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Izvlecek

V nematskih tekocih kristalih in tankih smekti¢nih filmih smo z numeri¢nimi sredstvi
raziskovali dinamiko ureditvenega parametra, sklopljeno s hidrodinamiko. Posluzili
smo se Ericksen-Lesliejeve teorije nematskega direktorja in raziskali uc¢inke hidrodi-
namicnega toka, ki spremlja preklopne procese nematika v celicah. Opozorili smo na
primere, ko so ti uc¢inki odlocilnega pomena. Z upostevanjem celotnega tenzorskega
ureditvenega parametra smo resili problem anihilacije para topoloskih nematskih
disklinacijskih linij ter pokazali, da hidrodinamicni tok pospesi disklinacijo s pozi-
tivno mocjo glede na disklinacijo z negativno mocjo, hkrati pa pospesi tudi proces
anihilacije v primerjavi z nehidrodinamic¢no obravnavanim primerom. Izkaze se, da
je transport s tokom pomemben in je lahko njegov prispevek h gibanju defektov pre-
vladujoc. S posplositvijo Ericksen-Lesliejeve teorije na celoten vektorski ureditveni
parameter smo resili tudi problem anihilacije para disklinacijskih vrtincev v tankem
prostostojecem filmu smekticne C-faze, ki je v naSem opisu ustrezal XY -modelu.
Rezultati se v kvalitativnem pogledu ujemajo s tistimi pri nematikih. Studirali
smo Se razpad nematske disklinacijske linije z mocjo £1 na par disklinacij z mocjo
+1/2. V primerjavi z nehidrodinamiéno obravnavanim problemom tok spet pospesi
odbojno gibanje nastalih defektov. Da bi raziskali stabilnost, smo resili fluktuacijski
problem ravne disklinacijske linije s splosno celosteviléno mocjo za celoten tenzorski
ureditveni parameter. Nasli smo dve vrsti narascajocih fluktuacij, ki vodijo do raz-
pada oziroma do pobega v tretjo dimenzijo.

Kljucne besede: nematski tekoci kristali, smekti¢ni tekoc¢i kristali, SmC filmi,
ureditveni parameter, nematodinamika, hidrodinamika, Ericksen-Lesliejeva teorija,
Freederickszov prehod, defekti, disklinacije, vrtinci, parska anihilacija, fluktuacije

PACS: 61.30.Dk, 61.30.Gd, 61.30.Jf, 83.80.Xz, 47.15.Gf, 47.15.Rq, 61.30.Pq, 68.15.+¢






Abstract

Dynamics of the order parameter coupled to hydrodynamics is studied numerically
in nematic and smectic thin film liquid crystals. The Ericksen-Leslie theory for
the nematic director is employed to determine the backflow effects accompanying
external field switching processes of nematics confined to cells. It is demonstrated
that there are cases where these effects are crucial. Pair-annihilation of topological
nematic disclination lines is studied using the full tensor order parameter. It is
found that the hydrodynamic flow is responsible for the speed-up of the positive
strength disclination relative to the negative one, and for the overall speed-up of the
annihilation process as compared to the nonhydrodynamic treatment. Moreover, it
is demonstrated that the flow transport is substantial and can dominate the motion
of defects. The Ericksen-Leslie theory is generalized to the complete vector order
parameter and used to study the pair-annihilation of vortices in a free-standing thin
film of the smectic-C liquid crystal as a representative of the XY -model. The results
agree qualitatively with those of the nematic. Decay of the nematic strength +1
disclination line into a pair of +1/2 disclinations is studied. The flow again speeds
up the repelling motion of the decay products if compared to the nonhydrodynamic
treatment. As a stability analysis, the fluctuation problem of a straight disclination
line with a general integer strength is solved for the complete tensor order parameter.
Two types of growing fluctuations are found, leading to the decay and to the escape
in the third dimension, respectively.

Keywords: nematic liquid crystals, smectic liquid crystals, SmC films, order pa-
rameter, nematodynamics, hydrodynamics, backflow, Ericksen-Leslie theory, Freed-
ericksz transition, defects, disclinations, vortices, pair-annihilation, fluctuations
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Razsirjeni povzetek
(Abstract in Slovene)

Uvod

Tekoci kristali so bolj urejeni kot tekocine, a manj kot trdne snovi — so nekakSna
vmesna faza. Potreben pogoj za obstoj tekocekristalne faze so molekule podolgovate
ali ploscate oblike. Pri termotropskih tekocih kristalih je stopnja urejenosti odvisna
predvsem od temperature, pri liotropnih pa od koncentracije tekoc¢ekristalne kompo-
nente v raztopini. Zaradi urejenosti imajo tekoci kristali anizotropne makroskopske
premore orientacijsko molekulsko urejenost dolgega dosega. Povprecno smer molekul
oznacimo z direktorjem n, ki je del tenzorskega ureditvenega parametra nematika.
Bolj urejena je smekticna tekocekristalna faza, za katero je poleg orientacijskega
reda znacilen pozicijski red v eni dimenziji. Ploskvam maksimalne gostote pravimo
smekticne plasti. V SmA fazi je direktor pravokoten na plasti, v SmC fazi pa je
nagnjen.

Modeliranje tekocih kristalov je zazivelo s prihodom dovolj zmogljivih in dostop-
nih racunalnikov. Najprej so obdelali staticne probleme, nato so se raziskave us-
merile v studij dinamike, ki jo najveckrat obravnavajo v okviru direktorskega opisa
in brez upostevanja hidrodinamike. Za opis defektov moramo nujno poseci po ten-
zorskem opisu ter upostevati tudi hidrodinamicni tok. Predvsem slednje je precej
tezavno.

V disertaciji se ukvarjamo s simulacijo dinamike v nematskem in SmC tekocem
kristalu z uposStevanjem hidrodinamike. V prvem delu obravnavamo relaksacijske
procese direktorja pri preklapljanju celice z zunanjim poljem, kjer pokazemo, da
vloga hidrodinamskega toka ni omejena zgolj na kvantitativne popravke. V drugem
delu se posvetimo glavnemu izzivu — hidrodinamic¢ni obravnavi dinamike defektov.
Z nadgrajeno metodologijo iz prvega dela uspemo pokazati, da na anihilacijo para
nasprotnih defektov kot tudi na odboj para enakih defektov moc¢no vpliva tok, ki
pospesi procese in v prvem primeru povzroci asimetrijo pri gibanju defektov.

Teorija

Na kratko bomo predstavili dinamicno teorijo kompleksnih disipativnih tekocin, Se
prej pa bomo uvedli pojem ureditvenega parametra in vpeljali ustrezen termodi-
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namicni potencial. Teorija se za zdaj Se ne bo nanasala na nek izbrani ureditveni
parameter, ampak bo splosna, kar bo koristno v nadaljevanju, ko bomo obravnavali
sisteme z razlicnimi ureditvenimi parametri.

Ureditveni parameter in termodinamicni potencial

Tekoci kristali so urejeni sistemi. Uredijo se ob faznem prehodu, pri katerem se zlomi
simetrija sistema. Za opis urejenosti vpeljemo mezoskopsko koli¢ino — ureditveni
parameter, ki mora biti niceln v visokotemperaturni fazi, v urejeni fazi pa od nic
razlicen in odvisen od urejenosti, s simetrijskimi lastnostmi, kot jih ima urejena faza.
V splosnem je lahko sistem krajevno nehomogen, tako da je ureditveni parameter
polje. Definiramo ga kot povprecje v mezoskopskem volumnu, ki naj bi bil dovolj ve-
lik, da je povprecje dobro definirano, hkrati pa dovolj majhen v primerjavi z znacilno
skalo nehomogenosti, tako da je sistem znotraj njega dovolj homogen. Pri studiju
dinamike se zanimamo za neravnovesne lastnosti sistema. Odmike od ravnovesja
opiSemo z neravnovesnimi vrednostmi ureditvenega parametra. To pomeni, da so
neravnovesne lastnosti sistema dolocene z dinamiko ureditvenega parametra, ko le-
tega izmaknemo iz ravnovesja.

Tekocekristalni termodinamic¢ni sistemi v splosnem zdruzujejo termicne, elek-
tricne in magnetne prostostne stopnje, medtem ko delo pri spremembi prostornine
zanemarimo. Pri konstantni temperaturi 7" in konstantnih jakostih zunanjega elek-
tricnega in magnetnega polja E in H je ustrezen termodinamicni potencial

F = U-TS-VE-P—yVH-M, (1)
dF = —-SdT —TdS"—pdV — VP -dE — poVM - dH + d4', (2)

ki ga imenujemo kar prosta energija; U je notranja energija. Spremembo entropije
S smo razdelili na reverzibilni (dQ/T) in ireverzibilni del, dS* > 0. V ravnovesju
je prosta energija minimalna. Ce sistem pri konstantnih 7', E in H spravimo iz
ravnovesja, je sprememba proste energije enaka minimalnemu delu dA’, ki je zato
potrebno, t.j. delu pri nadomestni reverzibilni spremembi. Elektri¢no in magnetno
delo sta ze vkljuceni v (2), tako da je prosta energija sistema v polju H, katerega
konfiguracija ustreza ravnovesju pri polju H', za
=

AF =—pV [ dV M(H)-dH (3)
H

vi§ja od ravnovesne (analogno za elektri¢no polje).

Za studij dinamike je torej treba poiskati odvisnost proste energije od ure-
ditvenega parametra q, ki ima v sploSnem ve¢ komponent ¢;. Pri nehomogenih
sistemih vpeljemo gostoto proste energije, tako da je prosta energija funkcional,

F= [avf(a,Va). (4)

Pri fenomenoloskem pristopu gostoto proste energije razvijemo po skalarnih invari-
antah, ki jih sestavimo iz q, Vq in zunanjih polj. Pri tem nastopa pet kategori¢nih
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tipov prispevkov: homogeni, elasti¢ni, kiralni, prispevki zunanjih polj ter povrsinski
prispevki, ki jih tukaj ne bomo natancneje opisovali.
Ravnovesno konfiguracijo pois¢emo tako, da minimiziramo prosto energijo:

6f:/dv<g—£—v-%>-6q+/ds-%-6q:0, (5)

od koder dobimo Euler-Lagrangeve enacbe za volumski in povrsinski del. Slednjega
bomo od zdaj naprej opuscali. Kadar morajo komponente ureditvenega parametra
zadoscati vezem, vpeljemo Lagrangeve multiplikatorje kot ponavadi, kar je ekviva-
lentno projiciranju Euler-Lagrangevih enacb v prostoru ureditvenega parametra na
podprostor, pravokoten na tistega, ki ga dolocajo vezi.

