Pick linearly independent vectors  $u_1, \ldots, u_i \in U \setminus W$  and linearly independent vectors  $w_1, \ldots, w_i \in W \setminus U$ . Let F be the  $i \times i$  matrix with  $(j, \ell)$ -entry equal to  $f(u_j, w_\ell)$ . Then the determinant of F is nonzero.

*Proof.* First note that F is a nonzero matrix. Namely, if  $f(u_j, w_\ell) = 0$  for every  $1 \le j, \ell \le i$ , then a subspace generated by U and W is isotropic subspace of dimension d + i, a contradiction. Suppose now that  $\det(F) = 0$ . Then the columns of F are linearly dependent vectors of  $GF(q)^i$ , that is, there exist scalars  $\lambda_j$   $(1 \le j \le i)$  which are not all equal to zero, such that for each  $1 \le \ell \le i$  we have

$$0 = \lambda_1 f(u_\ell, w_1) + \lambda_2 f(u_\ell, w_2) + \dots + \lambda_i f(u_\ell, w_i) = f(u_\ell, \lambda_1 w_1 + \lambda_2 w_2 + \dots + \lambda_i w_i).$$

Note that  $w = \lambda_1 w_1 + \lambda_2 w_2 + \cdots + \lambda_i w_i$  is nonzero, since  $w_1, w_2, \ldots, w_i$  are linearly independent. Multiplying the above equation with an arbitrary scalar  $\mu_\ell$  gives us  $\mu_\ell f(u_\ell, w) = 0$ . Adding the obtained equations we get

$$\sum_{\ell=1}^{i} \mu_{\ell} f(u_{\ell}, w) = f(\mu_1 u_1 + \mu_2 u_2 + \dots + \mu_i u_i, w) = 0.$$

This implies that f(u, w) = 0 for every  $u \in U$ . By (1.5), the subspace generated by U and w is isotropic with dimension d + 1, a contradiction. Therefore,  $det(F) \neq 0$ .

**Lemma 2.3.** With reference to Notation 1.1, let  $U, U_1, W$  and  $W_1$  be maximal isotropic subspaces of V with  $\dim(U \cap W) = \dim(U_1 \cap W_1) = d - i$  for some  $1 \le i \le d$ . Let  $u_1, u_2, \ldots, u_d$  be a basis of U such that  $u_{i+1}, \ldots, u_d$  is a basis of  $U \cap W$ . Let  $w_1, \ldots, w_i \in W$  be such that  $w_1, \ldots, w_i, u_{i+1}, \ldots, u_d$  is a basis of W. Let  $v_1, v_2, \ldots, v_d$  be a basis of  $U_1$  such that  $v_{i+1}, \ldots, v_d$  is a basis of  $U_1 \cap W_1$ . Let  $v_1, v_2, \ldots, v_d$  be a basis of  $U_1$  such that  $v_{i+1}, \ldots, v_d$  is a basis of  $U_1 \cap W_1$ . Let  $z_1, \ldots, z_i \in W_1$  be such that  $z_1, \ldots, z_i, v_{i+1}, \ldots, v_d$  is a basis of  $W_1$ . Then there exists an isometry  $\sigma$  of V, such that  $\sigma(u_j) = v_j$   $(1 \le j \le d)$  and  $\sigma(w_j) \in \langle z_1, \ldots, z_i \rangle$   $(1 \le j \le i)$ .

*Proof.* We first define a bijective linear map  $\overline{\sigma}$  from a subspace generated by U and W to a subspace generated by  $U_1$  and  $W_1$ , such that  $\overline{\sigma}(u_j) = v_j$   $(1 \le j \le d)$  and  $\overline{\sigma}(w_j) \in \langle z_1, \ldots, z_i \rangle$   $(1 \le j \le i)$ . We will then show that  $\overline{\sigma}$  extends to an isometry of V. We now define  $\overline{\sigma}(w_j)$   $(1 \le j \le i)$ . Let F denote an  $i \times i$  matrix with  $(j, \ell)$ -entry equal to  $f(v_j, z_\ell)$ . For  $1 \le \ell \le i$  consider the following system of linear equations in variables  $\alpha_1^\ell, \alpha_2^\ell, \ldots, \alpha_\ell^\ell$ :

$$F(\alpha_1^{\ell}, \alpha_2^{\ell}, \dots, \alpha_i^{\ell})^t = (f(u_1, w_\ell), f(u_2, w_\ell), \dots, f(u_i, w_\ell))^t.$$
(2.1)

