d M[ FA ARS MATHEMATICA
CONTEMPORANEA
Also available at http://amc.imfm.si
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 3 (2010) 49-58

On vertex-stabilizers of
bipartite dual polar graphs

Stefko Miklavi¢

Faculty of Mathematics, Natural Sciences and Information Technologies
University of Primorska, SI-6000 Koper, Slovenia

Received 18 September 2009, accepted 15 December 2009, published online 3 February 2010

Abstract

Let X,Y denote vertices of a bipartite dual polar graph, and let Gx and Gy denote
the stabilizers of X and Y in the full automorphism group of this graph. In this paper, a
description of the orbits of Gx N Gy in the cases when the distance between X and Y is 1
or 2, is given.
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1 Preliminaries and introductory remarks

Let ¢ denote a prime power, let GF(q) denote a finite field with ¢ elements, and let d denote
a positive integer. Let V = GF(q)? denote the vector space over GF(q) of dimension 2d,
consisting of column vectors with entries in GF(q). We define amap Q : V — GF(q) as
follows. For u = (uy, ug, ..., u2q)" € V we let

d
Q(u) = ugi_1us;. (1.1)
=1

The form Q is a quadratic form on V, that is, Q(Au) = \2Q(u) (A € GF(q),u € V),
and

flu,0) =Qu+v) = Qu) =Qv)  (w,veV) (1.2)
is a symmetric bilinear form on V. The form @ is usually called hyperbolic quadric. Note
that for vectors u = (u1, Uz, ..., u24)" and v = (v1, v, ..., v24)" of V we have

d
flu,v) = Z(U%—lvm + u2iv2i—1). (1.3)

i=1
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A vector v € V is called isotropic, if Q(v) = 0. A subspace U of V is called isotropic,
if Q(u) = 0 for every u € U, and it is called maximal isotropic, if it is maximal (with
respect to inclusion) in the set of all isotropic subspaces of V. It turns out that the dimension
of every maximal isotropic subspace is d (see, for example, [!, Theorem 3.10] or [10,
Lemma 3]). Observe that if u,v € V belong to the same isotropic subspace of V', than
Q(Au+ pv) = 0 for every A, u € GF(q). Furthermore,

fu,0) = Qu+v) = Qu) = Q(v) = 0. (1.4)

Conversely, if u and v are isotropic with f(u,v) = 0, then (u, v) is an isotropic subspace
of V. Indeed, for A\, u € GF(q) we have

Q(A\u 4 ) = N2Q(u) + 12Q(v) + M\uf (u,v) = 0. (1.5)

We now define the dual polar graph D4(q) on V. The vertex-set V(Dg(q)) of D4(q) is the
set of all maximal isotropic subspaces of V. Vertices X,Y € V(Dy(q)) are adjacent in
D,(q) if and only if the dimension of X NY is d — 1. Let O denote the path-length distance
function on Dy(q). It is easy to see that 9(X,Y) = i ifand only if dim(X NY) =d —4
(X,Y € V(Dy(q))). The following facts about Dy(q) can be found, for example, in [2,
Section 9.4]. The graph D,(q) is bipartite with diameter d and with [[*_; (¢*~*~' + 1)
vertices. For convenience let

b‘_qiqdfi_l C__qi_]'
1 ) (.

qg—1

and o, — obrrbica
qg—1 ' C1C2 """ C;

(1.6)

for 0 < i < d. The graph D,(q) is regular with valency by = k1. For X € V(D,4(q)) and
aninteger 0 < i < dweset S;(X)={Z € V(D4(q)) | (X, Z) = i}.

Let GL(V') denote the general linear group of V. Then o € GL(V) is called isometry
of V,if Q(o(v)) = Q(v) for every v € V. It follows from (1.2) that if ¢ is an isometry of
V, then f(u,v) = f(o(u),o(v)) for u,v € V. The group of all isometries of V is called
the orthogonal group for @, and is denoted by O3 ,(g). Note that every o € O,(g) acts on
V(Dg4(q)) as an automorphism of Dg(g). The full automorphism group G of Dy(q) acts
distance-transitively on V(Dg4(q)), that is, for X, Y, Z, W € V(Dy(q)) with 0(X,Y) =
0(Z,W) there exists ¢ € G such that 0(X) = Z and o(Y) = W (see, for example, [2,
Table 6.1]). Recall that every distance-transitive graph is also distance-regular in the sense
of [2, Section 4.1].

