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Abstract

The thickness of a graph G is the minimum number of planar subgraphs whose union
is G. In this paper, we present sharp lower and upper bounds for the thickness of the
Kronecker product G × H of two graphs G and H . We also give the exact thickness
numbers for the Kronecker product graphs Kn ×K2, Km,n ×K2 and Kn,n,n ×K2.
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1 Introduction
The thickness θ(G) of a graph G is the minimum number of planar subgraphs whose union
is G. It is a measurement of the planarity of a graph, the graph with θ(G) = 1 is a
planar graph; it also has important application in VLSI design [15]. Since W. T. Tutte [16]
inaugurated the thickness problem in 1963, the thickness of some classic types of graphs
have been obtained by various authors, such as [1, 3, 4, 13, 17, 19] etc. In recent years,
some authors focus on the thickness of the graphs which are obtained by operating on two
graphs, such as the Cartesian product graph [8, 20] and join graph [7]. In this paper, we are
concerned with the Kronecker product graph.
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The Kronecker product (also called as tensor product, direct product, categorical prod-
uct)G×H of graphsG andH is the graph whose vertex set is V (G×H) = V (G)×V (H)
and edge set is E(G × H) = {(g, h)(g′, h′) | gg′ ∈ E(G) and hh′ ∈ E(H)}. Figure 1
shows the Kronecker product graph K5 ×K2 in which {u1, . . . , u5} and {v1, v2} are the
vertex sets of the complete graphs K5 and K2, respectively. Many authors did research on
various topics of the Kronecker product graph, such as for its planarity [2, 10], connectivity
[18], coloring [9, 12] and application [14] etc.

(u1, v1) (u2, v1) (u3, v1) (u4, v1) (u5, v1)

(u1, v2) (u2, v2) (u3, v2) (u4, v2) (u5, v2)

Figure 1: The Kronecker product graph K5 ×K2.

The complete graph Kn is the graph on n vertices in which any two vertices are adja-
cent. The complete bipartite graph Km,n is the graph whose vertex set can be partitioned
into two parts X and Y , |X| = m and |Y | = n, every edge has its ends in different parts
and every two vertices in different parts are adjacent. The complete tripartite graphKl,m,n

is defined analogously.
In this paper, we present lower and upper bounds for the thickness of the Kronecker

product of two graphs in Section 2, in which the lower bound comes from Euler’s formula
and the upper bound is derived from the structure of the Kronecker product graph. Then
we study the thickness of the Kronecker product of a graph with K2. There are two rea-
sons why we interested in it. One reason is that the upper bound for the thickness of the
Kronecker product of two graphs we will provide relies on that of the Kronecker product
of a graph with K2. Another reason is that the planarity of the Kronecker product of two
graphs have been characterized in [10], but a graph with K2 is one of its missing cases. It’s
a difficult case, because there exist non-planar graphs whose Kronecker product with K2

are planar graphs, see Figures 1 and 2 in [2] for example. In Sections 3 and 4, we provide
the exact thickness numbers for the Kronecker product graphs Kn ×K2, Km,n ×K2 and
Kn,n,n ×K2.

For undefined terminology, see [5].

2 Thickness of the Kronecker product graph G × H

A k-edge-coloring of a graph G is a mapping f : E(G)→ S, where S is a set of k colors.
A k-edge-coloring is proper if incident edges have different colors. A graph is k-edge-
colorable if it has a proper k-edge-coloring. The edge chromatic number χ′(G) of a graph
G is the least k such that G is k-edge-colorable.

Theorem 2.1. Let G and H be two simple graphs on at least two vertices, then⌈
2|E(G)||E(H)|

3|V (G)||V (H)| − 6

⌉
≤ θ(G×H) ≤ min{χ′(H)θ(G×K2), χ

′(G)θ(H ×K2)},

in which χ′(H) and χ′(G) are edge chromatic number of H and G respectively.
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Proof. It is easy to observe that the number of edges in G × H is |E(G × H)| =
2|E(G)||E(H)| and the number of vertices in G × H is |V (G × H)| = |V (G)||V (H)|.
From the Euler’s Formula, the planar graph with |V (G)||V (H)| vertices, has at most
3|V (G)||V (H)| − 6 edges, the lower bound follows.