Hidrodinamika ureditvenega parametra

Ko se sistem priblizuje ravnovesju, se mu prosta energija manjsa na racun vecanja

entropije:
T g B of .
TS = -F =~ [av ( 5 —8Vq> q, (6)

kjer pika oznacuje substancialni odvod. Pri ireverzibilnih pojavih vecanje entropije
splosno opisemo s tokovi ®; in pripadajocimi silami F;:

TS = / AV F,;, (7)
v rezimu §ibkih tokov pa predpostavimo Se linearno zvezo med silami in tokovi [17]:
Fi =K @5, Ky =Kji, (8)

kjer je po Onsagerju [18], [19, p. 365] matrika transportnih koeficientov simetri¢na.
Po enacbi (6) lahko imamo q za tok, izraz v oklepaju (z minusom), ki ga ozna¢imo

_vg. 9 _9of
h=V v g (9)

pa za silo. Gibanje tekocine opisemo s posploseno Navier-Stokesovo enacbo
pv=V -0, (10)

pri cemer se vsa kompleksnost skriva v napetostnem tenzorju o. Poleg tlacnega dela
ta vsebuje Se elasticni del, ki je posledica dejstva, da deformacija sistema spremeni
krajevne odvode ureditvenega parametra, torej tudi gostoto proste energije:
of
o5 = — - 0;q. 11
] a(azq) J ( )
H gostoti proste energije moramo zdaj dodati tudi kineti¢ni prispevek %pvQ.
Entropijski izvir je s tem

ZTSZ = /dV [(O'ij —|—p5ij - Ufj)&-vj +h- ('1 . (12)
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K narascanju entropije torej prispevata dva tokova — ¢asovni odvod ureditvenega
parametra ¢ in gradient hitrosti Vv. Pripadajoci sili sta generalizirana sila na
ureditveni parameter h in viskozni napetostni tenzor ¢ = o 4+ pI — 0¢. Ugodno
je, e tenzorje razcepimo na simetri¢ni in antisimetric¢ni del. Gostota entropijskega
izvira je potem

jjSZ = O'isinj + O'%Wij + hqu, (13)
kjer sta o® in o simetricni in antisimetric¢ni del viskoznega napetostnega tenzorja,
A in W pa simetricni in antisimetricni del gradienta hitrosti. Splosna linearna zveza
(8) med silami in tokovi (enacbe (2.35)-(2.37)) nam doloci sile o®, ¢ in h (slednjo
imenujemo tudi viskozna generalizirana sila h), od koder sledijo gibalne enacbe:

T T — 14
pv = =Vp+V-(d"+0°, (15)
V-v = 0. (16)

Ureditveni parameter nematika

Za ureditveni parameter nematika izberemo prvi netrivialni nenic¢elni moment po-
razdelitve smeri molekul d = (sin @’ cos ¢/, sin ' sin ¢', cos #'), to je kvadrupolni mo-
ment. Prispevek le-tega k porazdelitveni funkciji ¢ ponavadi zapiSemo kartezi¢no:

5 1

g(2)(e) = EQU €i€j, Qij = 5(3<didj> - 5ij)7 (17)

pri cemer je e enotski vektor, ki podaja smer. Vpeljali smo simetri¢ni in brezsledni
tenzorski ureditveni parameter nematika Q. V lastnem sistemu ga zapisemo kot

Ys-p)
Q — —5(8 + P) R (18)
S
v splosnem pa kot
1 1 1,1 2,2
Qij = 55(37%71] — 6zy) + iP(ez €j — € ej), (19)
kjer je
2oy —1
o 3(cos* ') (20)
2
skalarni ureditveni parameter,
3
P = §<sin2 6 cos 2¢") (21)

pa stopnja dvoosnosti. V enacbi (19) smo vpeljali trojico ortonormalnih vektor-
jev (n,e',e?), ki dolocajo lastni sistem tenzorja Q: n imenujemo direktor, e' pa
sekundarni direktor oziroma direktor dvoosnosti.
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Dinamika nematskega direktorja

Predstavili bomo Ericksen-Lesliejevo teorijo — hidrodinamic¢no teorijo nematskega
direktorja. Numeri¢no bomo obdelali proces preklapljanja/relaksacije direktorja
v magnetnem polju. Ogledali si bomo osnovne mehanizme nastanka toka zaradi
vrtenja direktorja in njegovega povratnega vpliva na direktor. Relaksacijo s tokom
bomo primerjali s poenostavljenim primerom brez toka.

Ericksen-Lesliejeva teorija

Gre za posebni primer splosnih enac¢b (14) in (15), ko je ureditveni parameter di-
rektor n — enotski vektor s simetrijo n = —n.

Gostoto proste energije v zunanjem magnetnem polju zapiSemo po Franku kot
[46-48], [49, pp. 102, 119]

= %K11(V-n)2+%K22 - (V x n)]2+%K33 [ x (V x n)]Z—%Xauo(n'H)2= (22)

kjer so Ki;, K9 in K33 temperaturno odvisne elasticne konstante za pahljacno,
zvojno in upogibno deformacijo direktorja, H je jakost magnetnega polja, x, pa
razlika med magnetnima susceptibilnostma v smereh vzporedno in pravokotno na
direktor. V priblizku ene elasticne konstante, tudi enokonstantnem priblizku, se
izraz poenostavi v

fore = SK(Vny, (23)

pri cemer se nismo menili za povrsinske prispevke.
Generalizirano elasti¢no in magnetno silo na direktor dobimo z (9),

em__ﬁ . af
R (a(ajni)>' (24)

Viskozna generalizirana sila sledi iz splosne linearne zveze (2.37) med silami in tokovi
[50, p. 142]:
—h" = 1N 4+ %A - n, (25)

kjer je v1 = a3 — ay rotacijska viskoznost, v = a3 + @y = ag — a5, @; pa so
Lesliejevi viskoznostni koeficienti [49, p. 206]. N je relativni substancialni ¢asovni
odvod direktorja glede na vrtenje tekoCine, en. (4.7). Zaradi vezi n? = 1 je treba obe
sili projicirati pravokotno na direktor, tako da je na kratko zapisana enacba gibanja

{hem n h”} — 0. (26)
1n
Posplosena Navier-Stokesova enacba,

p lg—; + (v V)v] =—-Vp+ V. (c"+0°), (27)
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kjer je p gostota in p tlak, vsebuje dva prispevka k napetostnemu tenzorju. Viskozni
sledi po enacbah (2.35) in (2.36), [50, p. 142]:

0 = oyn®nn-A-n)+an®@N+aN®n+
asA+asn® (A-n)+ag(A-n) @n, (28)
elasti¢ni pa po enacbi (11), [49, p. 152]:

of
C = O:ne. 2
05 a(aznk) a]nk ( 9)

Tlak v enacbi (27) dolo¢imo tako, da zadostimo pogoju nestisljivosti (16).
Znagcilni krajevni skali problema sta velikost celice L in magnetna koherencna

dolzina [49, p. 123]
1 K
bm = 2o\ (30)
H :U’0|Xa|

znacilna casa pa sta relaksacijski cas direktorskega polja

71E2
S

= 31
K (31)
in relaksacijski cas hitrostnega polja
pL*
=— 32
To O[4 ) ( )
za katera velja ocena (parameter nestacionarnosti toka)
L? pK
/=g ”72“ ~ L)€ -10°°. (33)
m 1

Adiabatna aproksimacija za hitrostno polje, kjer zanemarimo ¢asovni odvod v enacbi
(27), je torej upravicena. Ocena za Reynoldsovo stevilo je

. £ pK11

&

torej lahko zavrzemo tudi nelinearni advekcijski ¢len v en. (27).
Obstaja Se tretji znacilni cas, to je relaksacijski ¢as temperaturnega polja

Re

~ L/, 1075, (34)

l2
ro = 2, (35)

kjer je [ znacilna dolzina temperaturnih nehomogenosti, ¢, specificna toplotna ka-
paciteta, A pa toplotna prevodnost. Primerjava ¢asov da

Kpc,
TQ/T = , 36
ofr==5 (36)

kar je reda velikosti 5 - 107*. Ocena je splosna in velja tudi, ko imamo opravka z
defekti. Torej lahko res vedno privzamemo, da je temperatura konstantna.
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Obdelani primeri

Prvi obdelani primer je dvodimenzionalen (slika 4.1). Magnetno polje lezi v y-smeri.
Privzamemo mocno sidranje, s smermi razvidnimi s slike 4.1.

Oglejmo si mehanizme nastanka toka. Direktor parametrizirajmo s kotom n =
(cos p,sin, 0). Pri okvirni obravnavi je potrebno upostevati samo viskozno silo,
ki jo podaja ¢len s koeficientom . Prispevek tega clena lahko razdelimo na dva
dela — silo, ki je odvisna od gradienta kotne hitrosti w vrtenja direktorja, in silo,
ki zavisi od gradienta direktorskega polja. Prvo najlepse vidimo pri ¢ = 0:

9
£, = ay (0 : a—j) . (37)

Ta sila je torej pravokotna na direktor, njena velikost pa je sorazmerna z odvodom
w v smeri direktorja, n - Vw. Drugo silo poglejmo v primeru Vo = (¢, , 0):

f, = —avwp, (cos2p, sin2¢p) . (38)

Velikost te sile je odvisna le od w|V|, njena smer pa je taka, da z gradientom
Vi oklepa dvakrat vecji kot kot direktor. Paziti je potrebno na negativni predznak
parametra as in na to, da je smer sil odvisna od predznaka w.

Sedaj si oglejmo Se, kaksen je vpliv toka na direktor. Tokovno polje, ki ustreza
homogenemu vrtenju (W # 0, A = 0), povzroci, da se tudi direktor vrti enako, seveda
¢e nanj ne delujejo druge sile. Tokovno polje, ki ustreza cistemu deformacijskemu
toku (W = 0, A # 0), pa skuSa poravnati direktor v tisti lastni smeri A, ki ustreza
raztegu. V primeru striznega toka, ki je vsota obeh pravkar omenjenih tokov, enacba
(26) da

1
Y =—=n <ﬁ cos2p + 1) , (39)
2 il

kjer je n velikost strizne hitrosti, kot ¢ pa je merjen glede na smer hitrosti, slika 4.2.
Stacionarna resitev obstaja le, ¢e je |v2/71| > 1, torej ¢e je ag < 0, in se glasi

|po] <1, (40)

saj je v2/v1 ~ —1. To pomeni, da se v striznem toku direktor priblizno poravna
s smerjo hitrosti. ResSitev s ¢y > 0 je stabilna, tista s ¢y < 0 pa nestabilna. Za
nematik MBBA kot ¢ znasa priblizno ¢y &~ 7°. Opozoriti je treba na to, da se
direktor k temu kotu vrti v nasprotni smeri urinega kazalca le za |¢| < |p|, pri vseh
drugih kotih pa se vrti v smeri urinega kazalca.