Pick X,Y € V(Dg4(q)) and let Gx and Gy denote the stabilizers of X and Y in
G, respectively. Since G acts distance-transitively on V(Dy(q)), the orbits of G'x are
precisely the sets S;(X) (0 < i < d). In this paper we examine the orbits of Gx N Gy.
These orbits play an important role in the theory of Terwilliger algebras of Dy(g). This
role is especially important in the case when (X, Y") € {1, 2}, see [6]. For the definition
and more background on Terwilliger algebras of distance-regular graphs see [3, 4, 7, 8, 9].

In this paper we give a description of the orbits of Gx N Gy when 0(X,Y) € {1,2}.
To do this, we consider the following situation for the rest of this paper.

Notation 1.1. Let g denote a prime power, let GF'(q) denote a finite field with ¢ elements,
and let d denote a positive integer. Let V = G F(q)?¢ denote the vector space over GF'(q)
of dimension 2d, consisting of column vectors with entries in GF(q). Let  and f be
as defined in (1.1) and (1.2). Let Dy(q) denotes the bipartite dual polar graph over V,
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and let b;, ¢; and k; be as in (1.6). Fix X,Y € V(Dg(q)). For 0 < 4,j < dlet D} =
Di(X,Y) = Si(X) N S;(Y). Let Gx and Gy denote the stabilizers of X and Y in the
full automorphism group G of D4(q).

Our paper is organised as follows. In Section 2 we state some results about maximal
isotropic subspaces that we need later. In Section 3 (Section 4, respectively) we describe
the orbits of Gx N Gy in the case when 9(X,Y) = 1 (O(X,Y) = 2, respectively). In
what follows we use the same symbols (capital letters) for the vertices of Dy(q) and for the
maximal isotropic subspaces of V; this should cause no confusion.

2 Maximal isotropic subspaces

In this section we state some results about maximal isotropic subspaces of V' that we need
later. The first one is known as Witt’s lemma (see, for example, [ |, Theorem 3.9]).

Lemma 2.1. With reference to Notation 1.1, let U and W be subspaces of V, and let
oy : U — W be a bijective linear map satisfying Q(oy(u)) = Q(u) for every u € U.
Then there is an isometry of V which extends oy;.

Lemma 2.2. With reference to Notation 1.1, let U and W be maximal isotropic subspaces
of V with dim(U N W) = d — i for some 1 < i < d. Pick linearly independent vectors
U, ...,u; € U\ W and linearly independent vectors wy, ..., w; € W\ U. Let F be the
i % i matrix with (j,{)-entry equal to f(u;, w¢). Then the determinant of F is nonzero.

Proof. First note that F' is a nonzero matrix. Namely, if f(u;,we) = 0 for every 1 <
j,€ < i, then a subspace generated by U and W is isotropic subspace of dimension d + i,
a contradiction. Suppose now that det(F) = 0. Then the columns of F' are linearly
dependent vectors of GF(q)*, that is, there exist scalars Aj (1 < j < i) which are not all
equal to zero, such that for each 1 < ¢ < 7 we have

0 = A1 f(ue, wr) + Ao f(ug, wa) 4+ X f(ug, wi) = fueg, \ywy + Xowa + - - + Njw;).

Note that w = A\jwi + Aqwg + - -+ + A\jw; is nonzero, since wi, ws,...,w; are lin-
early independent. Multiplying the above equation with an arbitrary scalar p, gives us
e f(ug, w) = 0. Adding the obtained equations we get

Zuef(uhw) = f(piur + pous + -+ - + pyu, w) = 0.
—1

This implies that f(u,w) = 0 for every u € U. By (1.5), the subspace generated by U and
w is isotropic with dimension d + 1, a contradiction. Therefore, det(F') # 0. O