Note that this system has a unique solution since F is nonsingular by Lemma 2.2. For convenience, we denote the solutions of this system also by  $\alpha_1^{\ell}, \alpha_2^{\ell}, \ldots, \alpha_i^{\ell}$ . For  $1 \leq \ell \leq i$  we let

$$\overline{\sigma}(w_\ell) = \alpha_1^\ell z_1 + \alpha_2^\ell z_2 + \dots + \alpha_i^\ell z_i.$$
(2.2)

We extend  $\overline{\sigma}$  to a linear map from  $\langle U, W \rangle$  to  $\langle U_1, W_1 \rangle$  in a natural way:

$$\overline{\sigma}(\lambda_1 u_1 + \dots + \lambda_d u_d + \mu_1 w_1 + \dots + \mu_i w_i) = \lambda_1 \overline{\sigma}(u_1) + \dots + \lambda_d \overline{\sigma}(u_d) + \mu_1 \overline{\sigma}(w_1) + \dots + \mu_i \overline{\sigma}(w_i)$$

for  $\lambda_1, \ldots, \lambda_d, \mu_1, \ldots, \mu_i \in GF(q)$ .

We now show that  $\overline{\sigma}$  is a bijection. To do this, it is enough to show that  $\overline{\sigma}(w_{\ell})$   $(1 \leq \ell \leq i)$  are linearly independent. Let A be an  $i \times i$  matrix with  $(j, \ell)$ -entry equal to  $\alpha_{j}^{\ell}$ . Observe that  $\overline{\sigma}(w_{\ell})$   $(1 \leq \ell \leq i)$  are linearly independent if and only if A is nonsingular. Let  $F_{1}$  denote an  $i \times i$  matrix with  $(j, \ell)$ -entry equal to  $f(u_{j}, w_{\ell})$ . The matrix  $F_{1}$  is nonsingular by Lemma 2.2. Furthermore, it follows from (2.1) that  $F \cdot A = F_{1}$ , implying that A is nonsingular.

We now show that  $\overline{\sigma}$  preserves Q. Pick arbitrary  $v \in \langle U, W \rangle$ :

$$v = \sum_{j=1}^d \alpha_j u_j + \sum_{j=1}^i \beta_j w_j.$$

By (1.2) and (1.4),

$$Q(v) = \sum_{r=1}^{i} \sum_{s=1}^{i} \alpha_r \beta_s f(u_r, w_s).$$

Let us now compute  $Q(\overline{\sigma}(v))$ . By (1.2) and (1.4) we first get

$$Q(\overline{\sigma}(v)) = \sum_{r=1}^{i} \sum_{s=1}^{i} \alpha_r \beta_s f(\overline{\sigma}(u_r), \overline{\sigma}(w_s)).$$

By (2.2) and since  $\sigma(u_r) = v_r$  we further find

$$f(\overline{\sigma}(u_r),\overline{\sigma}(w_s)) = f(v_r,\alpha_1^s z_1 + \dots + \alpha_i^s z_i) = \alpha_1^s f(v_r,z_1) + \dots + \alpha_i^s f(v_r,z_i).$$

Finally, by (2.1), the above expression is equal to  $f(u_r, w_s)$ . Therefore,  $Q(v) = Q(\overline{\sigma}(v))$ . By Lemma 2.1 there exists an isometry  $\sigma$  of V which extends  $\overline{\sigma}$ . This completes the proof. **Lemma 2.4.** With reference to Notation 1.1, let U be a (d - 1)-dimensional isotropic subspace of V. Then U is contained in exactly two maximal isotropic subspaces of V.

*Proof.* By [2, p. 274], the number of isotropic k-dimensional subspaces of V containing a given isotropic (k-1)-dimensional subspace of V is  $(q^{d-k+1}-1)(q^{d-k}+1)/(q-1)$ . The result follows.

## 3 The case $\partial(X, Y) = 1$

With reference to Notation 1.1, in this section we describe the orbits of  $G_X \cap G_Y$  when  $\partial(X, Y) = 1$ . We first determine the size of the  $D_i^i$   $(0 \le i, j \le d)$ .

**Lemma 3.1.** With reference to Notation 1.1 assume that  $\partial(X, Y) = 1$ . Then the following (i), (ii) hold.

(i) 
$$|D_{i-1}^i| = |D_i^{i-1}| = c_i k_i / b_0 \ (1 \le i \le d).$$
  
(ii)  $D_i^i = \emptyset \text{ if } |i-j| \ne 1 \ (0 \le i, j \le d).$ 

*Proof.* (i) This follows from [5, Lemma 4.1(i)].