The χ′(H)-edge-coloring of H can be seen as a partition {M1, . . . ,Mχ′(H)} of E(H),
in which Mi denotes the set of edges assigned color i (1 ≤ i ≤ χ′(H)). Then Mi is
a matching and E(H) = M1 ∪ · · · ∪Mχ′(H). Because G × H = ∪χ

′(H)
i=1 (G ×Mi) and

θ(G×Mi) = θ(G×K2), we have θ(G×H) ≤ χ′(H)θ(G×K2).With the same argument,
we have θ(G×H) ≤ χ′(G)θ(H ×K2). The upper bound can be derived.

In the following, we will give examples to show both the lower and upper bound in
Theorem 2.1 are sharp. Let G and H be the graphs as shown in Figure 2(a) and (b) re-
spectively. Figure 2(c) illustrates a planar embedding of the graph G × {v1v2}, in which
we denote the vertex (ui, vj) by uji , 1 ≤ i ≤ 7, 1 ≤ j ≤ 2. So the thickness of
G × {v1v2} is one which meets the lower bound in Theorem 2.1. Figure 2(d) illustrates a
planar embedding of the graph G × {v2v3} which is isomorphic to G × {v1v2}. Because
G×H = G× {v1v2} ∪ G× {v2v3}, we get a planar subgraph decomposition of G×H
with two subgraphs, which shows the thickness of G × H is not more than two. On the
other hand, the graphG×H contains a subdivision ofK5 which is exhibited in Figure 2(e),
so G ×H is not a planar graph, its thickness is greater than one. Therefore, the thickness
of G×H is two which meets the upper bound in Theorem 2.1.
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(a) The graph G.

v1 v2 v3

(b) The graph H .
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(c) The graph G× {v1v2}.
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(d) The graph G× {v2v3}.

Figure 2: An example to show both lower and upper bounds in Theorem 2.1 are sharp.
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(e) A subgraph of G×H .

Figure 2: An example to show both lower and upper bounds in Theorem 2.1 are sharp.

The graphG×H has a triangle if and only if bothG andH have triangles. IfG×H does
not contain any triangles, from the Euler’s Formula, the planar graph with |V (G)||V (H)|
vertices, has at most 2|V (G)||V (H)| − 4 edges, a tighter lower bound can be derived.

Theorem 2.2. Let G and H be two simple graphs on at least two vertices. If G×H does
not contain any triangles, then⌈

|E(G)||E(H)|
|V (G)||V (H)| − 2

⌉
≤ θ(G×H) ≤ min{χ′(H)θ(G×K2), χ

′(G)θ(H ×K2)}.

3 The thickness of Kn × K2 and Km,n × K2

In this section, by making use of the thickness number ofKn,n and a known planar decom-
position of Kn,n as shown in Lemmas 3.1 and 3.2 respectively, we will obtain the exact
thickness numbers of Kn ×K2 and Km,n ×K2.

Let G be a simple graph with n vertices, V (G) = {v1, . . . , vn} and V (K2) = {1, 2}.
Then G × K2 is a bipartite graph, the two vertex parts are {(vi, 1) | 1 ≤ i ≤ n} and
{(vi, 2) | 1 ≤ i ≤ n}, so G ×K2 is a subgraph of Kn,n which shows that θ(G ×K2) ≤
θ(Kn,n). Although the thickness of the complete bipartite Km,n have not been solved
completely, when m = n, the following result is known.

Lemma 3.1 ([4]). The thickness of the complete bipartite graph Kn,n is

θ(Kn,n) =

⌈
n+ 2

4

⌉
.

When n = 4p (p ≥ 1), Chen and Yin [8] gave a planar subgraphs decomposition
of K4p,4p with p + 1 planar subgraphs G1, . . . , Gp+1. Denote the two vertex parts of
K4p,4p by U = {u1, . . . , u4p} and V = {v1, . . . , v4p}, Figure 3 shows their planar
subgraphs decomposition of K4p,4p, in which for each Gr (1 ≤ r ≤ p), both v4r−3
and v4r−1 join to each vertex in set

⋃p
i=1,i6=r{u4i−3, u4i−2}, both v4r−2 and v4r join

to each vertex in set
⋃p
i=1,i6=r{u4i−1, u4i}, both u4r−1 and u4r join to each vertex in

set
⋃p
i=1,i6=r{v4i−3, v4i−1}, and both u4r−3 and u4r−2 join to each vertex in set⋃p

i=1,i6=r{v4i−2, v4i}. Notice that Gp+1 is a perfect matching of K4p,4p, the edge set of it
is {uivi | 1 ≤ i ≤ 4p}.
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(b) The graph Gp+1.

Figure 3: A planar decomposition of K4p,4p.