Lemma 2.3. With reference to Notation 1.1, let U,Uy, W and W1 be maximal isotropic
subspaces of V with dim(U N W) = dim(U; N W1) = d — i for some 1 < i < d. Let
Uy, U, . .., uq be abasis of U such that u;y 1, ..., uq is a basis of UNW. Letwy, ..., w; €
W be such that wy, ..., W;, Wiy1,...,Uq is a basis of W. Let v1,va,...,vq be a basis
of Uy such that viy1,...,vq is a basis of Uy N Wi. Let 21,...,2z; € W1 be such that
Z1y ey Ziy Vit - - -, Vg IS a basis of W1. Then there exists an isometry o of V, such that
o(u;) =v; (1 <j<d)ando(wj) € (z1,...,2) (1 <j <i).
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Proof. We first define a bijective linear map & from a subspace generated by U and W to

a subspace generated by U; and Wi, such that 7(u;) = v; (1 < j < d) and 7(w;) €

(z1,...,2) (1 < j < 1i). We will then show that & extends to an isometry of V. We

now define &(w;) (1 < j < 7). Let F' denote an ¢ x ¢ matrix with (j, ¢)-entry equal to

f(vj,2¢). For 1 < £ < i consider the following system of linear equations in variables
‘.

Qf, 05, ..., 0!

F(aguaga .. '7af)t = (f(ulvwf)7f(u27wf)7 .. ‘>f(ui7wf))t- (21)

Note that this system has a unique solution since F' is nonsingular by Lemma 2.2. For
convenience, we denote the solutions of this system also by o/{, ab,. .. ,af. For1 </<i
we let

E(’LU@) = Oé{Zl + OééZg R OéfZi. 2.2)

We extend & to a linear map from (U, W) to (Uy, W7 ) in a natural way:

G(Arur + -+ Aqug + prwy + -+ pgw;) =
AT (ur) + -+ Ago(ug) + po(w) + -+ - + po(w;)

for A1,..., Aa, ft1, ..., ity € GF(q).

We now show that @ is a bijection. To do this, it is enough to show that 7 (wy) (1 < £ <
i) are linearly independent. Let A be an ¢ x ¢ matrix with (j, £)-entry equal to aﬁ. Observe
that 7(wy) (1 < £ < i) are linearly independent if and only if A is nonsingular. Let F}
denote an ¢ x ¢ matrix with (j, ¢)-entry equal to f(u;, w,). The matrix F} is nonsingular
by Lemma 2.2. Furthermore, it follows from (2.1) that F' - A = F7, implying that A is
nonsingular.

We now show that & preserves . Pick arbitrary v € (U, W):

d %
v = E aju; + E ﬁjwj.
Jj=1 Jj=1

By (1.2) and (1.4),

%

QW) =" arfaf (un,wy).

r=1s=1
Let us now compute Q(z(v)). By (1.2) and (1.4) we first get

i

QEv) =Y aBef(@(u),5(w,)).

r=1s=1

By (2.2) and since o (u,) = v, we further find
f@(ur),o(ws)) = f(or,0fz1 + -+ 0fz) = i f(vr, 21) + -+ + o (v, 7).

Finally, by (2.1), the above expression is equal to f(u,,w;). Therefore, Q(v) = Q(a(v)).
By Lemma 2.1 there exists an isometry o of V' which extends . This completes the
proof. O
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Lemma 2.4. With reference to Notation 1.1, let U be a (d — 1)-dimensional isotropic
subspace of V. Then U is contained in exactly two maximal isotropic subspaces of V.

Proof. By [2, p. 274], the number of isotropic k-dimensional subspaces of V' containing a
given isotropic (k — 1)-dimensional subspace of V is (¢~ **1 — 1)(¢?* +1)/(¢ — 1).
The result follows. O

3 Thecase 9(X,Y) =1

With reference to Notation 1.1, in this section we describe the orbits of Gx N Gy when
d(X,Y) = 1. We first determine the size of the D’ (0 <4, < d).

Lemma 3.1. With reference to Notation 1.1 assume that 9(X,Y) = 1. Then the following
(i), (ii) hold.

() |Di_,| =|Di™ Y = ciki/bo (1 <i < d).
(i) D =0ifli —j| #1(0<4,j <d).