(ii) By the triangle inequality we find  $D_j^i = \emptyset$  if  $|i - j| \ge 2$ . Since  $D_d(q)$  is bipartite, we also have  $D_i^i = \emptyset$ .

**Lemma 3.2.** With reference to Notation 1.1 assume that  $\partial(X, Y) = 1$ . Pick  $u \in X \setminus Y$  and  $v \in Y \setminus X$ . Then  $f(u, v) \neq 0$ . In particular, u and v are not contained in a common isotropic subspace.

*Proof.* Suppose on the contrary that f(u, v) = 0. Pick  $\lambda, \mu \in GF(q)$  and  $w \in X \cap Y$ . Consider  $\lambda u + w + \mu v \in \langle X, Y \rangle$ . By (1.2) and (1.4) we have

$$Q(\lambda u + w + \mu v) = Q(\lambda u + w) + Q(\mu v) + f(\lambda u + w, \mu v) = \lambda \mu f(u, v) + \mu f(w, v) = 0.$$

This shows that  $\langle X, Y \rangle$  is an isotropic subspace of dimension d + 1, a contradiction.  $\Box$ 

**Theorem 3.3.** With reference to Notation 1.1 assume that  $\partial(X, Y) = 1$ . Then the following (i), (ii) hold for  $1 \le i \le d$ .

- (i) For every  $Z, Z' \in D_i^{i-1}$  there exists  $\sigma \in G_X \cap G_Y$  which maps Z to Z'.
- (ii) For every  $Z, Z' \in D_{i-1}^i$  there exists  $\sigma \in G_X \cap G_Y$  which maps Z to Z'.

*Proof.* (i) If i = 1 then the result is clear. Assume now that  $i \ge 2$ . Since  $\dim(X \cap Z) = d - i + 1$  and  $\dim(Y \cap Z) = d - i$ , it follows from Lemma 3.2 that  $X \cap Y \cap Z = Y \cap Z$  with  $\dim(X \cap Y \cap Z) = d - i$ , and  $X \cap Z = \langle X \cap Y \cap Z, u \rangle$  for some  $u \in X \setminus Y$ . Pick  $w \in Y \setminus X$ . Let  $v_1, \ldots, v_{d-1}$  be a basis of  $X \cap Y$ , such that  $v_i, \ldots, v_{d-1}$  is a basis of  $X \cap Y \cap Z$ . Let  $z_1, \ldots, z_{i-1} \in Z$  be such that  $u, v_i, \ldots, v_{d-1}$ ,  $z_i$  a basis of Z. Note that  $u, v_1, \ldots, v_{d-1}$  is a basis of X and that  $w, v_1, \ldots, v_{d-1}$  is a basis of Y.

Similarly as above, let  $u' \in X \setminus Y$  be such that  $X \cap Z' = \langle X \cap Y \cap Z', u' \rangle$ . Let  $v'_1, \ldots, v'_{d-1}$  be a basis of  $X \cap Y$ , such that  $v'_i, \ldots, v'_{d-1}$  is a basis for  $X \cap Y \cap Z'$ . Let  $z'_1, \ldots, z'_{i-1} \in Z'$  be such that  $u', v'_i, \ldots, v'_{d-1}, z'_1, \ldots, z'_{i-1}$  is a basis for Z'. Observe that  $u', v'_1, \ldots, v'_{d-1}$  is a basis for Z'. Observe that  $u', v'_1, \ldots, v'_{d-1}$  is a basis for Y.

Applying Lemma 2.3 (with  $U = X = \langle u, v_1, ..., v_{d-1} \rangle$ ,  $W = Z = \langle u, v_i, ..., v_{d-1}, z_1, ..., z_{i-1} \rangle$ ,  $U_1 = X = \langle u', v'_1, ..., v'_{d-1} \rangle$  and  $W_1 = Z' = \langle u', v'_1, ..., v'_{d-1}$ ,

 $z'_1, \ldots, z'_{i-1}$ ) we find that there exists an isometry  $\sigma$  such that  $\sigma(u) = u', \sigma(v_j) = v'_j$   $(1 \le j \le d-1)$ , and  $\sigma(z_j) \in \langle z'_1, \ldots, z'_{i-1} \rangle$   $(1 \le j \le i-1)$ . Clearly,  $\sigma$  preserves X (and thus also  $X \cap Y$ ), and maps Z to Z'. To finish the proof we have to show that  $\sigma$  preserves Y. Observe that  $X \cap Y$  is a (d-1)-dimensional isotropic subspace of V. By Lemma 2.4, the only two maximal isotropic subspaces containing  $X \cap Y$  are X and Y. Since X and  $X \cap Y$  are both preserved by  $\sigma$ , also Y is preserved by  $\sigma$ .