Lemma 3.2 ([8]). Suppose Kn,n is a complete bipartite graph with two vertex parts U =
{u1, . . . , un} and V = {v1, . . . , vn}. When n = 4p, there exists a planar subgraphs
decomposition of K4p,4p with p + 1 planar subgraphs G1, . . . , Gp+1 in which Gp+1 is a
perfect matching of K4p,4p with edge set {uivi | 1 ≤ i ≤ 4p}.

Theorem 3.3. The thickness of the Kronecker product of Kn and K2 is

θ(Kn ×K2) =
⌈n
4

⌉
.

Proof. Suppose that the vertex sets ofKn andK2 are {x1, . . . , xn} and {1, 2} respectively.
The graph Kn ×K2 is a bipartite graph whose two vertex parts are {(xi, 1) | 1 ≤ i ≤ n}
and {(xi, 2) | 1 ≤ i ≤ n}, and edge set is {(xi, 1)(xj , 2) | 1 ≤ i, j ≤ n, i 6= j}. For
1 ≤ i ≤ n, 1 ≤ k ≤ 2, we denote the vertex (xi, k) of Kn ×K2 by xki for simplicity.

Since |E(Kn × K2)| = n(n − 1) and |V (Kn × K2)| = 2n, from Theorem 2.2, we
have

θ(Kn ×K2) ≥
⌈
n(n− 1)

4n− 4

⌉
=
⌈n
4

⌉
. (3.1)

In the following, we will construct planar decompositions of Kn ×K2 with
⌈
n
4

⌉
sub-

graphs to complete the proof.

Case 1. When n = 4p.
Suppose that Kn,n is a complete bipartite graph with vertex partition (X1, X2) in which
X1 = {x11, . . . , x1n} and X2 = {x21, . . . , x2n}. The graph Gp+1 is a perfect matching of
K4p,4p whose edge set is {x1ix2i | 1 ≤ i ≤ n}, then Kn × K2 = Kn,n − Gp+1. From
Lemma 3.2, there exists a planar decomposition {G1, . . . , Gp} of Kn ×K2 in which Gr
(1 ≤ r ≤ p) is isomorphic to the graph in Figure 3(a). Therefore, θ(K4p ×K2) ≤ p.
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Case 2. When n = 4p+ 2.
When p ≥ 1, we draw a graph G′p+1 as shown in Figure 4, then {G1, . . . , Gp, G

′
p+1} is a

planar decomposition of K4p+2×K2 with p+1 subgraphs, so we have θ(K4p+2×K2) ≤
p+ 1. When n = 2, K2 ×K2 = 2K2 is a planar graph.

x1
4p+1 x2

4p+2

x1
4p+2 x2

4p+1

x2
1 x2

2 x2
4p−1 x2

4p x1
1 x1

2 x1
4p−1 x1

4p

Figure 4: The graph G′p+1.

Case 3. When n = 4p+ 1 and n = 4p+ 3.
Because K4p+1 × K2 is a subgraph of K4p+2 × K2, we have θ(K4p+1 × K2) ≤
θ(K4p+2 × K2) = p + 1. Similarly, when n = 4p + 3, we have θ(K4p+3 × K2) ≤
θ(K4(p+1) ×K2) = p+ 1.

Summarizing Cases 1, 2 and 3, we have

θ(Kn ×K2) ≤
⌈n
4

⌉
. (3.2)

Theorem follows from inequalities (3.1) and (3.2).

Theorem 3.4. Let G be a simple graph on n (n ≥ 2) vertices, then⌈
E(G)

2n− 2

⌉
≤ θ(G×K2) ≤

⌈n
4

⌉
.

Proof. Because G×K2 is a subgraph of Kn ×K2, we have θ(G×K2) ≤ θ(Kn ×K2).
Combining it with Theorems 2.2 and 3.3, the theorem follows.

Lemma 3.5 ([10]). The Kronecker product ofKm,n andKp,q is a disjoint unionKmp,nq ∪
Kmq,np.

Theorem 3.6. The thickness of the Kronecker product of Km,n and Kp,q is

θ(Km,n ×Kp,q) = max{θ(Kmp,nq), θ(Kmq,np)}.

Proof. From Lemma 3.5, the proof is straightforward.

Because K2 is also K1,1, the following corollaries are easy to get, from Theorem 3.6
and Lemma 3.1.

Corollary 3.7. The thickness of the Kronecker product of Km,n and K2 is

θ(Km,n ×K2) = θ(Km,n).