Z mehanizmi, ki smo jih pravkar spoznali, je mogoce priblizno predvideti, kakSen
bo potek relaksacije direktorskega polja ob vklopu ali izklopu zunanjega polja, ne
da bi bilo treba narediti numeri¢ni izrac¢un (razdelek 4.5.2). Glavna ugotovitev je,
da lahko relaksacija zaradi hidrodinamicnega toka poteka v dveh dobro definiranih
korakih, ki se med seboj locita po smeri glavnega tokovnega vrtinca in celo po smeri
vrtenja direktorja, slike 4.3, 4.5, 4.9 in 4.10. Tako se direktor nekaj casa vrti v
napacni smeri, kar je znano kot kickback pojav [55, p. 167], ki ga je mo¢ opaziti v
celicah tekocekristalnih zaslonov kot migotanje.
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Ce popolno hidrodinamiéno relaksacijo primerjamo s poenostavljenim modelom
brez toka, najveckrat velja, da je dinamika s tokom nekoliko hitrejsa, slika 4.11. Ta
trditev pa ne velja splosno, enega od protiprimerov prikazuje slika 4.12. Vecje razlike
med obravnavama se pokazejo, ¢e primerjamo vrtenje direktorja v doloc¢enem delu
celice, kar je lepo razvidno z grafov krajevnih Fourierovih komponent (slike 4.12-
4.14).

Z zeljo, da bi se bolj priblizali situacijam, ki jih lahko uresnic¢ijo v poskusih, smo
simulirali Se dva primera, kjer smo dovolili vrtenje direktorja iz xy-ravnine, prav
tako pa smo dopustili tudi tok v z-smeri, v kateri sicer ni bilo nobenih gradientov.
Geometrija tokrat ustreza kapilari s kvadratnim presekom, slika 4.18. Sidranje je
spet mocno, a tokrat vzporedno z osjo kapilare. Obakrat je bil vzorec na zacetku
poravnan z magnetnim poljem v smeri osi . Potem smo polje nenadoma preklopili
pravokotno glede na zacetno smer, v prvem primeru v z-smer, v drugem pa je
konc¢no polje lezalo v ravnini yz in z osjo z oklepalo kot 70°. V obeh primerih
zaradi hidrodnami¢nega toka proces preklapljanja poteka zelo nenavadno, sliki 4.19
in 4.20. H kon¢nemu stanju prispemo v dveh izrazitih korakih: najprej zaradi vpliva
toka hitro nastane domenska stena, nato pa se notranja domena zaradi ukrivljenosti
domenske stene pocasi manjsa [56, p. 213] in koncno izgine. Tudi tukaj se da potek
(nastanek domene) priblizno zaslutiti z zgornjimi mehanizmi.

Ves ¢as smo racunali v limiti neskonéno mocnega sidranja. Ce je sidranje konéno,
¢ > 0, a Se vedno mocno, £/, < 1, velja ocena, da se hitrost hidrodinamic¢nega
toka zmanjsuje kot 1 — 3£/&,,, s tem pa tudi navor toka na direktor.

Z dodatnimi numeri¢nimi racuni smo ugotovili, da oblika celice nima odlocilnega
vpliva na dinamiko, ce je le velikost celice v posameznih smereh priblizno enaka.
Ce torej kvadrat nadomestimo s krogom, ne bo velikih sprememb, ¢isto drugace pa
je, ¢e celico, znatno raztegnjeno v x-smeri, nadomestimo s tako, ki je raztegnjena v
y-smeri.

Dinamika vektorskega ureditvenega parametra

Izpeljali bomo dinamicne enacbe za vektorski ureditveni parameter c. Gre za pos-
plositev Ericksen-Lesliejeve teorije z dodatkom nehidrodinamicne prostostne stopnje
— dolzine vektorja. Opozoriti je treba, da je Ericksen-Lesliejeva teorija vektorska
teorija, zato jo lahko konsistentno posplosimo le na popoln vektorski ureditveni pa-
rameter in ne na tenzorskega. Obravnavali bomo sploSen tridimenzionalni primer,
dvodimenzionalna razli¢ica pa bo prisla prav pri opisu tankega filma smektika-C.

Gostota proste energije

Osredotocili se bomo na homogeni in elasti¢ni del gostote proste energije f(c, Ve):
1., 1., 1

f = §AC + ZCC + §Lijkl (&-cj)(&ccl). (41)

Homogena ¢lena, kjer velja A = A'(T —T°), A’ > 0, C' > 0, opisujeta fazni prehod

in dolocata ravnovesno velikost vektorja c, cg = /—A/C. V elasti¢ni del vklju¢imo
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samo clene, kvadratne v prvih odvodih, ne pa ¢lenov z drugimi odvodi L;j;, 0;0;ck,
ki prinesejo samo dodatne povrsinske prispevke.

Poiskati je torej treba matriko L;j. Zahtevali bomo, da je prosta energija in-
variantna na inverzijo (r — —r, ¢ — —c), kar pomeni, da mora biti L;;x; pose-
bej invariantna na to operacijo. Poleg tega mora zadoscati permutacijski simetriji
Liji = Lyyuj. Matriko L, smemo sestaviti le iz komponent vektorja c ter matrik
ik in €;5,. Posamezni prispevki so zbrani v tabeli 5.1. Vpeljali smo fundamentalne
elasticne konstante L;, ki so neodvisne od dolzine vektorja c.

Clen z L, je izotropen in vse deformacije polja ¢ obravnava enako. Cleni z Lo,
L, in Lg ustrezajo pahljacni, zvojni, oziroma upogibni deformaciji, ¢len z L3 pa
je povrsinski. Ostali prispevki so nenicelni le, ¢e se spreminja velikost vektorja c.
Posebej zanimiva sta Clena z Lg in L7, ki ustrezata sklopitvi med spreminjanjem ve-
likosti ¢ in pahljacno oziroma upogibno deformacijo, slika 5.1. Primerjava z izrazom
(22) poveze Frankove elasticne konstante s fundamentalnimi konstantami L;:

KH = 62L1 + C2L2, (42)
K22 == C2L1 + C4Lg, (43)
Kss = 2Ly + 'Ly, (44)

pri cemer smo dolocili tudi odvisnost Frankovih konstant od velikosti vektorja ¢ v
najnizjem redu.

Sklopitev s tokom

Najti moramo izraz za viskozni napetostni tenzor in viskozno generalizirano silo na
vektor c, kar pomeni, da moramo doloc¢iti matrike S, M, R, C, D in B v enacbah
(2.35)-(2.37) z lastnostmi (2.39). Tudi tukaj zahtevamo, da je gostota entropijskega
izvira invariantna na inverzijo, torej morajo biti matrike S, M, R in B sode v ¢, C
in D pa lihi. Matrike smemo sestaviti le iz komponent vektorja c ter matrik d;; in
€ijk- Prispevki, ki podajajo disipacijo v izotropni tekocini, so zbrani v tabeli 5.2,
ostali pa v tabeli 5.3. Vpeljali smo fundamentalne viskozne parametre 7;, ki so spet
neodvisni od velikosti vektorja c.

Zahtevati moramo, da pri togi rotaciji sistema ni disipacije (2.38) in sil (2.35)-
(2.37). Simetri¢ni in antisimetri¢ni del viskoznega napetostnega tenzorja sta tako

ol = 770Aij + %771 (AikaCj + AjkaCi) + UQAlekCZCiCj +
sna(Nicj + Njci) + necrlrcics,
ol = %773(Nz'cj — NjCZ’) + %774(AikaCj — Ajkckci)a (45)

viskozna generalizirana sila na vektor ¢ pa
—hi = n3N; + mAijc; + neAjkcicrci + nocicici, (46)

kjer je
Ni = Cz + WijCj (47)

relativni substancialni ¢asovni odvod vektorja c glede na vrtenje tekocine.
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Primerjava z izrazi Ericksen-Lesliejeve teorije (4.13) in (4.6) poveze Lesliejeve
viskoznostne koeficiente «; s fundamentalnimi koeficienti 7;:

G4 = Tjo,

a5 + g = 1y,

o = ¢y, (48)
"= 02773,

Y2 = En,

kjer je v1 = a3 — ap in 79 = a3 + as kot obicajno. Dolocili smo odvisnost Lesliejevih
koeficientov od velikosti vektorja ¢ v najnizjem redu.

V splosnem vektorskem primeru viskozne sile dolocata dva parametra vec, 74 in
19, ki sta povezana z disipacijo, kadar je ¢ vzporeden s c. Prav tako prispevek ¢lena
z 14 h generalizirani sili zdaj ni ve¢ omejen na smer, pravokotno na c.

Defekti

Na kratko bomo spregovorili o to¢kovnih defektih vektorja/direktorja v dvodimen-
zionalnem sistemu in o linijskih defektih direktorja v nematiku. Poenostavljeno
lahko recemo, da je defekt nezveznost ali nedefiniranost ureditvenega parametra na
neki mnozici tock v prostoru — tocki, krivulji ali ploskvi. Seveda pa v fizicnem
sistemu nikoli ne srecamo nezveznosti. V nematiku, na primer, imamo opravka z
nezveznostjo le, dokler vztrajamo pri direktorskem opisu, kakor hitro pa uporabimo
celoten tenzorski ureditveni parameter, dobimo zvezne resitve [61-63]. Ne glede na
to pa je pojem defekta Se vedno smiseln, ker ima le-ta daljnosezne posledice za polje
ureditvenega parametra — defekt lahko dobro definiramo, ¢etudi sploh ne poznamo
strukture njegovega jedra. V ta namen si zamislimo zanko, ki jo sklenemo okrog
sredisca defekta, tako da poteka po obmodju, kjer velja direktorski opis (slika 6.1).
Ko se po njej enkrat sprehodimo, direktor opise kot #, ki mora biti zaradi zveznosti
direktorskega polja in simetrije n = —n veckratnik 7, # = 27n. Pravkar smo
definirali ovojno stevilo ali moc defekta n, ki s topoloskega vidika defekt popolnoma
doloca,

n=0,=+s, 1, £3, .. (49)
Pri tem je slo za tockovni defekt v namisljenem dvodimenzionalnem nematiku ali
pa za pravi linijski defekt v treh dimenzijah.