(ii) Similar as (i) above.

**Proposition 3.4.** With reference to Notation 1.1 assume that  $\partial(X, Y) = 1$ . Then the following (i), (ii) hold.

- (i) The set  $D_i^{i-1}$   $(1 \le i \le d)$  is an orbit of  $G_X \cap G_Y$ .
- (ii) The set  $D_{i-1}^i$   $(1 \le i \le d)$  is an orbit of  $G_X \cap G_Y$ .

*Proof.* It is clear that two vertices from different sets from (i) and (ii) above could not be in the same orbit of  $G_X \cap G_Y$ . The result now follows from Theorem 3.3.

# 4 The case $\partial(X, Y) = 2$

With reference to Notation 1.1, in this section we describe the orbits of  $G_X \cap G_Y$  when  $\partial(X,Y) = 2$ . We first determine the size of the sets  $D_j^i$   $(0 \le i, j \le d)$ . The proposition below follows from [5, Lemma 4.1(ii)–(iv)].

**Proposition 4.1.** With reference to Notation 1.1 assume that  $\partial(X, Y) = 2$ . Then the following (i)–(iv) hold.

- (i)  $|D_{i-2}^i| = |D_i^{i-2}| = k_i c_{i-1} c_i / (b_0 b_1)$   $(2 \le i \le d);$
- (ii)  $|D_0^0| = 0$  and  $|D_i^i| = k_i(c_i(b_{i-1}-1) + b_i(c_{i+1}-1))/(b_0b_1)$   $(1 \le i \le d-1);$
- (iii)  $|D_d^d| = k_d(b_{d-1} 1)/b_1;$
- (iv)  $|D_j^i| = 0$  if  $|i j| \notin \{0, 2\}$   $(0 \le i, j \le d)$ .

**Lemma 4.2.** With reference to Notation 1.1 assume that  $\partial(X, Y) = 2$ . Then the following (i), (ii) hold.

- (i) Let  $u_1, u_2 \in X \setminus Y$  be linearly independent, and let  $w \in Y \setminus X$ . Then  $u_1, u_2$  and w are not contained in a common isotropic subspace of V.
- (ii) Let  $w_1, w_2 \in Y \setminus X$  be linearly independent, and let  $u \in X \setminus Y$ . Then  $w_1, w_2$  and u are not contained in a common isotropic subspace of V.

*Proof.* (i) Suppose on contrary that  $u_1, u_2$  and w are contained in a common isotropic subspace. Pick  $\lambda_1, \lambda_2, \mu \in GF(q)$  and  $v \in X \cap Y$ . Consider  $\lambda_1 u_1 + \lambda_2 u_2 + v + \mu w \in \langle X, w \rangle$ . By (1.2) and (1.4) we have

$$Q(\lambda_1 u_1 + \lambda_2 v_2 + v + \mu w) = Q(\lambda_1 u_1 + \lambda_2 u_2 + v) + Q(\mu w) + f(\lambda_1 u_1 + \lambda_2 u_2 + v, \mu w) = \lambda_1 \mu f(u_1, w) + \lambda_2 \mu f(u_2, w) + \mu f(v, w) = 0.$$

Therefore,  $\langle X, w \rangle$  is an isotropic subspace of dimension d + 1, a contradiction. (ii) Similar as (i) above.

**Theorem 4.3.** With reference to Notation 1.1 assume that  $\partial(X, Y) = 2$ . Then the following (i), (ii) hold for  $2 \le i \le d$ .

- (i) For every  $Z, Z' \in D_i^{i-2}$  there exists  $\sigma \in G_X \cap G_Y$  which maps Z to Z'.
- (ii) For every  $Z, Z' \in D_{i-2}^i$  there exists  $\sigma \in G_X \cap G_Y$  which maps Z to Z'.