Corollary 3.8. The thickness of the Kronecker product of Kn,n and K2 is

θ(Kn,n ×K2) =

⌈
n+ 2

4

⌉
.
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4 The thickness of the Kronecker product graph Kn,n,n × K2

Let (X,Y, Z) be the vertex partition of the complete tripartite graphKl,m,n (l ≤ m ≤ n) in
which X = {x1, . . . , xl}, Y = {y1, . . . , ym}, Z = {z1, . . . , zn}. Let {1, 2} be the vertex
set of K2. We denote the vertex (v, k) of Kl,m,n × K2 by vk in which v ∈ V (Kl,m,n)
and k ∈ {1, 2}. For k = 1, 2, we denote Xk = {xk1 , . . . , xkl }, Y k = {yk1 , . . . , ykm} and
Zk = {zk1 , . . . , zkn}. In Figure 5, we draw a sketch of the graph Kl,m,n ×K2, in which the
edge joining two vertex set indicates that each vertex in one vertex set is adjacent to each
vertex in another vertex set. Suppose G(X1, Y 2) is the graph induced by the vertex sets
X1 and Y 2 ofKl,m,n×K2, thenG(X1, Y 2) is isomorphic toKl,m, the graphsG(Y 1, Z2),
G(Z1, X2), G(X2, Y 1), G(Y 2, Z1) and G(Z2, X1) are defined analogously. We define

G1 = G(X1, Y 2) ∪G(Y 1, Z2) ∪G(Z1, X2)

and
G2 = G(X2, Y 1) ∪G(Y 2, Z1) ∪G(Z2, X1),

then Kl,m,n ×K2 = G1 ∪G2.

X1 Y 1 Z1

X2 Y 2 Z2

Figure 5: The graph Kl,m,n ×K2.

Theorem 4.1. The thickness of the Kronecker product graph Kl,m,n ×K2 (l ≤ m ≤ n)
satisfies the inequality⌈

lm+ ln+mn

2(l +m+ n)− 2

⌉
≤ θ(Kl,m,n ×K2) ≤ 2θ(Km,n).

Proof. From Theorem 3.4, one can get the lower bound in this theorem easily. Any two
graphs of G(X1, Y 2), G(Y 1, Z2) and G(Z1, X2) are disjoint with each other and l ≤
m ≤ n, so we have

θ(G1) ≤ max{θ(G(X1, Y 2), θ(G(Y 1, Z2), θ(G(Z1, X2)} = θ(Km,n).

Similarly, we have

θ(G2) ≤ max{θ(G(X2, Y 1), θ(G(Y 2, Z1), θ(G(Z2, X1))} = θ(Km,n).

Due to the graph Kl,m,n × K2 = G1 ∪ G2, we have θ(Kl,m,n × K2) ≤ 2θ(Km,n).
Summarizing the above, the theorem is obtained.

In the following, we will construct planar decompositions of Kn,n,n ×K2 when n =
4p, 4p+ 1, 4p+ 3 in Lemmas 4.2, 4.4 and 4.5 respectively. Then combining these lemmas
with Theorem 2.2, we will get the thickness of Kn,n,n × K2 and we will see when n =
4p+2, the upper and lower bound in Theorem 4.1 are equal, so both bounds in Theorem 4.1
are sharp.
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Lemma 4.2. When n = 4p, there exists a planar decomposition of the Kronecker product
graph Kn,n,n ×K2 with 2p+ 1 subgraphs.

Proof. Because |Xk| = |Y k| = |Zk| = n (k = 1, 2), all the graphs G(X1, Y 2),
G(Y 1, Z2), G(Z1, X2), G(X2, Y 1), G(Y 2, Z1), G(Z2, X1) are isomorphic to Kn,n.

Let {G1, . . . , Gp+1} be the planar decomposition of Kn,n as shown in Figure 3. For
1 ≤ r ≤ p + 1, Gr is a bipartite graph, so we also denote it by Gr(V,U). In Gr(V,U),
we replace the vertex set V by X1, U by Y 2, i.e., for each 1 ≤ i ≤ n, replace the vertex
vi by x1i , and ui by y2i , then we get graph Gr(X1, Y 2). Analogously, we obtain graphs
Gr(Y

1, Z2), Gr(Z
1, X2), Gr(X

2, Y 1), Gr(Y
2, Z1) and Gr(Z2, X1).

For 1 ≤ r ≤ p+ 1, let

G1
r = Gr(X

1, Y 2) ∪Gr(Y 1, Z2) ∪Gr(Z1, X2)

and
G2
r = Gr(X

2, Y 1) ∪Gr(Y 2, Z1) ∪Gr(Z2, X1).