Defekti, ki jih lahko z zvezno transformacijo pretvorimo eden v drugega, so v
topoloskem smislu ekvivalentni. Torej taki, ki jih lahko zvezno transformiramo v
brezdefektno strukturo, sploh niso defekti. V dvodimenzionalnem primeru, ko je
direktor definiran na ravnini, vsa ovojna stevila (49) oznacujejo razlicne defekte, saj
zvezne transformacije med njimi ne obstajajo. Ce bi bil ureditveni parameter vektor
z n # —n, bi bile dovoljene le celostevilske moci. Drugace je v treh dimenzijah. Tam
lahko vse celostevilske defekte s takoimenovanim pobegom v tretjo dimenzijo [68,69]
pretvorimo v brezdefektno strukturo. Velja Se ve¢: vsakemu defektu lahko z zvezno
transformaciju moc¢ spremenimo za celo Stevilo. To pomeni, da v nematiku obstaja
le en topoloski defekt, to je defekt z mocjo 1/2.
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Tockovni defekti v 2D primeru

Ogledali si bomo konfiguracijo in prosto energijo tockovnih defektov dvodimenzi-
onalnega direktorja v enokonstantnem priblizku, en. (23). Vsi izrazi veljajo tudi
za ravne linijske defekte; tiste, ki podajajo prosto energijo, v tem primeru pac
razumemo kot dolzinsko gostoto proste energije. Ob parametrizacijin = (cos 6, sin )
se ravnovesni pogoj za defekt s srediscem v izhodiscu glasi

V20 = 0. (50)
Resitev sme biti odvisna le od polarnega kota ¢:

0 =ne + 0o = narctg” + 6y, n=0,+L +1, £3 (51)
T

kjer je 6y prosti parameter. Polcelo stevilo n je moc¢ defekta. Deformacijska prosta
energija te strukture je

K (R om 00\ [00\’ R
2 il - = 1Kn’ln — 2
Fi 5 /TO rdr/o do [(83:) + (83/) ] mKn nro, (52)

kjer je R velikost vzorca, ry pa mikroskopska dolzina, pri kateri preneha veljati
direktorski opis. V prvem priblizku vpeljemo izotropno jedro z radijem ry, ki se
takoj nato nadaljuje z direktorskim poljem in ravnovesno vrednostjo skalarnega
ureditvenega parametra. Prosta energija je izotropnega jedra je tako

fc - WrgAfa (53)

kjer je Af razlika gostot proste energije izotropne in urejene faze. 7Z minimizacijo
celotne proste energije Fy + F. dolocimo radij jedra,

[ Kn?
To = 2Af’ (54)

ki je tako sorazmeren z mocjo defekta in je velikostnega reda nematske korelacijske
dolzine (7.18). Celotna prosta energija defekta je konéno

1
F=F.+F;=m*K (§+ln5>. (55)

To

Ce imamo opravka z vecimi defekti, dobimo resitev zaradi linearnosti ravnovesne
enacbe (50) kar s seStevanjem posameznih resitev (51):

0=> (niy +00;) =D arctgy - yi' + 6. (56)

r — T

)

Prosta energija dveh defektov na razdalji r je [65, p. 529]

R
.7::.7:1+.7:2+27rKn1n21n?. (57)
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Prva c¢lena sta prosti energiji (55) posameznih defektov, tretji pa predstavlja in-
terakcijsko prosto energijo. Vidimo, da se defekta z moc¢mi istega predznaka odbi-
jata, defekta z moc¢mi nasprotnih predznakov pa privlacita. V posebnem primeru
ng = —ny je prosta energija

1
]—":27rn2K<§+lnT£>, n=|ni|, 1 =ry=ry, (58)
0

tako da se znebimo logaritemske divergence v odvisnosti od velikosti vzorca. V
splosnem se bodo defekti z mo¢mi nasprotnih predznakov (ne nujno enakimi po ab-
solutni vrednosti) zdruzevali, saj bo na ta nac¢in prosta energija manjsa. Nasprotno
pa je ugodno, ¢e defekt z veliko mocjo razpade na ve¢ manjsih, tako da se ti potem
oddaljijo drug od drugega in zmanjsajo prosto energijo.

Anihilacija disklinacijskih linij v nematiku

Ce zelimo Studirati statiko ali dinamiko defektov v nematiku, se moramo posluziti
popolnega tenzorskega opisa nematske faze. Za vkljucitev hidrodinamike, ki jo v
direktorskem opisu obravnavamo v okviru Ericksen-Lesliejeve teorije, potrebujemo
tenzorsko razli¢ico te teorije [89,90,92].

Resili bomo problem anihilacije ravnih disklinacijskih linij moéi £1/2 v ne-
matiku, pri éemer bomo izhajali iz tenzorske teorije [92]. Vkljucili bomo samo tiste
disipacijske ¢lene, ki v direktorskem opisu s konstantno stopnjo ureditve preidejo v
Lesliejeve clene. Tako bo viskoznih parametrov toliko kot pri Leslieju, z njimi pa
bodo preprosto linearno povezani.

Dinamiéne enacbe

Gostoto proste energije v odvisnosti od Q zapisemo v priblizku ene elasti¢ne kon-
stante [10, p. 156]:

1 1 1 1
f= 514 Qi;Qji + gB Qi Q% Qri + ZO (Qiiji)2 + §L (aink)(aink)- (59)

Da bi locili med pahlja¢no in upogibno deformacijo, bi morali vkljuciti tudi elasticne
¢lene, kubicne v Q [99]. Euler-Lagrangeva enacba za funkcional proste energije

F = /dV [f(Q,VQ) — AQii — Ni€ikQji] , (60)

pri ¢emer smo zahtevali simetri¢nost in brezslednost Q, nam da homogeni in elasti¢ni
del generalizirane sile na ureditveni parameter Q:
o¢
h 2
hije = L@kQZ] — WZ] + )\6z3 + )\kﬁkz’j- (61)
Lagrangeovih multiplikatorjev se znebimo, ¢e enacbo (61) projiciramo na simetri¢ni
in brezsledni podprostor (odstejemo njen simetriéni in izotropni del). Elasti¢ni
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napetostni tenzor je po enacbi (11)

e ___Of

g -

wo _8(8@'ka)an“' (62)

Viskozni napetostni tenzor in viskozna generalizirana sila na tenzor Q sta [92]

1
o = B1QijQuiAri+BaAij+Bs Qi Arj+ B Qe Ari+ 5 p2Nij — 111 Qik Nij + 111 Q. Niyi, (63)

2
v 1
—h;; = §M2Aij + 11Ny, (64)
kjer je .
Ni; = Qij + Wir Qi — Qi Wi, (65)

Qi; = 0Qi;/0t + (v - V)Qy; pa je substancialni odvod. A in W sta simetriéni in
antisimetri¢ni del gradienta hitrosti. Med viskoznimi koeficienti v (63) in (64) velja
zveza jiz = [ — Ps.

Gibalna enacba za ureditveni parameter Q je ravnovesje brezslednega simetricnega
dela (L) generaliziranih sil,

{h"+h"} =0, (66)

z vezmi
Qi =0, €;xQjr = 0. (67)

Hitrostno polje je dolo¢eno s posploseno Navier-Stokesovo enac¢bo (15) in pogojem
nestisljivosti (16), pri Cemer je napetostni tenzor podan z enacbama (62) in (63).
Znacilna krajevna skala problema je nematska korelacijska dolzina (tipi¢no znasa

nekaj nanometrov)
3 L
S 68
g 2f”|50 ( )

kjer je f”|s, vrednost drugega odvoda gostote proste energije po skalarnem ured-
itvenem parametru pri ravnovesni vrednosti le-tega. Znagcilni cas, ki ima pomen
relaksacijskega casa ureditvenega parametra na krajevni skali £ in znasSa tipi¢no
nekaj deset nanosekund, pa je

T=mE/K = mé&/L, (69)

kjer je v, direktorska rotacijska viskoznost, K pa direktorska elasti¢na konstanta.

Rezultati

Slika 7.2 kaze, da zaradi hidrodinamicnega toka anihilacija poteka hitreje in
asimetricno, pri ¢cemer je defekt s pozitivno mocjo hitrejsi od defekta z negativno
mocjo. Na sliki 7.3 pa vidimo, da tok vpliva predvsem na defekt s pozitivno mocjo,
medtem ko hitrost negativnega ni tako mocno spremenjena. Izkaze se, da tok na de-
fekte v najvecji meri vpliva prek advekcije. Rezultate je moc kvalitativno pojasniti
z uposStevanjem poglavitnih prispevkov k napetostnemu tenzorju, ki zZenejo tok: to
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so elasticni napetostni tenzor in ¢leni z pq in us v viskoznem napetostnem tenzorju.
S simetrijskimi argumenti lahko pokazemo, da je tok, ki ga poganja elasti¢ni tenzor,
simetricen za oba defekta in ju seveda zene skupaj, medtem ko je tok, ki ga poganja
(1 Clen, tocno antisimetricen, njegova smer pa je od pozitivnega defekta k nega-
tivnemu, slika 7.6. K pospesitvi anihilacije torej najbolj prispevajo elasticne sile, k
asimetriji pa viskozni ¢len z ;. Se veé, prispevka se za pozitivni defekt konstruk-
tivno seStejeta, medtem ko se za negativnega odstejeta, s cimer pojasnimo mocnejsi
tok na mestu prvega.

Primerjava slik 7.4 in 7.5 pokaze, da sta advekcijski prispevek k hitrosti defekta
in prispevek zaradi reorientacije ureditvenega parametra enakih velikostnih redov.
Pri majhnih meddefektnih razdaljah (nekaj korelacijskih dolzin) prevlada drugi, pri
vec¢jih pa je advekcija pomembnejsa (slika 9.10).

Clen v viskoznem napetostnem tenzorju z s nima posebne simetrije glede spre-
membe predznaka defektov, razlikuje pa tudi med konfiguracijami, ki se locijo
po homogeni rotaciji direktorskega polja, slika 7.1 (elasti¢ni in p; ¢leni so na
to neobc¢utljivi). V enokonstantnem priblizku brez toka se taksne konfiguracije
obnasajo enako, s tokom pa ne, slika 7.2, za kar je najprej odgovoren ps clen.

Zakljucimo lahko, da je za asimetrijo in pospesitev anihilacije pomembno
razmerje ji1 /04, in sicer z ve¢anjem razmerja hidrodinamicéni u¢inki narascéajo. Ra-
zlika v dinamiki konfiguracij, ki se razlikujejo po homogeni rotaciji direktorja, pa
narasca z vecanjem razmerja fio/ 1. Pasivni viskozni ¢leni z 1, f5 in g v kvalita-
tivnem pogledu niso pomembni. Ce spremenimo elasticno konstanto, se to pozna
samo pri znacilnem casu procesa, tako da z reskaliranjem casovne dimenzije anihi-
lacija poteka enako.

Anihilacija defektov v filmih SmC

Ureditveni parameter SmmC faze

V SmaA fazi je direktor, ki podaja povprecno smer molekul, pravokoten na smektic¢ne
plasti, v SmC fazi pa je nagnjen. Z eksperimentalnega vidika je zelo pripraven sistem
za opazovanje dinamike defektov prostostojeci film SmC, debel le nekaj smekti¢nih
plasti. Projekcija direktorja na smekticno ravnino je dvodimenzionalni vektor,
takoimenovani c-direktor, ki je primeren ureditveni parameter SmC faze. Takoj
je treba opozoriti, da je c-direktor imenu navkljub v resnici vektor, ¢ # —c. Nje-
gova velikost (nagib, amplituda) kondenzira in postane od ni¢ razli¢na ob prehodu iz
SmA v SmC fazo, medtem ko je smer (faza) hidrodinami¢na koli¢ina z Goldstoneovo
ekscitacijo.