Proof. (1) This follows from [5, Lemma 4.1(i)].
(ii) By the triangle inequality we find D; = Qif |i — j| > 2. Since Dy(q) is bipartite, we
also have D! = ). O

Lemma 3.2. With reference to Notation 1.1 assume that 9(X,Y) = 1. Picku € X \Y
andv € Y \ X. Then f(u,v) # 0. In particular, uw and v are not contained in a common
isotropic subspace.

Proof. Suppose on the contrary that f(u,v) = 0. Pick \,p € GF(¢) and w € X NY.
Consider \u + w + pv € (X,Y). By (1.2) and (1.4) we have

QA\u+w + ) = Qv+ w) + Q) + f (Xu+w, i) = Muf (u,v) + uf (w, v) = .
This shows that (X, Y") is an isotropic subspace of dimension d + 1, a contradiction. ~ [J

Theorem 3.3. With reference to Notation 1.1 assume that O(X,Y) = 1. Then the following
(1), (i) hold for 1 < i < d.

(i) Forevery Z,7' € Df_l there exists o € Gx N Gy which maps Z to Z'.
(ii) Forevery Z,Z' € D:_, there exists o € Gx N Gy which maps Z to Z'.

Proof. (i) If i = 1 then the result is clear. Assume now that ¢ > 2. Since dim(X N Z) =
d—i+1landdim(Y NZ) =d—i,itfollows from Lemma32that X N Y NZ =Y NZ
withdim(XNYNZ)=d—i,and XNZ=(XNY NZu)forsomeu € X \Y.Pick
w €Y\ X. Letvy,...,vq—1 be a basis of X NY, such that v;,...,v4_; is a basis of
XNYNZ. Letz,...,z;_1 € Z be such that u,v;,...,vq_1,21,...,2_1 i a basis of
Z. Note that u, vq, ..., vq_1 is a basis of X and that w, vq,...,v4_1 is abasisof Y.

Similarly as above, let ' € X \ Y besuchthat X N Z' = (X NY N Z',u'). Let
vi,...,v;_, be abasis of X NY, such that v},..., v}, ; is abasis for X NY N Z’. Let
21,...,%_1 € Z'besuchthatu',v},...,v}_4,21,...,%_; is abasis for Z'. Observe that
w',vf,. .., v} is abasis for X and that w,v],...,v),_, is a basis for Y.

Applying Lemma 2.3 (with U = X = (u,v1,...,04-1), W = Z = (u,v;, ...,
Vd—1521y « -« Zi,1>, Uy =X = <’U,/,UI1,...,U&_1> and Wy = 7' = (u’,v;,...,v&_h
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21, .-+, 2_y)) we find that there exists an isometry o such that o (u) = v, o (v;) = v} (1 <
j<d-1),and o(z) € (21,...,2;_1) (1 < j <i—1). Clearly, o preserves X (and
thus also X N'Y"), and maps Z to Z’'. To finish the proof we have to show that o preserves
Y. Observe that X NY is a (d — 1)-dimensional isotropic subspace of V. By Lemma 2.4,
the only two maximal isotropic subspaces containing X N'Y are X and Y. Since X and
X NY are both preserved by o, also Y is preserved by o.

(ii) Similar as (i) above. O

Proposition 3.4. With reference to Notation 1.1 assume that O(X,Y) = 1. Then the
following (i), (ii) hold.

(1) The set szl (1 <4 <d)isanorbit of Gx NGy

(ii) The set D! | (1 <i < d) isan orbit of Gx N Gy.

Proof. 1t is clear that two vertices from different sets from (i) and (ii) above could not be
in the same orbit of G x N Gy . The result now follows from Theorem 3.3. O

4 Thecase 9(X,Y) =2

With reference to Notation 1.1, in this section we describe the orbits of G x N Gy when
d(X,Y) = 2. We first determine the size of the sets D} (0 < 4,j < d). The proposition
below follows from [5, Lemma 4.1(ii)—(iv)].

Proposition 4.1. With reference to Notation 1.1 assume that O(X,Y) = 2. Then the
following (1)—(iv) hold.
@) |Di_s| = |D;?| = kicimici/(bob1) (2 <i < d);
(i) |DY| = 0and |D| = ki(ci(bi—1 — 1) + bi(ciy1 — 1))/ (bob1) (1 <i<d—1);
(i) |DY| = kq(ba—1 —1)/b1;
i) 1D} = 0if i — j € {0,2} (0<i,j <d).