Because Gr(X1, Y 2), Gr(Y
1, Z2), Gr(Z

1, X2) are all planar graphs and they are disjoint
with each other, G1

r is a planar graph. For the same reason, we have that G2
r is also a planar

graph.
Let graph Gp+1 be the graph G1

p+1 ∪G2
p+1. We have

Gp+1 = G1
p+1 ∪G2

p+1

=
{

n
∪
i=1

(x1i y
2
i ∪ y1i z2i ∪ z1i x2i )

}
∪
{

n
∪
i=1

(x2i y
1
i ∪ y2i z1i ∪ z2i x1i )

}
=

n
∪
i=1

(x1i y
2
i z

1
i x

2
i y

1
i z

2
i x

1
i ).

It is easy to see Gp+1 consists of n disjoint cycles of length 6, hence Gp+1 is a planar
graph.

Because

G(X1, Y 2) =
p+1
∪
r=1

Gr(X
1, Y 2), G(Y 1, Z2) =

p+1
∪
r=1

Gr(Y
1, Z2),

G(Z1, X2) =
p+1
∪
r=1

Gr(Z
1, X2), G(X2, Y 1) =

p+1
∪
r=1

Gr(X
2, Y 1),

and

G(Y 2, Z1) =
p+1
∪
r=1

Gr(Y
2, Z1), G(Z2, X1) =

p+1
∪
r=1

Gr(Z
2, X1),

we have

Kn,n,n ×K2 = G1 ∪G2

=
p+1
∪
r=1

(G1
r ∪G2

r)

=
p
∪
r=1

(G1
r ∪G2

r) ∪Gp+1.

So we get a planar decomposition of K4p,4p,4p ×K2 with 2p + 1 subgraphs G1
1, . . . , G

1
p,

G2
1, . . . , G

2
p, Gp+1. The proof is completed.
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We draw the planar decomposition of K8,8,8 ×K2 as shown in Figure 6.

Lemma 4.3 ([5]). Let G be a planar graph, and let f be a face in some planar embedding
of G. Then G admits a planar embedding whose outer face has the same boundary as f .
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Figure 6: A planar decomposition of K8,8,8 ×K2.
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Figure 6: A planar decomposition of K8,8,8 ×K2.

Lemma 4.4. When n = 4p + 1, there exists a planar decomposition of the Kronecker
product graph Kn,n,n ×K2 with 2p+ 1 subgraphs.

Proof. Case 1. When p ≤ 1.
When p = 0, the Kronecker product graphK1,1,1×K2 is a cycle of length 6, soK1,1,1×K2

is a planar graph. When p = 1, as shown in Figure 7, we give a planar decomposition of
K5,5,5 ×K2 with three subgraphs A,B and C.

Case 2. When p ≥ 2.
Suppose that {G1

1, . . . , G
1
p, G

2
1, . . . , G

2
p, Gp+1} is the planar decomposition of K4p,4p,4p×

K2 as provided in the proof of Lemma 4.2. By adding vertices x14p+1, x
2
4p+1, y

1
4p+1, y

2
4p+1,

z14p+1, z
2
4p+1 to each graph in this decomposition, and some modifications of adding and

deleting edges to these graphs, a planar decomposition of K4p+1,4p+1,4p+1 × K2 will be
obtained.

For convenience, in Figure 3(a) we label some faces of Gr (1 ≤ r ≤ p) with face
1, 2 and 3. As indicated in Figure 3(a), the face 1 is bounded by v4r−1u4r−3v4r−2u4r,
the face 3 is its outer face, bounded by v4r−3u4r−2v4ru4r−1. The face 2 is bounded by
u4r−3v4r−1u4r−2vj in which vertex vj can be any vertex of

⋃p
i=1,i6=r{v4i−2, v4i}. Be-

cause u4r−3 and u4r−2 in Gr (1 ≤ r ≤ p) is joined by 2p − 2 edge-disjoint paths of
length two that we call parallel paths, we can change the order of these parallel paths
without changing the planarity of Gr. Analogously, we can change the order of par-
allel paths between u4r−1 and u4r, v4r−3 and v4r−1, v4r−2 and v4r. In addition, the
subscripts of all the vertices are taken module 4p, except that of the new added vertices
x14p+1, x

2
4p+1, y

1
4p+1, y

2
4p+1, z

1
4p+1 and z24p+1.
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(a) The graph A.
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(b) The graph B.

x13 y23 z13 x23 y13 z23 x15

z21 x11 y21 z11 x21 y11 z25

y25

x22 y12 z22 x12 y22 z12 x25

z14 x24 y14 z24 x14 y24 z15

y15

(c) The graph C.