Topoloski defekti c-direktorja so disklinacijske linije s celimi ovojnimi Stevili —
vrtinci. Da se izognemo singularnosti v srediscu defekta, moramo dovoliti, da se
spreminja velikost ¢, tako da se sistem lahko zatece k SmA fazi.

Poudariti je potrebno, da sta ureditvena parametra SmC in nematske faze v
osnovi razli¢na in da lahko SmC sistem — s spodnjimi omejitvami — prevedemo na
XY -model, nematika pa ne. Zatorej se zdi, da ima dinamika vrtincev v SmC sistemu
zelo splosno veljavo. Opozoriti moramo Se na to, da so disklinacije s celimi mo¢mi



Razsirjeni povzetek (Abstract in Slovene) XV

v nematiku nestabilne in razpadejo na vsaksebi bezece +1/2 disklinacije. Ce zelimo
studirati dinamiko vrtincev, se moramo nujno zateci k vektorskemu ureditvenemu
parametru.

Dinamiéne enacbe

[zhajamo iz hidrodinamicne teorije Carlssona, Leslieja, Stewarta in Clarka za SmC
tekocekristalno fazo [108,109], ki privzame smekti¢ne plasti s konstantno debelino
ter konstanten povprecni nagib molekul. Za opis defektov je treba dovoliti vsaj
spreminjanje nagiba, torej moramo teorijo nekoliko posplositi. Po drugi strani pa jo
bomo bistveno poenostavili, saj bomo obravnavali sistem z variacijami v samo dveh
dimenzijah in z ravnimi smekticnimi plastmi. Tako iz sistema dinamicnih koli¢in
izlocimo normalo na smekti¢ne ravnine, ki naj bo kar €,. Ker imamo opravka s
prostostojecim tankim filmom, vpeljemo dve neodvisni krajevni spremenljivki = in
Y,z V = €,0, + €,0,, prav tako pa tudi tok omejimo na ravnino, v = v,€, + v,€,.
S tem smo na$ sistem prevedli na XY-model. Izkaze se, da se v tem primeru
teorija [108,109] prevede na Ericksen-Lesliejevo teorijo za nematski tekoci kristal.
Dodatno bomo morali poskrbeti Se za spreminjanje nagiba molekul. Tako smo
prispeli natan¢no do dvodimenzionalne razlicice dinamike vektorskega ureditvenega
parametra. V dveh dimenzijah se, razen odsotnosti zvojne deformacije, ne spremeni
nic¢ drugega.

Povrsinske elasticne clene bomo spustili, prav tako pa tudi vecino prispevkov
iz tabele 5.1, saj zanje ne poznamo elasticnih konstant. Razlikovati zelimo le med
pahlja¢no in upogibno deformacijo, ker sta lahko zaradi spontane polarizacije v SmC
energijsko zelo razliéni [110-112]. Gostoto proste energije tako zapisemo kot

1 1 1 1
f= §Ac2+1064+531(v X c)2—|—§BQ(V-c)2. (70)

Primerjava z elasti¢nimi cleni iz tabele 5.1 pokaze, da, ne menec se za povrsinske
prispevke, velja
By =L, B;=Li+ Ly, (71)

kar pomeni, da smo ¢lene z Ly-Lg spustili konsistentno. Opozoriti zelimo, da sta
elasticni konstanti B; in By neodvisni od nagiba. Euler-Lagrangeova enacba za
funkcional proste energije F = [dV f(c, V) da homogeni in elasti¢ni del general-
izirane sile na vektor c:

hi = —(A + OCZ)Ci + B1 afcz + (32 - Bl) aiﬁjcj. (72)
Elasti¢ni napetostni tenzor dobimo po enachi (2.26) iz (70):

of
05 = —=—=—0jc. 73
1) 8(81019) J ( )
Neokrnjena teorija [109] zajema 20 viskoznih ¢lenov, od katerih pa v primeru
ravnih smekticnih plasti, ravninskega toka in odsotnosti gradientov v smeri nor-
male na plasti ostanejo zgolj Lesliejevi. Ce upostevamo Se spreminjanje dolzine c,
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nam prav enacbe (45) in (46) podajajo toGen opis disipativnih sil. Kljub temu se
bomo omejili samo na standardne Lesliejeve prispevke, katerih viskozne parametre
poznamo, in spustili ¢lene s parametroma 7g in 79. Viskozni napetostni tenzor je
tako

o = oAy + e craPgcic + 53 (Nicj — ¢Nj) +
s (Nicj + ¢iNj) + 5(m — ma) ciPjecr + 5(m + ma) Acrey,  (74)

viskozna generalizirana sila na vektor ¢ pa
—hi = n3s Ni + naAjjej, N = ¢+ Wigey, (75)

kjer je ¢ = 0c/0t + (v - V)c substancialni ¢asovni odvod vektorja ¢ glede na vrtenje
tekocCine, A in W pa sta simetricni oziroma antisimetricni del gradienta hitrosti.
Cetudi sta enacbi (74) in (75) natancno taki, kot v Ericksen-Lesliejevi teoriji, je
pomembna razlika ta, da tukaj viskozni parametri niso odvisni od kondenzirane
koli¢ine — velikosti vektorja ¢, medtem ko Lesliejevi so, en. (48).

Zavedati se moramo, da smo s spreminjanjem velikosti ¢ naravno posplosili
Ericksen-Lesliejevo teorijo za primer neenotskega vektorja, s ¢imer smo tudi av-
tomatsko dolocili pravilne odvisnosti sil od nagiba molekul. Nasprotno za nematike
Sele tenzorska teorija da prave odvisnosti sil od skalarnega ureditvenega parame-
tra in stopnje biaksialnosti. Nasli smo torej sistem, za katerega Ericksen-Lesliejeva
teorija tocno velja.

Gibalna enacba za vektor ¢ je na kratko

h+h' =0 (76)

in skupaj s posploseno Navier-Stokesovo enac¢bo (15) in pogojem nestisljivosti (16)
predstavlja sistem treh parcialnih diferencialnih enacb, ki opisujejo dinamiko mod-
eliranega SmC sistema. Spet vpeljemo znacilno dolzino, ki je tokrat korelacijska
dolzina nagiba molekul,

By
=\ 7
3 (A+3Cc)’ (77)
tipicno nekaj nanometrov, in karakteristicni cas
15€°
= — 78
=2, (78)

kjer je By = (B; + Bs)/2. Cas 7 je relaksacijski ¢as deformacij vektorja ¢ na
dolzinski skali &, ali ekvivalentno, cas prilagajanja velikosti vektorja c, tipi¢no nekaj
deset nanosekund.

Rezultati

Najprej poglejmo primer z izotropno elasti¢nostjo, B; = B,. Anihilacija poteka
kvalitativno enako kot pri nematskih defektih s poloviéno mocjo, slika 8.3. Hidrodi-
namic¢ni tok (slika 8.2) spet pospesi proces in povzroci asimetrijo v gibanju defek-
tov. Tok, ki ga poganjajo elasticne sile, daje glavni prispevek k pospesitvi, tok, ki ga
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poganja vrtenje ureditvenega parametra (natancéneje ¢len z 93 v viskoznem napetost-
nem tenzorju), pa k asimetriji (slika 8.5). Tok je mocan ob pozitivnem defektu
in Sibak ob negativnem, ker se omenjena tokovna prispevka enkrat konstruktivno,
drugic¢ destruktivno sestavita. Hitrost obeh prispevkov glede na hitrost gibanja
defekta samo zaradi reorientacije c-direktorja je sorazmerna z n3/ny. Asimetrijo
med konfiguracijami, ki se razlikujejo za homogeno rotacijo vektorskega polja c,
spet prinasa v glavnem viskozni prispevek Clena z 1y, tako da se ta asimetrija veca z
veCanjem razmerja 1, /1. Ostali (pasivni) viskozni ¢leni kvalitativno niso pomembni.
Reskaliranje elasticnih konstant glede na viskoznosti spet spremeni samo znacilni cas
procesa. V manjsi meri k asimetriji prispeva tudi elasti¢na anizotropija, kot pokaze
slika 8.6.

Razpad defektov s celimi moémi

Brez upostevanja hidrodinamike bomo resili splosen problem stabilnosti neskoncnih,
ravnih disklinacijskih linij s celimi mo¢mi v nematiku, tako da bomo poiskali lastne
reSitve perturbacij okrog teh struktur. V nelinearnem rezimu bomo preucili vplih
hidrodinamike na razpad disklinacije z mocjo 1 ter odbojno gibanje nastalega para
enakih defektov moci +1/2.

Linearizirani problem

Posluzimo se cilindri¢nih koordinat (r, ¢, z) s pripadajo¢imi baznimi vektorji (&,, &,, €),
pri ¢cemer disklinacijska linija lezi na osi z. V enokonstantnem priblizku (59) je prosta
energija invariantna na homogeno rotacijo tenzorja Q. To pomeni, da se lastni sistem
tenzorja vrti kot ¢) = ¢p+ (s —1)¢, ko gremo okrog defekta z mocjo s v izhodiscu, pri
cemer je 1)y prosti parameter defektne strukture in predstavlja kot med direktorjem
pri ¢ = 0 in osjo z (za radialni defekt je 1hy = 0, za tangencialnega pa ¢y = 7/2).
Od kota ¢ je odvisna samo orientacija lastnega sistema, skalarne invariante tenzorja

Q pa ne. Zaradi te posplosene cilindri¢ne simetrije je problem lastnih resitev moc
dovolj enostavno resiti.

Definirajmo $e eno ortonormalno trojico vektorjev (&, &,,€,),

[ costp  siny
_[—sinz/) cosz/)]

tako da pri neperturbirani resitvi (imenujmo jo osnovno stanje) lastni sistem tenzorja
Q povsod sovpada s to trojico. Vpeljemo Se pet ortonormalnih baznih tenzorjev T;,
en. (9.2), in zapisemo

€

€2

€,

~ (79)
€

Q(r,t) = a;(r,t)Ty(r), i=-2,—1,0,1,2. (80)

Osnovno stanje zaradi simetrije vsebuje le komponenti ay in a;, perturbacije pa so
splosne:

. ~f qi(r) +(rt) 5 i=0,1
a,z(r,t) _{ in(r,t) , 7/:_1,2,_2 9 (8].)
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¢o,1 sta komponenti osnovnega stanja, x; pa so komponente perturbacij, z; < qo,1.
Komponenti osnovnega stanja zadoscata enacbam (9.6) in (9.7) in ju dobimo iz
numericne resitve. Iz enacb moramo izlusciti le njun potek v blizini r = 0. Linea-
rizirane enacbe za perturbacije pa tvorijo dva sistema:

Ty = V2$0—f0(7“)$0+f01(7")331; (82)
o= Vi - B0 ) (33)
ry = 1 2 1 EREY 1\r) 1 01\") Zo,
452 4s Ox
. 2 1
r1 = \Y r_1 — ?a?,l + ﬁ—a¢ — ffl(’l“) r_q (84)
in
. 52 Ox_
Ty = V2a:2 - ﬁxz —2s 8¢2 - f2(7”) T2, (85)
. 52 ox
T_o = VZx_g — ﬁx_g + 288—¢2 - f_2(7“) T_2, (86)

kjer je V2 Laplaceov operator v cilindri¢nih koordinatah, f;(r) pa so polinomi druge
stopnje v komponentah ¢y in ¢, en. (9.15). Sicer preprosta odvisnost od koordinate
z nas zaenkrat ne bo zanimala. Poudarimo Se to, da za defekta z mocema s in
—s dobimo identicne enacbe, ¢e ustrezno popravimo bazne tenzorje: s — —s in
T_1,_» — —T_i_2 ne spremeni enacb.