*Proof.* (i) Note that the result is clear if i = 2. Namely, for i = 2 we have Z = Z' = X. Assume now  $i \ge 3$ . By Lemma 4.2, there exists a basis  $v_1, \ldots, v_{d-2}$  of  $X \cap Y$ , vectors  $u_1, u_2 \in X$ , vectors  $w_1, w_2 \in Y$ , and vectors  $z_1, \ldots, z_{i-2} \in Z$ , such that  $v_{i-1}, \ldots, v_{d-2}$  is a basis of  $X \cap Y \cap Z$ ,  $u_1, u_2, v_1, \ldots, v_{d-2}$  is a basis of  $X, w_1, w_2, v_1, \ldots, v_{d-2}$  is a basis of Y, and  $u_1, u_2, v_{i-1}, \ldots, v_{d-2}, z_1, \ldots, z_{i-2}$  is a basis of Z. Without loss of generality we can assume that  $f(u_1, w_1) = 0$  (otherwise we replace  $w_1$  by  $w_1 + \lambda w_2$  for an appropriate  $\lambda \in GF(q)$ ). This implies that  $\langle X \cap Y, u_1, w_1 \rangle$  is maximal isotropic subspace.

Similarly, there exists a basis  $v'_1, \ldots, v'_{d-2}$  of  $X \cap Y$ , vectors  $u'_1, u'_2 \in X$  and vectors  $z'_1, \ldots, z'_{i-2} \in Z'$ , such that  $v'_{i-1}, \ldots, v'_{d-2}$  is a basis of  $X \cap Y \cap Z'$ ,  $u'_1, u'_2, v'_1, \ldots, v'_{d-2}$  is a basis of  $X, w_1, w_2, v'_1, \ldots, v'_{d-2}$  is a basis of Y, and  $u'_1, u'_2, v'_{i-1}, \ldots, v'_{d-2}, z'_1, \ldots, z'_{i-2}$  is a basis of Z'. Without loss of generality we can assume that  $f(u'_1, w_1) = 0$  (otherwise we replace  $u'_1$  by  $u'_1 + \lambda u'_2$  for an appropriate  $\lambda \in GF(q)$ ). This implies that  $\langle X \cap Y, u'_1, w_1 \rangle$  is maximal isotropic subspace.

Applying Lemma 2.3 (with  $U = \langle u_1, w_1, v_1, \ldots, v_{d-2} \rangle$ ,  $U_1 = \langle u'_1, w_1, v'_1, \ldots, v'_{d-2} \rangle$ , W = Z and  $W_1 = Z'$ ) we find that there exists an isometry  $\sigma$  of V, such that  $\sigma(u_1) = u'_1$ ,  $\sigma(w_1) = w_1, \sigma(v_j) = v'_j$  for  $1 \le j \le d-2$ , and  $\sigma(u_2), \sigma(z_j) \in \langle u'_2, z'_1, \ldots, z'_{i-2} \rangle$  ( $1 \le j \le i-2$ ). Clearly,  $\sigma$  maps Z to Z'. It remains to show that  $\sigma$  preserves X and Y. Consider the subspace  $W = \langle X \cap Y, u_1 \rangle$ . Note that W is a (d-1)-dimensional isotropic subspace of V. By Lemma 2.4, the only two maximal isotropic subspaces containing W are X and  $\langle W, w_1 \rangle$ . Isometry  $\sigma$  maps W to  $W' = \langle X \cap Y, u'_1 \rangle$ . By Lemma 2.4, the only two maximal isotropic subspaces containing W are X and  $\langle W, w_1 \rangle$ . Since  $\sigma$  maps  $\langle W, w_1 \rangle$  to  $\langle W', w_1 \rangle$ , it must map X to X. Similarly we show that  $\sigma$  maps Y to Y. It follows that  $\sigma \in G_X \cap G_Y$ , completing the proof of (i).

(ii) Similarly as (i) above.

Let us now consider the sets  $D_i^i$   $(1 \le i \le d)$ . Pick  $Z \in D_i^i$ . By Lemma 4.2, two essentially different situations can occur: either  $\dim(X \cap Y \cap Z) = d - i$  (and therefore  $X \cap Z = Y \cap Z = X \cap Y \cap Z$ ), or  $\dim(X \cap Y \cap Z) = d - i - 1$  (and therefore  $X \cap Z \ne Y \cap Z$ ).

**Definition 4.4.** With reference to Notation 1.1 assume that  $\partial(X, Y) = 2$ . Let  $Z \in D_i^i$   $(1 \le i \le d)$ . We say Z is of *positive (negative*, respectively) type, whenever  $\dim(X \cap Y \cap Z) = d - i (\dim(X \cap Y \cap Z) = d - i - 1, \text{ respectively}).$ 

Observe that all vertices of  $D_1^1$  are of negative type, and that all vertices of  $D_d^d$  are of positive type. Moreover, every  $D_i^i$   $(2 \le i \le d-1)$  is a disjoint union of the set of vertices of  $D_i^i$  of positive type, and the set of vertices of  $D_i^i$  of negative type.