Lemma 4.2. With reference to Notation 1.1 assume that O(X,Y) = 2. Then the following
(i), (ii) hold.

(i) Let uy,us € X \'Y be linearly independent, and let w € Y \ X. Then uy,us and w
are not contained in a common isotropic subspace of V.
(ii) Let wi,wq € Y \ X be linearly independent, and let w € X \'Y. Then w1, wy and

u are not contained in a common isotropic subspace of V.

Proof. (i) Suppose on contrary that u;,us and w are contained in a common isotropic
subspace. Pick \i, Ao, 0 € GF(q) and v € X NY. Consider A\juy + Agus + v + pw €
(X, w). By (1.2) and (1.4) we have

Q(Aur +Ave + v+ pw) = Q(Auy + Aaug +v) + Q(uw) + f(Arug + Agus +v, pw) =

Apf (ur, w) + Aapuf (uz, w) + pf (v, w) = 0.

Therefore, (X, w) is an isotropic subspace of dimension d + 1, a contradiction.
(i1) Similar as (i) above. [
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Theorem 4.3. With reference to Notation 1.1 assume that O(X,Y) = 2. Then the following
(1), (ii) hold for 2 < i < d.

(i) Forevery Z,7' € D;’*z there exists 0 € Gx N Gy which maps Z to Z'.
(i) Forevery Z,Z' € Di_, there exists o € Gx N Gy which maps Z to Z'.

Proof. (i) Note that the result is clear if ¢ = 2. Namely, for i = 2 we have Z = 7' = X.
Assume now ¢ > 3. By Lemma 4.2, there exists a basis v1,...vq—2 of X NY, vectors

ui,us € X, vectors wi,wy € Y, and vectors z1,...2;,_o € Z,suchthat v;_1,...,v4_2
isabasisof X NY N Z, uy,us,vy,...vq_2 is a basis of X, wy,ws,v1,...v4_o is a basis
of Y,and uy, ug,v;—1,... V42,21, ..., 2i—2 is a basis of Z. Without loss of generality we

can assume that f(uy,w;) = 0 (otherwise we replace wy by wy + Aws for an appropriate
A € GF(q)). This implies that (X N'Y, u1,w;) is maximal isotropic subspace.

Similarly, there exists a basis v{,...v,;_, of X NY, vectors u},u5 € X and vectors
21,...%i_o € Z',suchthatv)_,,... v, sisabasisof X NY NZ', uj,up,vf,...v5_5is
a basis of X, wy, we,v],...v)_,isabasisof Y, and u}, ubh,vi_q,... v _o,21,...,2/_51is
a basis of Z’. Without loss of generality we can assume that f(u},w;) = 0 (otherwise we
replace u} by uj + Auj, for an appropriate A € GF'(g)). This implies that (X NY, u}, w1)
is maximal isotropic subspace.

Applying Lemma 2.3 (with U = (w1, w1, v1,...,04-2), U1 = (U}, w1, v, ..., 05 o),
W = Z and Wy = Z’) we find that there exists an isometry o of V, such that o (u;) = uf,
o(wy) = wy, o(v;) = vjfor1 < j < d—2,and o(uz),0(2;) € (uh, 21,...,2;_5) (1 <
j <i—2). Clearly, 0 maps Z to Z'. It remains to show that o preserves X and Y. Consider
the subspace W = (X NY, uy). Note that W is a (d — 1)-dimensional isotropic subspace
of V. By Lemma 2.4, the only two maximal isotropic subspaces containing W are X
and (W, wy). Isometry o maps W to W' = (X NY,u}). By Lemma 2.4, the only two
maximal isotropic subspaces containing W' are X and (W', w;). Since o maps (W, wy)
to (W', wy ), it must map X to X. Similarly we show that ¢ maps Y to Y. It follows that
o € Gx NGy, completing the proof of (i).