Lastne resitve sistemov (82)-(84) in (85)-(86) iS¢emo z nastavkom

T Ry(r) cos(mo)
x1 p =14 Ri(r)cos(me) pexp(—At), (87)
T_q R_,(r) sin(me)

{ xxi } - { 1];252)6;?@(2) } exp(=At), (88)

kjer je m celo Stevilo. Zaradi preglednosti smo izpustili prosto fazo v kotnem delu.
Preostaneta lastna sistema za radialne funkcije R;(r) z lastno vrednostjo A:

m2
V2Ry + <>\ — fo(r) — F) Ry + for(r) Ry = 0, (89)
m?+4s? 4sm
V2R1 -+ ()\ — f1 (7“) — 7“2 ) R1 - 7 R_1 + f()l(?“) R() = 0, (90)
21452 4
VQR_1+<)\—f_1(T)—m+2 i )R_I—S—;anzo (91)
r r
in
5 m*+ s 2sm
\V4 RQ + A — fg(?“) - 2 R2 - 7 R_Q == 0, (92)

2, 2
2
VQR_Q“F ()\—f_g(r)— m°+s ) sm

R_2 - 7 R2 - 0 (93)

r2

Resimo ju z metodo streljanja [54, p. 582].
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Razpad defekta

Lastne ekscitacije, ki vodijo do razpada defekta, zaradi simetrije vsebujejo le kom-
ponente xy, xy in x_;. Za defekt z mocjo 1 najdemo eno samo narascajoco lastno
reSitev (A < 0), in sicer pri m = 2, kar ustreza razpadu na dva defekta z mocjo 1/2,
sliki 9.2 in 9.3. Vpliv hidrodinamicnega toka na ¢asovno konstanto narascajoce eksc-
itacije je pricakovano majhen (manjsi od 5%) in pospesi narascanje. Izjava ni ¢isto
trdna, saj nismo upostevali vseh viskoznih prispevkov, poleg tega je sam koncept
hidrodinamike pri teh dolzinskih in ¢asovnih skalah (1 nm, 10 ns) precej vprasljiv.

Pri defektih z vecjimi celostevilskimi mo¢mi najdemo ve¢ narascajocih ekscitacij.
Ekscitacije z A < 0 imajo diskreten spekter in so lokalizirane, spekter onih z A > 0
pa je zvezen. Tako lahko naraScajoce resitve prestevamo. Izkaze se, da za vsak
topolosko dovoljen razpad obstaja vsaj ena narascajoca resitev, ce le nobena od moci
nastalih defektov ni prevelika. ReSitve imajo znacilno kotno simetrijo, doloceno z
m. V splosnem defekt z mocjo s razpade na m defektov z moémi +1/2, simetri¢no
razporejenih okrog defekta z mocjo +s F m/2, slika 9.4. Vse razpadne moznosti
defektov z s = 2 in s = 3 so zbrane v tabelah 9.1 in 9.2. Razpad samo na +1/2
defekte je vedno najhitre;jsi.

Pobeg defekta

V neomejenem sredstvu lahko celostevilski defekti pobegnejo v nedeformirano struk-
turo, katere deformacijska energija je nicelna. Poglejmo torej, kako je s stabilnos-
tjo na majhne perturbacije. Tokrat nastopata le komponenti x5 in x_5, pri ¢emer
pricakujemo, da bo za pobeg pomembna komponenta x,, ki ustreza vrtenju direk-
torja iz ravnine. Pri m = 0 se enacbi (92) in (93) res razklopita in ugotovimo, da so
vse ekscitacije x, narascajoce, hkrati pa tudi lokalizirane in z diskretnim spektrom.
Resitve x5 pri m = 0 in vse ostale resitve pri m # 0 so pojemajoce. Izkaze se, da so
narascajoce ekscitacije, ki vodijo do pobega, veliko razseznejSe in s tem pocasnejse
od onih, ki privedejo do razpada. Za defekt z mocjo 1 je razmerje casovnih konstant
okrog 53. Torej bo defekt razpadel, preden mu bo uspelo pobegniti.

Vpliv hidrodinamiénega toka

Oglejmo si e vpliv hidrodinamike na defekta z mocjo £1/2, ki nastaneta z razpadom
+1 defekta. Tokrat asimetrije pri gibanju seveda ni, zato pa ima tok toliko vecji
vpliv na hitrost defektov (slika 9.7), saj oba prispevka, elasti¢ni in viskozni (¢len z
f1), poganjata tok v isti smeri. Vpliv hidrodinamike je vecji pri ve¢jih razmerjih
1/ Ba, kar je lepo vidno tudi na sliki 9.8.

Ker v tem primeru ni tezav z zac¢etnim pogojem (tukaj je to konéno stanje) kot
pri anihilaciji, lahko zvemo ve¢ o tem, kaj se dogaja s hitrostjo defektov pri velikih
meddefektnih razdaljah. Posebej zanimiv je graf 9.10, ki prikazuje, kako se razmerje
med advekcijsko hitrostjo (transport s tokom) in celotno hitrostjo defekta spreminja
z razdaljo med defektoma. Razmerje z razdaljo naraSca in znatno preseze polovico.
Hidrodinamic¢nega toka torej ne gre zanemarjati, Se posebej, ¢e upostevamo dejstvo,
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da s simulacijami zaenkrat dosezemo le majhne meddefektne razdalje — na grafu
9.10 okrog 80¢ ali 0.17 pm.

Zakljucek

V disertaciji sem predstavil nekaj problemov dinamike tekocih kristalov z upostevanjem
hidrodinamike, ki smo jih izbrali z vidika eksperimentalne in teoreticne relevantnosti,
nenazadnje pa seveda tudi z vidika resljivosti.

Relaksacijske probleme smo v 4. poglavju obravnavali z uveljavljeno Ericksen-
Lesliejevo teorijo nematskega direktorja. Sluzili so predvsem kot priprava za kasnejse
tezje podvige. Z izbiro dovolj kompleksne geometrije smo vseeno uspeli opozoriti na
primere, ko hidrodinamicni tok povsem spremeni casovni razvoj sistema.

Dinamicne enacbe za vektorski ureditveni parameter, izpeljane v 5. poglavju,
potrebujemo za opis defektov v sistemu s tem ureditvenim parametrom, v nasem
primeru je bil to film SmC faze. Z izpeljavo smo hkrati pokazali, da je Ericksen-
Lesliejeva teorija natancno teorija za enotski vektorski ureditveni parameter in ni v
nikakrsni zvezi z nematskim ureditvenim tenzorjem:.

Za studij dinamike defektov v nematiku je tako treba zaceti znova in izdelati
tenzorsko teorijo. Le-to je potem moc poenostaviti do direktorske. Obratna pot, kjer
bi Ericksen-Lesliejevo teorijo, v kateri direktor nastopa linearno, razsirili s tem, da bi
dovolili variacijo skalarnega ureditvenega parametra, se ne obnese. V 7. poglavju smo
z okrnjeno tenzorsko teorijo resili hidrodinamicni problem anihilacije para ravnih
nematskih disklinacijskih linij. Pokazali smo, da je za asimetrijo pri gibanju defektov
odgovoren predvsem tok nematske tekocCine.

Kljub eksperimentalni pripravnosti v literaturi nismo zasledili nobenih nu-
mericnih Studij dinamike defektov v SmC filmih. Eden od moznih razlogov je
zapletenost enacb z velimi Stevilom snovnih parametrov, povecini neizmerjenih. Pri
tem bi morali upostevati Se spreminjanje dolzine c-direktorja. V 8. poglavju smo
se vecini tezav izognili, s tem da smo ob dodatnih predpostavkah dinamicno teorijo
SmC faze poenostavili do Ericksen-Lesliejeve teorije, sistem SmC filma pa prevedli
na X'Y-model, katerega dinamiko opisujejo vektorske enacbe iz 5. poglavja. Pokazali
smo, da je vpliv toka na anihilacijo para disklinacij z mocjo +1 kvalitativno enak
kot pri nematiku.

V nematiku je disklinacija z moc¢jo 1 nestabilna in spontano razpade na par
enakih +1/2 disklinacij. Da bi raziskali zacetni stadij razpada, smo v 9. poglavju
Studirali dinamiko perturbacij ravnih nematskih dikslinacijskih linij s celimi moc¢mi.
V priblizku ene elasti¢cne konstante smo uspeli resiti tenzorski fluktuacijski prob-
lem ravnih dikslinacijskih linij splosnih celostevilskih moci. Nasli smo dve vrsti
narascajocih fluktuacij, odgovornih za razpad na disklinacije z manjSimi moc¢mi
oziroma pobeg v tretjo dimenzijo. V obeh primerih je spekter diskreten, fluktuacije
pa lokalizirane. Casovna konstanta prvih je za ve¢ kot red velikosti manjsa, torej
disklinacije z velikimi mocmi razpadejo, Se preden jim uspe pobegniti. Preverili smo
tudi vpliv hidrodinamike na odbojno gibanje dveh enakih +1/2 disklinacij, nastalih
po razpadu, ki je zaradi toka veliko hitrejse.



Razsirjeni povzetek (Abstract in Slovene) xxi

Ce bi si od predstavljenega morali zapomniti le eno stvar, naj bo to pomembnost
hidrodinami¢nega toka pri dinamiki defektov v tekocih kristalih. Pokazali smo, da
je prispevek advekcije (transporta s tokom) h gibanju defekta povsem primerljiv s
prispevkom zaradi reorientacije ureditvenega parametra. V primeru izbire viskoznih
parametrov, ki ustrezajo nematiku MBBA, je pri relevantnih meddefektnih razdaljah
advekcija celo pomembnejsa.



xxil Razsirjeni povzetek



1

Introduction

Liquid crystals are mesophases between the liquid and solid phases, in the sense that
they are more ordered than liquids, yet less ordered than solids. There exist many
liquid-crystalline phases as there are many steps in which the translational and ro-
tational symmetry of the liquid can be reduced to that of the solid. Microscopically,
the required condition for a material to exhibit a liquid-crystalline phase is that it
consists of elongated or disc-like molecules/particles. In thermotropic liquid crystals
the order is controlled by the temperature, whereas in lyotropic liquid crystals it is
controlled by the concentration of the liquid-crystalline material in a solution. Due
to the ordering, liquid crystals exhibit anisotropic properties on the macroscopic
level.