**Remark 4.5.** In [6], the definition of the vertices of positive (negative, respectively) type is different from Definition 4.4 above. Namely,  $Z \in D_i^i$  is defined to be of positive type, whenever all vertices in  $D_1^1$  are at distance i - 1 from Z. On the other hand, Z is defined to be of negative type, if there exists a vertex in  $D_1^1$  which is at distance i - 1 from Z, and all other vertices in  $D_1^1$  are at distance i + 1 from Z. However, these definitions are equivalent. If  $\dim(X \cap Y \cap Z) = d - i$ , then Z is at distance at most *i* from every vertex in  $D_1^1$ . By the triangle inequality and since  $D_d(q)$  is bipartite, Z is at distance i - 1 from every vertex of  $D_1^1$ . On the other hand, if  $\dim(X \cap Y \cap Z) = d - i - 1$ , then pick  $u \in (X \cap Z) \setminus Y$ and  $v \in (Y \cap Z) \setminus X$ . Then  $W = \langle X \cap Y, u, v \rangle$  is a vertex of  $D_d(q)$ , which belongs to  $D_1^1$ and is at distance i - 1 from Z. Furthermore, all other vertices in  $D_1^1$  are at distance i + 1from Z.

**Lemma 4.6.** ([6, Theorem 5.3(iv),(v) and Proposition 6.3]) With reference to Notation 1.1 assume that  $\partial(X, Y) = 2$ . Then the following (i), (ii) hold for  $2 \le i \le d - 1$ .

- (i)  $|\{z \in D_i^i \mid z \text{ is of positive type}\}| = k_i(q-1)c_ic_{i-1}/(b_0b_1);$
- (ii)  $|\{z \in D_i^i \mid z \text{ is of negative type}\}| = k_i b_i c_i c_2 / (b_0 b_1).$

**Theorem 4.7.** With reference to Notation 1.1 assume that  $\partial(X,Y) = 2$ . Let  $Z, Z' \in D_i^i$   $(1 \le i \le d-1)$  and assume Z, Z' are of negative type. Then there exists  $\sigma \in G_X \cap G_Y$  which maps Z to Z'.

*Proof.* Let  $v_1, \ldots, v_{d-2}$  be a basis of  $X \cap Y$  such that  $v_i, \ldots, v_{d-2}$  is a basis of  $X \cap Y \cap Z$ . Let  $u_1 \in X$  and  $w_1 \in Y$  be such that  $u_1, v_i, \ldots, v_{d-2}$  is a basis of  $X \cap Z$  and such that  $w_1, v_i, \ldots, v_{d-2}$  is a basis of  $Y \cap Z$ . Let  $u_2 \in X$  and  $w_2 \in Y$  be such that  $u_1, u_2, v_1, \ldots, v_{d-2}$  is a basis of X and such that  $w_1, w_2, v_1, \ldots, v_{d-2}$  is a basis of X and such that  $w_1, w_2, v_1, \ldots, v_{d-2}$  is a basis of X. Finally, let  $z_1, \ldots, z_{i-1} \in Z$  be such that  $u_1, w_1, z_1, \ldots, z_{i-1}, v_i, \ldots, v_{d-2}$  is a basis of Z.

Similarly, let  $v'_1, \ldots, v'_{d-2}$  be a basis of  $X \cap Y$  such that  $v'_1, \ldots, v'_{d-2}$  is a basis of  $X \cap Y \cap Z'$ . Let  $u'_1 \in X$  and  $w'_1 \in Y$  be such that  $u'_1, v'_i, \ldots, v'_{d-2}$  is a basis of  $X \cap Z'$  and such that  $w'_1, v'_i, \ldots, v'_{d-2}$  is a basis of  $Y \cap Z'$ . Let  $u'_2 \in X$  and  $w'_2 \in Y$  be such that  $u'_1, u'_2, v'_1, \ldots, v'_{d-2}$  is a basis of X and such that  $w'_1, w'_2, v'_1, \ldots, v'_{d-2}$  is a basis of X and such that  $w'_1, w'_2, v'_1, \ldots, v'_{d-2}$  is a basis of Y. Finally, let  $z'_1, \ldots, z'_{i-1} \in Z'$  be such that  $u'_1, w'_1, z'_1, \ldots, z'_{i-1}, v'_i, \ldots, v'_{d-2}$  is a basis of Z'.