Figure 7: A planar decomposition of K5,5,5 ×K2.

Step 1: Add the vertices x14p+1 and y24p+1 to graph Gr(X1, Y 2).
Place vertices x14p+1 and y24p+1 in face 1 and face 2 of Gr(X1, Y 2), respectively. Join
x14p+1 to vertices y24r−3 and y24r. Change the order of the parallel paths between y24r−2 and
y24r−3, such that x14r+2 ∈

⋃p
i=1,i6=r{x14i−2, x14i} are incident with the face 2, and join y24p+1

to both x14r−1 and x14r+2.

Step 2: Add the vertices x24p+1 and y14p+1 to graph Gr(X2, Y 1).
Similar to step 1, place x24p+1 and y14p+1 in face 1 and face 2 of Gr(X2, Y 1), respectively.
Join x24p+1 to both y14r−3 and y14r, join y14p+1 to both x24r−1 and x24r+2 ∈

⋃p
i=1,i6=r{x24i−2,

x24i}.
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Step 3: Add the vertices y14p+1 and z24p+1 to graph Gr(Y 1, Z2).
Place y14p+1 in face 3 of Gr(Y 1, Z2) and join it to vertices z24r−2 and z24r−1. Place z24p+1

in face 1 of Gr(Y 1, Z2) and join it to vertices y14r−2 and y14r−1.

Step 4: Add the vertices y24p+1 and z14p+1 to graph Gr(Y 2, Z1).
Place y24p+1 in face 3 of Gr(Y 2, Z1) and join it to vertices z14r−2 and z14r−1. Place z14p+1

in face 1 of Gr(Y 2, Z1) and join it to vertices y24r−2 and y24r−1.

Step 5: Add the vertices z14p+1 and x24p+1 to graph Gr(Z1, X2).
Place z14p+1 in face 1 of Gr(Z1, X2) and join it to vertices x24r−3 and x24r. Place x24p+1 in
face 3 of Gr(Z1, X2) and join it to vertices z14r−3 and z14r.

Step 6: Add the vertices z24p+1 and x14p+1 to graph Gr(Z2, X1).
Place z24p+1 in face 1 of Gr(Z2, X1) and join it to vertices x14r−3 and x14r. Place x14p+1 in
face 3 of Gr(Z2, X1) and join it to vertices z24r−3 and z24r.

We denote the above graphs we obtain from Steps 1–6 by Ĝr(X1, Y 2), Ĝr(X
2, Y 1),

Ĝr(Y
1, Z2), Ĝr(Y

2, Z1), Ĝr(Z
1, X2) and Ĝr(Z2, X1) respectively.

Let
Ĝ1
r = Ĝr(X

1, Y 2) ∪ Ĝr(Y 1, Z2) ∪ Ĝr(Z1, X2)

and
Ĝ2
r = Ĝr(X

2, Y 1) ∪ Ĝr(Y 2, Z1) ∪ Ĝr(Z2, X1).

Step 7: Add the edges z14rx
2
4r, y

1
4r−1z

2
4r−1, z

1
4r−2y

2
4r−2, x

1
4r−3z

2
4r−3 and z24rx

1
4r,

y24r−1z
1
4r−1, z

2
4r−2y

1
4r−2, x

2
4r−3z

1
4r−3 to graphs Ĝ1

r and Ĝ2
r respectively, 1 ≤ r ≤ p.

For graph Ĝr(Y 1, Z2) ⊂ Ĝ1
r , we delete the edge y14r−3z

2
4r and join the vertex y14r−1 to

vertex z24r−1, then we get a planar graph G̃r(Y 1, Z2). According to Lemma 4.3, the graph
G̃r(Y

1, Z2) has a planar embedding whose outer face has the same boundary as face 2,
then the vertex z24r−3 is on the boundary of this outer face.

For graph Ĝr(Z1, X2) ⊂ Ĝ1
r , delete the edge z14r−2x

2
4r−1 and join z14r to x24r, then we

get a planar graph G̃r(Z1, X2). According to Lemma 4.3, the graph G̃r(Z1, X2) has a pla-
nar embedding whose outer face has boundary as z14rx

2
4rz

1
4r−2x

2
i z

1
4r (x2i ∈

⋃p
i=1,i6=r{x24i−1,

x24i}), then the vertex z14r−2 is on the boundary of this outer face.
Since the vertices x14r−3 and y24r−2 are on the boundary of the outer face of the em-

bedding of Ĝr(X1, Y 2) ⊂ Ĝ1
r , we can join x14r−3 to z24r−3, y24r−2 to z14r−2 without edge

crossing. Then we get a planar graph G̃1
r .