The least ordered among liquid crystals is the nematic [1], which possesses a
long-range orientational order of the molecules, Fig. 1.1. The average orientation of
the molecules is specified by the director n, which is a part of the nematic tensor
order parameter. The name “nematic” was invented by Friedel [2] in the early
twentieth century. It originates from the Greek word for a thread, many of which
can be observed between crossed polarizers due to line defects in the nematic.

A more ordered phase is the smectic phase [3], which, if present, occurs at a lower
temperature than the nematic phase. The name is again due to Friedel and comes
from the Greek word for soap (smectics can form thin films). Besides orientational
order, the smectic possesses also an one-dimensional long-range translational order
in the cast of a density wave. The surfaces of maximum density are called smectic
layers or planes. In the smectic-A (SmA) phase the director n is normal to the
layers, while in the smectic-C (SmC) phase occurring at a yet lower temperature
the director is tilted with respect to the layer normal. One must point out that
the notion of the translational ordering is different than in solid crystals, where the
molecules/atoms are actually bound to crystal sites and can merely oscillate around
them. In smectics, the molecules are not bound to the layers.

Owing to the optical anisotropy, thermotropic liquid crystals are used in applica-
tions related to optics — liquid crystal displays (LCD’s), optical switches, shutters,
polarization rotators, tunable color filters, etc. On the other hand, lyotropic liquid
crystals are widely used in chemical and food industry.

The modelling of liquid crystal systems has come to life with powerful enough
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Figure 1.1 Schematic representation of (b) the nematic and (c) smectic
phases. The average orientation of the molecules is specified by the direc-
tor n, Eq. (3.10). The smectic phase is characterized by an one-dimensional
periodic density modulation.

computers. Static structures of confined liquid crystals have been studied thor-
oughly in the last two decades; the same can be said for the structures of the defect
cores. Dynamic studies have followed next, either as simulations of applied or ap-
plicable set-ups, or arising from the sheer theoretical interest in dynamic processes.
Most frequently, the dynamics of the nematic liquid crystals, including that of the
defects, has been studied in the director description, neglecting the hydrodynamic
flow entirely. While the director description is efficient and perfectly adequate for
the problems not involving any defects, the neglect of the flow is always questionable.
Hence, in a proper treatment of defect dynamics, one must both use the complete
tensor order parameter as well as take into account the hydrodynamic part of the
problem. The use of the tensor order parameter does not bring any significant com-
plications — it only yields richer structures. The drawback is that it introduces a
microscopic length scale, which sets an upper limit to the (possibly macroscopic)
length scales that can be reached in a simulation. On the other hand, the inclusion
of the hydrodynamics makes the treatment difficult, both conceptually and compu-
tationally. The problems are particularly demanding if they involve more than just
one spatial coordinate, because in this case the incompressibility of the fluid must
be ensured by finding the proper pressure distribution.

In the Thesis, we study the dynamics of nematic and SmC liquid crystals. In par-
ticular, we focus on the hydrodynamic phenomena accompanying the time evolution
of the order parameter. More precisely, we are interested in the so-called backflow
effects — the generation of the fluid flow by motion of the order parameter (e.g.,
by the director reorientation) and conversely, the influence of the generated flow to
the motion of the order parameter. In the first part of the Thesis we study director
relaxation processes in liquid crystal cells triggered by external field switching [4,5].
One-dimensional problems of this kind were studied in the 1970s (see the Intro-
duction to Chapter 4 for a more detailed review). Our geometry is more confined
leading to the dependence on two spatial coordinates. This makes the problems
much harder to solve requiring involved computation approaches. We show that
the backflow can be more than just quantitatively important — it can cause the
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switching to occur in two characteristic steps rather than just in one.

The second part is devoted to the dynamics of defects, which has been the
primary challenge to us. For the motivation and a short review of the preceding
research see also the Introduction to Chapter 7. Our ambition has been to solve a full
hydrodynamic annihilation problem of a defect-antidefect pair. For this purpose we
make use of the numerical method developed with the switching problems, properly
modified in order to be able to describe the defects. The dependence on two spatial
coordinates is a minimum for these problems. We study two liquid crystal systems,
the nematic and the SmC free-standing thin film, showing that both the annihilation
[6,7] and repulsion of defects are always subject to strong backflow, which speeds
up the processes remarkably. In the case of the annihilation, it introduces also an
asymmetry in defect motion, i.e., it makes one defect move faster than the other.

The structure of the Thesis is as follows. In Chapter 2 the dynamic theory
coupling the order parameter dynamics and the hydrodynamics is reviewed. The
theory is kept general in this Chapter, not assuming any specific form of the order
parameter. Chapter 3 defines the nematic order parameter in a rigorous manner,
illuminating it from the physical and mathematical viewpoints. In Chapter 4 the
Ericksen-Leslie theory — the dynamic theory of the nematic director — is presented
and applied to the switching phenomena. In Chapter 5 the dynamic theory for a
vector order parameter representing a generalization of the Ericksen-Leslie theory
is derived. The starting point of the derivation is the general theory of Chapter 2.
Chapter 6 provides the basics on disclination defects in liquid crystals, needed to
understand the forthcoming Chapters. In Chapter 7 the tensorial dynamic theory is
presented and applied to the pair-annihilation of disclination lines in nematics. In
Chapter 8 the vectorial theory of Chapter 5 is used to study the pair-annihilation
of vortices in a modelled SmC thin film system belonging to the class of the XY'-
model. Finally, Chapter 9 is devoted to the (in)stability and decay of disclinations
with integer winding numbers in nematics.
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2
Theory

In this section, an outline of the dynamic theory of dissipative complex fluids will
be presented after an introductory discussion on the order parameter and the ther-
modynamic potential. At this stage the theory will be kept general, not depending
on the specific choice of the order parameter. This will appear convenient later on
as diverse systems with different order parameters will be studied.

2.1 Order parameter and thermodynamic poten-
tial

Liquid crystals are ordered systems, the order of which emerges at a symmetry
breaking phase transition. To describe the ordering, a mesoscopic quantity — the
order parameter — is introduced, which must vanish in the high temperature phase
and be nonzero in the ordered phase, depending on the ordering and reflecting its
symmetry properties. As the system may be spatially inhomogeneous in general,
the order parameter is a field quantity. It is defined as an average over the meso-
scopic volume of the sample, which, ideally, is large enough to serve a well-defined
average, and small enough compared with the inhomogeneities to contain essen-
tially a homogeneous portion of the sample. In dynamic studies, one is interested in
nonequilibrium properties of the system. Departures from equilibrium are described
by the order parameter taking a different value than the equilibrium one. Thus, the
nonequilibrium properties of the system are to be related to the dynamics of the
order parameter when out of equilibrium.

Thermodynamic systems to be considered will generally involve thermal, electric,
and magnetic degrees of freedom. The total differential of the internal energy, dif =
dQ@ + dA, where

TdS = dQ + TdS", (2.1)

is thus
dU =T(dS —dS") —pdV +VE-dP + poVH - dM + dA’. (2.2)

In Eq. (2.1) the entropy change has been split into reversible (d@)/T') and irreversible
parts, dS® > 0. The last term in Eq. (2.2) represents the work of any contingent
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forces not accounted for explicitly. At constant temperature 7" and constant electric
and magnetic field strengths E and H, the proper thermodynamic potential — the
free energy F — is obtained by a Legendre transformation:

F = U-TS—-VE-P—y)WH-M, (2.3)
dF = —SdT' —TdS'—pdV — VP -dE — joVM - dH + dA'. (2.4)

Changes in the volume are normally neglected in liquid crystal systems. At constant
T, E, and H, the free energy is decreasing when the system is approaching equilib-
rium, where it reaches its minimum value. It is the order parameter dependence of
the free energy that describes this behavior. Before finding it, let us alert to how
the free energy of nonequilibrium states can be calculated. Being a thermodynamic
variable, it depends on the state of the system and not on the particular path leading
to it. Hence, we are allowed to choose a different — reversible — path running only
through equilibrium states, for which dS* vanishes in Eq. (2.4) enabling us to per-
form the integration. The free energy change is thus equal to the minimal work dA’
required to put the system into the final state at constant temperature and external
fields. Let us consider an isothermal system of dipoles below the phase transition as
an example. Clearly, the equilibrium state is homogeneous with all dipoles pointing
in the same direction on average. Now think of a spatially modulated configuration
— a nonequilibrium state with a higher free energy. To determine the free energy
increase, one can imagine applying some forces that convey the system from the ho-
mogeneous to the modulated state via an equilibrium path. The increase of the free
energy is equal to the work dA’ of these forces. Similarly, if the sample is subject to
an external field H, with a configuration corresponding to equilibrium at a different
field H', the free energy cost of this nonequilibrium state is given by
H,

AF =—pV [ dV M(H)-dH. (2.5)
H

where the integration is performed over the equilibrium path M(H). For the electric
field the situation is analogous.

2.2 Free energy functional

In this Section, the standard Landau phenomenological approach [8] will be taken
to derive the equation of motion for a general order parameter (the application of
the Landau theory to the nematic phase is due to de Gennes [9]). Let the order
parameter q be multicomponent, with the components denoted ¢;. As learned in
the previous Section, the free energy dependence on the order parameter must be
obtained in order to study nonequilibrium dynamics. It will be established in the
form of an expansion around the equilibrium state. The free energy density f(q, Vq)
is introduced as a function of the order parameter field and its spatial derivatives.
A consistent derivation of this concept on the thermodynamic basis is given in [10,
pp. 143-153]. Hence, the free energy is a functional,

F= /de(q, vq). (2.6)
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In the phenomenological spirit, the free energy density functional is constructed
from scalar invariants formed with q, Vq, and any external fields. There are five
classifiable types of contributions.

1. Homogeneous terms. These are the standard Landau terms describing the
phase transition and consist of scalar invariants of q, which are the condensed
quantities exhibiting a soft mode, i.e., they spontaneously become nonzero at
the phase transition. Schematically,

fhem — 1A q’ + 1B q® + 1C’ q. (2.7)
2 3 4

The linear term is absent due to the requirement that F and so does f be a
minimum at equilibrium. The quadratic term models the transition — at the
supercooling temperature 7 it changes sign, A = A'(T'—T"). The third order
term is present only in the case q # —q, otherwise B is zero by symmetry. It
is this term that gives a discontinuous phase transition. The fourth order term
is necessary to provide the existence of a global minimum. The constants A’,
B, and C' are temperature-independent.