Applying Lemma 2.3 (with  $U = \langle u_1, w_1, v_1, \dots, v_{d-2} \rangle$ ,  $U_1 = \langle u'_1, w'_1, v'_1, \dots, v'_{d-2} \rangle$ , W = Z and  $W_1 = Z'$ ) we find that there exists an isometry  $\sigma$  such that  $\sigma(u_1) = u'_1$ ,  $\sigma(w_1) = w'_1, \sigma(v_j) = v'_j$  ( $1 \le j \le d-2$ ), and  $\sigma(z_j) \in \langle z'_1, \dots, z'_{i-1} \rangle$  for  $1 \le j \le i-1$ . Clearly,  $\sigma$  maps Z to Z'. It remains to show that  $\sigma$  preserves X and Y. Note that  $W = \langle X \cap Y, u_1 \rangle$  is a (d-1)-dimensional isotropic subspace of V. By Lemma 2.4, the only two maximal isotropic subspaces containing W are X and  $\langle W, w_1 \rangle$ . Note that  $\sigma$  maps W to  $W' = \langle X \cap Y, u'_1 \rangle$ , which is a (d-1)-dimensional isotropic subspace of V. The only two maximal isotropic subspaces containing W' are X and  $\langle W', w'_1 \rangle$ . Since  $\sigma$  maps  $\langle W, w_1 \rangle$  to  $\langle W', w'_1 \rangle$ , it must map X to X. Similarly we show that  $\sigma$  maps Y to Y. Therefore  $\sigma \in G_X \cap G_Y$  and the proof is completed.

**Theorem 4.8.** With reference to Notation 1.1 assume that  $\partial(X,Y) = 2$ . Let  $Z, Z' \in D_i^i$   $(2 \le i \le d)$  and assume Z, Z' are of positive type. Then there exist  $\sigma \in G_X \cap G_Y$  which maps Z to Z'.

*Proof.* Let  $v_1, \ldots, v_{d-2}$  be a basis of  $X \cap Y$  such that  $v_{i-1}, \ldots, v_{d-2}$  is a basis of  $X \cap Y \cap Z$ . Let  $u_1, u_2 \in X$  and  $w_1, w_2 \in Y$  be such that  $u_1, u_2, v_1, \ldots, v_{d-2}$  is a basis of X and  $w_1, w_2, v_1, \ldots, v_{d-2}$  is a basis of Y. Without loss of generality we can assume that  $f(u_1, w_1) = 0$  (otherwise we replace  $w_1$  by  $w_1 + \lambda w_2$  for an appropriate  $\lambda \in GF(q)$ ). Note that  $\langle X \cap Y, u_1, w_1 \rangle \in D_1^1$ . Since Z is of positive type we have dim $(\langle X \cap Y, u_1, w_1 \rangle \cap Z) = d - i + 1$ . Therefore, there exist  $\alpha, \beta \in GF(q)$  and  $v \in X \cap Y$  such that  $\langle X \cap Y, u_1, w_1 \rangle \cap Z$ 

 $Z = \langle \alpha u_1 + \beta w_1 + v, v_{i-1}, \dots, v_{d-2} \rangle$ . Since dim $(X \cap Z) = \dim(Y \cap Z) = d - i$ , we have  $\alpha \neq 0$  and  $\beta \neq 0$ . Without loss of generality we can therefore assume that  $\langle X \cap Y, u_1, w_1 \rangle \cap Z = \langle u_1 + w_1, v_{i-1}, \dots, v_{d-2} \rangle$  (otherwise we replace  $u_1$  by  $\alpha u_1 + v$  and  $w_1$  by  $\beta w_1$ ). Finally, let  $z_1, \dots, z_{i-1} \in Z$  be such that  $z_1, \dots, z_{i-1}, u_1 + w_1, v_{i-1}, \dots, v_{d-2}$  is a basis of Z.

Similarly, Let  $v'_1, \ldots, v'_{d-2}$  be a basis of  $X \cap Y$  such that  $v'_{i-1}, \ldots, v'_{d-2}$  is a basis of  $X \cap Y \cap Z'$ . Let  $u'_1, u'_2 \in X$  and  $w'_1, w'_2 \in Y$  be such that  $u'_1, u'_2, v'_1, \ldots, v'_{d-2}$  is a basis of X and  $w'_1, w'_2, v'_1, \ldots, v'_{d-2}$  is a basis of Y. Without loss of generality we can assume that  $f(u'_1, w'_1) = 0$  and that  $\langle X \cap Y, u'_1, w'_1 \rangle \cap Z' = \langle u'_1 + w'_1, v'_{i-1}, \ldots, v'_{d-2} \rangle$ . Let  $z'_1, \ldots, z'_{i-1} \in Z'$  be such that  $z'_1, \ldots, z'_{i-1}, u'_1 + w'_1, v'_{i-1}, \ldots, v'_{d-2}$  is a basis of Z'.