With the same process, for the graph G2
r , we delete edges y24r−3z

1
4r and z24r−2x

1
4r−1,

join y24r−1 to z14r−1, join z24r to x14r, join x24r−3 to z14r−3 and join y14r−2 to z24r−2, then we
get a planar graph G̃2

r .

Table 1 shows the edges that we add to G1
r and G2

r (1 ≤ r ≤ p) in Steps 1–7.

Step 8: The remaining edges form a planar graph G̃p+1.
The edges that belong to K4p+1,4p+1,4p+1 × K2 but not to any G̃1

r, G̃
2
r (1 ≤ r ≤ p) are

shown in Table 2, in which the edges in the last two rows list the edges deleted in Step 7.
The remaining edges form a graph, denote by G̃p+1. We draw a planar embedding of G̃p+1

in Figure 8, so G̃p+1 is a planar graph.
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Table 1: The edges we add to G1
r and G2

r (1 ≤ r ≤ p).

Edges Subscript

x14p+1y
2
i , x

2
4p+1y

1
i , z14p+1x

2
i , z

2
4p+1x

1
i ,

x14p+1z
2
i , x

2
4p+1z

1
i , x1i z

2
i , x

2
i z

1
i , i = 4r − 3, 4r.

y14p+1z
2
i , y

2
4p+1z

1
i , z14p+1y

2
i , z

2
4p+1y

1
i ,

y14p+1x
2
i , y

2
4p+1x

1
i , y1i z

2
i , y

2
i z

1
i , i = 4r − 2, 4r − 1.

Table 2: The edges of G̃p+1.

Edges Subscript (1 ≤ r ≤ p)

x14p+1y
2
i , x24p+1y

1
i , z14p+1x

2
i , z24p+1x

1
i ,

x14p+1z
2
i , x24p+1z

1
i , x1i z

2
i , x

2
i z

1
i , i = 4r − 2, 4r − 1.

y14p+1z
2
i , y24p+1z

1
i , z14p+1y

2
i , z24p+1y

1
i ,

y14p+1x
2
i , y24p+1x

1
i , y1i z

2
i , y

2
i z

1
i , i = 4r − 3, 4r.

x1i y
2
i , x

2
i y

1
i , i = 4r − 3, 4r − 2, 4r − 1, 4r.

x1i y
2
i , y2i z

1
i , z1i x

2
i , x2i y

1
i , y1i z

2
i , z2i x

1
i , i = 4p+ 1.

y1i z
2
j , y2i z

1
j , i = 4r − 3, j = 4r.

z1i x
2
j , z2i x

1
j , i = 4r − 2, j = 4r − 1.

Therefore {G̃1
1, . . . , G̃

1
p, G̃

2
1, . . . , G̃

2
p, G̃p+1} is a planar decomposition of

K4p+1,4p+1,4p+1 ×K2, the Lemma follows.

Figure 9 illustrates a planar decomposition of K9,9,9 ×K2 with five subgraphs.
A graph G is said to be thickness t-minimal, if θ(G) = t and every proper subgraphs

of it have a thickness less than t.

Lemma 4.5. When n = 4p+ 3, there exists a planar decomposition of Kronecker product
graph K4p+3,4p+3,4p+3 ×K2 with 2p+ 2 subgraphs.

Proof. Case 1. When p = 0.
As shown in Figure 10, we give a planar decomposition of K3,3,3 ×K2 with 2 subgraphs.

Case 2. When p ≥ 1.
The graph K4p+3,4p+3 is a thickness (p + 2)-minimal graph. Hobbs, Grossman [11] and
Bouwer, Broere [6] proved it independently, by giving two different planar subgraphs de-
compositions {H1, . . . ,Hp+2} ofK4p+3,4p+3 in whichHp+2 contains only one edge. Sup-
pose that the two vertex parts of Kn,n is {v1, . . . , vn} and {u1, . . . , un}, the only one edge
in the Hp+2 is vaub (the edge is v1u1 in [11] and v4p+3u4p−1 in [6]). For 1 ≤ i ≤ p + 2,
Hi is a bipartite graph, so we also denote it by Hi(V,U).