(ii) Similarly as (i) above. 0

Let us now consider the sets D¢ (1 < i < d). Pick Z € D! By Lemma 4.2, two
essentially different situations can occur: either dim(X N'Y N Z) = d — i (and therefore
XNZ=YNZ=XnNnYNZ),ordm(XNY NZ)=d—i—1 (and therefore
XNZ#YNZD).

Definition 4.4. With reference to Notation 1.1 assume that 9(X,Y) = 2. Let Z € D! (1 <
1 < d). We say Z is of positive (negative, respectively) type, whenever dim(X NY NZ) =
d—i(dim(XNY NZ)=d—1i—1,respectively).

Observe that all vertices of D7 are of negative type, and that all vertices of Dfil are of
positive type. Moreover, every D! (2 < i < d — 1) is a disjoint union of the set of vertices
of D} of positive type, and the set of vertices of D; of negative type.

Remark 4.5. In [0], the definition of the vertices of positive (negative, respectively) type
is different from Definition 4.4 above. Namely, Z € D! is defined to be of positive type,
whenever all vertices in D} are at distance 7 — 1 from Z. On the other hand, Z is defined to
be of negative type, if there exists a vertex in D1 which is at distance i — 1 from Z, and all
other vertices in D} are at distance ¢ + 1 from Z. However, these definitions are equivalent.
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If dim(X NY N Z) = d — i, then Z is at distance at most i from every vertex in D}. By
the triangle inequality and since D,(q) is bipartite, Z is at distance ¢ — 1 from every vertex
of Di. On the other hand, if dim(X NY NZ) =d —i— 1, thenpicku € (XN Z)\Y
andv € (YNZ)\ X. Then W = (X NY,u,v) is a vertex of Dy(q), which belongs to D1
and is at distance 7 — 1 from Z. Furthermore, all other vertices in D are at distance i + 1
from Z.

Lemma 4.6. ([6, Theorem 5.3(iv),(v) and Proposition 6.3]) With reference to Notation 1.1
assume that 9(X,Y) = 2. Then the following (i), (ii) hold for 2 <i < d — 1.

() |{z € D¢ | z is of positive type}| = ki(q — 1)cici—1/(bob1);
(i) |{z € D! | z is of negative type}| = k;b;cica/(boby).

Theorem 4.7. With reference to Notation 1.1 assume that I(X,Y) = 2. Let Z, 7" €
D! (1 <i<d—1)andassume Z,Z' are of negative type. Then there exists 0 € Gx NGy
which maps Z to 7.

Proof. Let vy,...,v4—2 be a basis of X NY such that v;,...,v4_2 is a basis of X N
YNZ. Letu; € X and w; € Y be such that uy,v;,...,v4_9 is a basis of X N Z and
such that w1, v;,...,vg_9 is abasis of Y N Z. Let us € X and wy € Y be such that

U1, Uz, V1, ... ,V4_o is a basis of X and such that wy,ws,v1,...,v4_2 is a basis of Y.
Finally, let 23, ...,2;,—1 € Z be such that uy, w1, 21, ...,2i—1, Vs, ..., Vq—2 is a basis of Z.

Similarly, let vf,...,v}_5 be a basis of X NY such that v},...,v}_, is a basis of
XNYNZ. Letu) € X and w| € Y be such that v/, v}, ..., v)_, is abasisof X N Z’
and such that w},v},...,v);_, is abasisof Y N Z’. Let u, € X and wj, € Y be such
that u}, u5, vy, ..., v} _, is abasis of X and such that w}, w5, v{,...,v)_,isabasisof Y.
Finally, let 2,...,2/_; € Z' be such that u},w],2],...,2|_1,v},...,v;_, is a basis of
Z'.