Applying Lemma 2.3 (with  $U = \langle u_1, u_1 + w_1, v_1, \dots, v_{d-2} \rangle$ , W = Z,  $U_1 = \langle u'_1, u'_1 + w'_1, v'_1, \dots, v'_{d-2} \rangle$  and  $W_1 = Z'$ ) we find that there exists an isometry  $\sigma$  of V such that  $\sigma(u_1) = u'_1, \sigma(u_1 + w_1) = u'_1 + w'_1$  (and therefore also  $\sigma(w_1) = w'_1$ ),  $\sigma(v_j) = v'_j$  ( $1 \le j \le d-2$ ), and  $\sigma(z_j) \in \langle z'_1, \dots, z'_{i-1} \rangle$  for  $1 \le j \le i-1$ . Clearly,  $\sigma$  maps Z to Z'. It remains to show  $\sigma$  preserves X and Y.

Note that  $W = \langle X \cap Y, u_1 \rangle$  is a (d-1)-dimensional isotropic subspace of V. By Lemma 2.4, the only two maximal isotropic subspaces containing W are X and  $\langle W, w_1 \rangle$ . Note that  $\sigma$  maps W to  $W' = \langle X \cap Y, u_1' \rangle$ , which is a (d-1)-dimensional isotropic subspace of V. The only two maximal isotropic subspaces containing W' are X and  $\langle W', w_1' \rangle$ . Since  $\sigma$  maps  $\langle W, w_1 \rangle$  to  $\langle W', w_1' \rangle$ , it must map X to X. Similarly we show that  $\sigma$  maps Y to Y. Therefore  $\sigma \in G_X \cap G_Y$  and the proof is complete.

**Proposition 4.9.** With reference to Notation 1.1 assume that  $\partial(X, Y) = 2$ . Then the following (i)–(iii) hold.

- (i) Each of  $D_1^1$ ,  $D_d^d$  is an orbit of  $G_X \cap G_Y$ .
- (ii) For  $2 \le i \le d$  the sets  $D_{i-2}^i$  and  $D_i^{i-2}$  are orbits of  $G_X \cap G_Y$ .
- (iii) For  $2 \le i \le d-1$  the set of vertices in  $D_i^i$  that are of positive type (resp. negative type) is an orbit of  $G_X \cap G_Y$ .

*Proof.* Observe that two vertices of  $D_d(q)$ , which are contained in distinct sets listed in (i), (ii) and (iii) above, cannot belong to the same orbit of  $G_X \cap G_Y$ . The result now follows from Theorems 4.3, 4.7 and 4.8.

### 5 Acknowledgement

The author would like to thank to Klavdija Kutnar and Pablo Spiga for many valuable suggestions.

#### References

- [1] E. Artin, Geometric Algebra, Interscience, New York, 1957.
- [2] A. E. Brouwer, A. M. Cohen and A. Neumaier, *Distance-Regular Graphs*, Springer-Verlag, Berlin, Heidelberg, 1989.
- [3] B. Curtin, Bipartite distance-regular graphs I, Graphs Combin. 15 (1999), 143–157.
- [4] B. Curtin, Bipartite distance-regular graphs II, Graphs Combin. 15 (1999), 377-391.
- [5] Š. Miklavič, On bipartite Q-polynomial distance-regular graphs, *European J. Combin.* 28 (2007), 94–110.

- [6] Š. Miklavič, On bipartite distance-regular graphs with intersection numbers  $c_i = (q^i 1)/(q 1)$ , submitted to *Graphs Combin*.
- [7] P. Terwilliger, The subconstituent algebra of an association scheme I, J. Algebraic Combin. 1 (1992), 363–388.
- [8] P. Terwilliger, The subconstituent algebra of an association scheme II, J. Algebraic Combin. 2 (1993), 73–103.
- [9] P. Terwilliger, The subconstituent algebra of an association scheme III, *J. Algebraic Combin.* **2** (1993), 177–210.
- [10] V. A. Vasilev and V. D. Mazurov, Minimal permutation representations of finite simple orthogonal groups, *Algebra Logic* 33 (1994), 337–350.