BecauseKn,n,n×K2 = G1∪G2 in whichG1 = G(X1, Y 2)∪G(Y 1, Z2)∪G(Z1, X2)
and G2 = G(X2, Y 1) ∪G(Y 2, Z1) ∪G(Z2, X1), |Xi| = |Y i| = |Zi| = n (i = 1, 2), all
the graphs G(X1, Y 2), G(Y 1, Z2), G(Z1, X2), G(X2, Y 1), G(Y 2, Z1) and G(Z2, X1)
are isomorphic to Kn,n.
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Figure 9: A planar decomposition of K9,9,9 ×K2.
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Figure 9: A planar decomposition of K9,9,9 ×K2.
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Figure 9: A planar decomposition of K9,9,9 ×K2.
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Figure 10: A planar decomposition of K3,3,3 ×K2.
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For graph Hi(V,U) (1 ≤ i ≤ p + 2), we replace the vertex set V by X1, U by Y 2,
i.e., for each 1 ≤ t ≤ n, replace the vertex vt by x1t , and ut by y2t , then we get a graph
Hi(X

1, Y 2). Analogously, we can obtain graphs Hi(Y
1, Z2), Hi(Z

1, X2), Hi(X
2, Y 1),

Hi(Y
2, Z1) and Hi(Z

2, X1). For 1 ≤ i ≤ p+ 2, let

H1
i = Hi(X

1, Y 2) ∪Hi(Y
1, Z2) ∪Hi(Z

1, X2),

thenH1
i is a planar graph, becauseHi(X

1, Y 2), Hi(Y
1, Z2), Hi(Z

1, X2) are disjoint with
each other. For the same reason, the graph

H2
i = Hi(X

2, Y 1) ∪Hi(Y
2, Z1) ∪Hi(Z

2, X1)

is also a planar graph, 1 ≤ i ≤ p+ 2. And we have

K4p+3,4p+3,4p+3 ×K2 = G1 ∪G2 =
p+2
∪
i=1

(H1
i ∪H2

i ),

in which E(H1
p+2) = {x1ay2b , y1az2b , z1ax2b} and E(H2

p+2) = {x2ay1b , y2az1b , z2ax1b}.
In the following, we will add edges in E(H1

p+2) to graphs H2
1 and H2

2 , add edges in
E(H2

p+2) to graphs H1
1 and H2

1 to complete the proof. From Lemma 4.3, there exists a
planar embedding of H1(Y

1, Z2) such that vertex z2a on the boundary of its outer face,
exists a planar embedding of H1(X

1, Y 2) such that x1b on the boundary of its outer face.
Then we join z2a to x1b without edge crossing. Suppose y1b is on the boundary of inner face
F of the embedding of H1(Y

1, Z2), put the embedding of H1(Z
1, X2) in face F with

x2a on the boundary of its outer face, then we join x2a to y1b without edge crossing. After
adding both x2ay

1
b and z2ax

1
b to H1

1 without edge crossing, we get a planar graph H̃1
1 . With

the same process, we add both x1ay
2
b and z1az

2
b to H2

1 without edge crossing, then we get a
planar graph H̃2

1 . From Lemma 4.3, we can also add y2az
1
b to H1

2 , and y1az
2
b to H2

2 without
edge crossing, then we get planar graphs H̃1

2 and H̃2
2 respectively.

Then we get a planar decomposition{
H̃1

1 , H̃
1
2 , H

1
3 , . . . ,H

1
p+1, H̃

2
1 , H̃

2
2 , H

2
3 , . . . ,H

2
p+1

}
of K4p+3,4p+3,4p+3 ×K2 with 2p+ 2 subgraphs.

Summarizing Cases 1 and 2, the lemma follows.

Theorem 4.6. The thickness of the Kronecker product of Kn,n,n and K2 is

θ(Kn,n,n ×K2) =

⌈
n+ 1

2

⌉
.

Proof. Because ofE(Kn,n,n×K2) = 6n2 and V (Kn,n,n×K2) = 6n, from Theorem 2.2,
we have

θ(Kn,n,n ×K2) ≥
⌈

6n2

2(6n)− 4

⌉
=

⌈
n

2
+

n

6n− 2

⌉
=

⌈
n+ 1

2

⌉
. (4.1)

When n = 4p+2, because K4p+2,4p+2,4p+2×K2 is a subgraph of K4p+3,4p+3,4p+3×
K2, we have θ(K4p+2,4p+2,4p+2×K2) ≤ θ(K4p+3,4p+3,4p+3×K2). Combining this fact
with Lemmas 4.2, 4.4 and 4.5, we have

θ(Kn,n,n ×K2) ≤
⌈
n+ 1

2

⌉
. (4.2)

From inequalities (4.1) and (4.2), the theorem is obtained.
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