Applying Lemma 2.3 (with U = (uq, w1, v1,...,04-2), Ur = (U}, wi,vi, ..., 05 o),

W = Z and Wy = Z’) we find that there exists an isometry o such that o(u;) = uf,
o(wi) =wy, o(v;) =v; (1 <j<d-2),ando(z;) € (21,...,2_q)for1 <j<i—1
Clearly, o maps Z to Z’. It remains to show that o preserves X and Y. Note that W =
(X NY,uy)is a(d—1)-dimensional isotropic subspace of V. By Lemma 2.4, the only two
maximal isotropic subspaces containing W are X and (W, w;). Note that o maps W to
W' = (X NY,u}), whichis a (d — 1)-dimensional isotropic subspace of V. The only two
maximal isotropic subspaces containing W’ are X and (W’ w}). Since o maps (W, w;)
to (W', w}), it must map X to X. Similarly we show that o maps Y to Y. Therefore
o € Gx N Gy and the proof is completed. O

Theorem 4.8. With reference to Notation 1.1 assume that (X,Y) = 2. Let Z, 7" €
D! (2 < i < d) and assume Z,Z' are of positive type. Then there exist 0 € Gx N Gy
which maps Z to Z'.

Proof. Let vy,...,v4_2 be a basis of X NY such that v;_1,...,vq_2 is a basis of X N
YNZ. Letuy,us € X and wy,we € Y be such that uq, us, vy, ...,v4_2 is a basis of X
and w1, ws,v1,...,V4—2 is a basis of Y. Without loss of generality we can assume that
f(u1,w1) = 0 (otherwise we replace w; by wi + Aws for an appropriate A € GF'(q)). Note
that (X NY,u1,w;) € D}. Since Z is of positive type we have dim((X NY, u1,w1)NZ) =
d —1i+ 1. Therefore, there exist a, 5 € GF(q) and v € X NY such that (X NY, uy, wy) N
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7Z = {(auy + fwy +v,0;_1,...,04—2). Since dim(X NZ) = dim(Y N Z) = d — i, we
have o # 0 and 8 # 0. Without loss of generality we can therefore assume that (X N
Y, ui,w) N Z = (ug + wy,v;—1,...,v4—2) (otherwise we replace u; by au; + v and wq
by Bwy). Finally, let z1,...,2;—1 € Zbesuchthat z1,...,2;—1,%1 + W1, Vi—1,...,V4—2
is a basis of Z.

Similarly, Let v{,...,v)_, be a basis of X N'Y such that v]_;,...,v)_, is a basis
of XNY NZ. Letuj,uy € X and wi,wy € Y be such that uf,us,v],..., v, 5 isa
basis of X and w/, w5, v],...,v)_, is a basis of Y. Without loss of generality we can
assume that f(u},w]) = 0 and that (X NY,uj,w)) N Z' = (u) +wi,vi_q,..., 0 o).
Letzi,...,%z,_; € Z' besuchthat 2{,...,2_;,u} +w},v,_;,...,v;_5is abasis of Z'.

Applying Lemma 2.3 (with U = (u1, u1 + w1, 01, ...,04-2), W = Z, Uy = (u},u] +
wh, v, ..., v _5) and W1 = Z’) we find that there exists an isometry o of V' such that
o(ur) = u}, o(uy +wi) = uy + w) (and therefore also o(w1) = wy), o(v;) = v (1 <
j<d-—2),and o(z;) € (2,...,2}_4) for1 < j < i—1. Clearly, c maps Z to Z'. It
remains to show o preserves X and Y.

Note that W = (X NY, uy) is a (d—1)-dimensional isotropic subspace of V. By Lemma
2.4, the only two maximal isotropic subspaces containing W are X and (W, w1 ). Note that
o maps Wto W’ = (X NY,u}), whichis a (d — 1)-dimensional isotropic subspace of V.
The only two maximal isotropic subspaces containing W’ are X and (W', w}). Since o
maps (W, wy) to (W', w}), it must map X to X. Similarly we show that 0 maps Y to Y.
Therefore 0 € Gx N Gy and the proof is complete. O

Proposition 4.9. With reference to Notation 1.1 assume that O(X,Y) = 2. Then the
following (1)—(iii) hold.
(i) Each of D1, D3 is an orbit of Gx N Gy-.
(i) For?2 < i < d the sets Di_, and D\~ are orbits of Gx N Gy.
(iii) For 2 < i < d — 1 the set of vertices in D that are of positive type (resp. negative
type) is an orbit of Gx N Gy.

Proof. Observe that two vertices of D4(q), which are contained in distinct sets listed in (i),
(ii) and (iii) above, cannot belong to the same orbit of Gx N Gy . The result now follows
from Theorems 4.3, 4.7 and 4.8. O
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