2. Elastic terms. They give the free energy density cost of spatial inhomo-
geneities. In the original spirit they relate to the Goldstone degrees of free-
dom [11], but have been generalized to apply to the complete order parameter.
This terms are invariant to inversion and always give positive contributions.
Schematically,

oot = SL(Va)® 23)

where L is a temperature-independent elastic constant. Depending on the
complexity of the order parameter, there can exist many scalar invariants
formed with V and q and thus many elastic terms, each with its own elastic
constant L;. The most general expression, second-order in the derivative, is

1
felost = §Lijkl (954;) (Orar), (2.9)

where the fourth-rank tensor of elastic constants must reflect the symmetry of
the system and thus can be composed only of the identity matrix d;;, the Levi-
Civita antisymmetric matrix €;;, and the order parameter ¢;. Furthermore,
the permutation symmetry

Lijki = Lyij (2.10)

must be obeyed on the basis of the definition (2.9). Hence, the matrix L,z
can be diagonalized in the sense that L;j; vanishes unless ¢ = & and j = [,
i.e., the quadratic form (2.9) can be written as a sum of square terms only.
The elastic coefficients of the diagonalized form must be all positive to yield a
positive definite free energy density. In principle, one can include also higher
order derivatives or terms of higher order in q.
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3. Chiral (Lifshitz) terms. These are pseudoscalars of the form
fChir = Lc Gijkqiajqk. (211)

As they change sign upon inversion they are allowed only in chiral systems —
systems lacking the inversion symmetry.

4. External field terms. They couple the order parameter to external fields (elec-
tric, magnetic, elastic deformation, etc.). In liquid crystals, the average density
of permanent electric or magnetic moments is usually zero, which implies the
coupling to be quadratic in the fields, schematically:

1 1
fem:—550X3E'Q'E—§M0XmH'Q'H- (2.12)

The actual way of contraction depends on the order parameter. The constants
X, and X, are microscopic parameters related to molecular susceptibilities.
Forming scalars with E and Vq results in the so-called flexoelectric terms of
the form Vq-E, [12,13]. In flexoelectric phenomena, the inhomogeneity of the
order parameter produces a polarization, which couples to the external field,
or vice versa.

5. Surface terms. Some of the elastic terms can be written as a divergence, and
therefore converted to a surface integral when performing (2.6). Physically,
they appear on account of the reduced symmetry due to the presence of the
surface, where there is another vector — the surface normal — that can take
part in the scalar contraction.

Another type of surface terms is delivered by the anchoring, which represents
a contribution to the free energy of the sample due to the interaction with
the walls as well as due to the confinement-reduced phase space. Commonly,
the anchoring is modelled by the surface favoring a certain value of the order
parameter qp [14-16], schematically:

foreh = W (a — a)” (213)

If the order parameter is fixed at the surface or if there is no surface, the
surface terms can be ignored when determining the configuration.

To find the equilibrium configuration, the free energy as a functional of the order
parameter has to be minimized:

of of of
sF = [av (2L —v. 2 )5 as. - 5q = 2.14
/V<aq v 8Vq> q+/ ovgq 4= (2.14)

which yields the Euler-Lagrange equations for the bulk and the surface. In the
following, the surface contributions will be omitted for brevity. In case the order
parameter is subject to any constraints, Lagrange multipliers are introduced in a
standard manner, which is equivalent to projecting Eq. (2.14) in the order parameter
space to the subspace normal to the one defined by the constraints. The latter notion
is quite convenient and will be used in the numerics.



Theory 15

2.3 Dynamic equation for the order parameter

Out of equilibrium, the free energy density fails to satisfy (2.14). When the system
is approaching equilibrium, the free energy is decreasing on account of the increasing
entropy:

G of o Of
TS = -F =~ [av 52~V 2.15
<8q avq> 4 (2.15)
where the dot stands for the material time derivative and the surface contributions
have been omitted.
In general irreversible processes, the entropy production is expressed in terms of

fluxes ®; and forces F;:
TS :/dVFi<I>i. (2.16)

In the limit of weak fluxes the forces depend linearly on the fluxes [17]:
F, =Ki;®;, Ki; =Kji, (2.17)

where the matrix of transport coefficients is symmetric according to Onsager’s reci-
procity principle [18], [19, p. 365]. Combining Egs. (2.16) and (2.17), a quadratic
form results for the entropy production:

TS :/dV2D:/dV K, ®:;, (2.18)

where we have defined the dissipation function D [19, p. 368]. The forces can be
obtained, but need not (Eq. (2.17) is just as good), directly from the dissipation
function as 9D
Fi= o5 (2.19)
The symmetric matrix Kj;; can be diagonalized, i.e., such linear combinations of
the fluxes can be found that the dissipation is expressed as a sum of squares of the
fluxes.
According to Eq. (2.15), we can identify ¢ as the flux. The simplest (the lowest
order in q) choice for the coefficient matrix is K;; = ~d;;, where 7 is a material
parameter with the dimension of the viscosity. Now, comparing Eqs. (2.15) and

(2.18) the equation of motion for the order parameter is obtained [20]:

of  of .
. _98 e 2.20
v g4 (2.20)

Frequently, Eq. (2.20) is interpreted as a balance of two generalized forces, h+h" = 0,
where h is the driving force, to be denoted briefly

h=V.-—— —L=__" (2.21)

and h” = —vq is the opposing or “viscous” force.
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2.4 Coupling to the flow

In general, the order parameter dynamics is coupled to the fluid flow, which means
that either can generate the other. The fluid flow is governed by a generalized
Navier-Stokes equation

pv=V .o, (2.22)

where ¢ is the stress tensor to be determined. Besides the pressure, if the free
energy density contains gradient terms, there is an elastic contribution to the stress
tensor. It arises because a change in the deformation of the system du (while keeping
dq = 0) changes the gradient of q,

5 oq 8q 68%

— 2.2
ox; 8@3 Ox;’ (2.23)
and thus the free energy density:
af af ou;

of = 00, = ————— - 0;q 6—~. 2.24
=300 """ "opa "1 (2:24)

Comparing Eq. (2.24) with the constitutive relation

ou;

§f =05 60—~ 2.25
f 0 J axl ) ( )

the elastic contribution to the stress tensor follows:

of

e —__ "2 .)q. 2.26
9ij 9(8,q) ! (2.26)

Let us inspect the equilibrium condition 0 F = 0, allowing also a deformation du
of the system (omitting the surface terms everywhere):

Putting 0;; = of; — pd;j, where p is the pressure, and inserting Eq. (2.26), we get

_sF— O e s aqtan| su + 2L
O-(Sf-/dV{[aza(aiq) 8Jq+a(aiq) 8]82q+8jp] (5uj+6q (5q}- (2.28)

Expressing the first term by the equilibrium condition for the order parameter,
df/dq = 0, the expression in the bracket — the body force — simplifies to

0 )
0—/dV[ /.5, +a(afq) aaq+ajp]5uj /dva (f +p)ou;,  (2.29)

i.e., in equilibrium the pressure is such that f + p is constant.
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Out of equilibrium, in presence of the fluid flow the density of the kinetic energy
%va must be added to the free energy density; now the entropy production is

y d 1
r$ =-2 [av <§pv2 + fla, Vq)> . (2.30)
Inserting Eq. (2.22) and dropping surface terms, we get
i of . of
TS“:/dV a0y — 2L - ;| 2.31
lUJ UJ 5q q 6(alu) v ] ( )

where the first factor of the last term is recognized as of; — pd;;. The entropy
production is

. )
TS = /dV l(aij +pdij — 075)dv; — % : Q] , (2.32)

recall that q is the material time derivative: q = dq/0t + (v - V)q. Thus, there are
two fluxes that raise the entropy in the flow-coupled system — the time derivative
of the order parameter q and the velocity gradient Vv. The force conjugated to
the latter is the difference between the total stress tensor without the pressure
contribution and the elastic stress tensor and will be called the viscous stress tensor
0¥ = o+pl—0c°. Conveniently, the entropy source density ' is expressed by splitting
the tensors into symmetric and antisymmetric parts:

TSl = O'finj + O'quWij + thz; (233)

where 0® and ¢® are the symmetric and antisymmetric viscous stress tensor parts,
while A and W are the symmetric and antisymmetric parts of the velocity gradient:

1 1
Aij = 50 +05v:), Wy = (005 — dji). (2.34)
The forces read
o = SigktAr + MW + Cijeds, (2.35)
o = MuijAk + RijriWe + Dijrdr, (2.36)
—hi =hi = CuiAu + DuiWe + Bijdj, (2.37)

and the entropy source density is
T§ = SijeiAriAi; + M WeiAi; + CijrgeAij +
M AkiWij + RijrtWiWi; + DijrgrWij + (2.38)
CriiAk1G; + DriiWriGi + Bijg;di.
The coefficient matrices obey the following properties regarding the permutation of
indices:
Sijkt = Skiij,  Sijrt = Sy,
Rijkt = Ritij,  Rijw = —Rjikt,
Mijki = Mjiki,  Myjre = —Myju, (2.39)
Cijt = Cjir, Dijr = —Djir,
Bij = Bji.
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Recall that the quadratic (2.38) can be diagonalized. Furthermore, the entropy
production must be invariant under the symmetry operations of the system. As a
consequence, the coefficient matrices can consist only of quantities characterizing
the system — the order parameter q, the identity matrix ¢;;, and the Levi-Civita
antisymmetric matrix €;;,. Each term comes with its own material parameter. One
can verify that the entropy production is also invariant to time reversal. Finally,
there must be no entropy production (2.38) and no forces (2.35)-(2.37) for a homo-
geneous rotation of the sample, which imposes essential relations on the material
parameters, reducing the number of independent constants.

To summarize, in a brief form the dynamic equations for the order parameter
coupled to the incompressible fluid flow read:

of .
~3q +h" = 0, (2.40)
pv = =Vp+V.(d"+09), (2.41)
Vv = 0, (2.42)

where the forces o¥ and h” are given by Eqs. (2.35)-(2.37), o€ is given by Eq. (2.26),
and the functional derivative in (2.40) has been defined in Eq. (2.21). A detailed
derivation of the equations for a vectorial order parameter coupled to the hydrody-
namic flow is carried out in Chapter 5.



3

Nematic order parameter

In this Chapter we will define the order parameter of the nematic liquid crystal.
Nematic substances consist of molecules with an elongated or a disc-like shape, which
are effectively cylindrical objects due to their rotation. Let us assign a unit vector
d = (sin @ cos ¢',sin 0’ sin ¢', cos ') to the long axis of the liquid crystal molecule. In
case of disc-like molecules d is the normal of the disc. The distribution of molecular
orientations, i.e., the distribution of vectors d, defined in the mesoscopic volume, is
naturally specified by an angular probability distribution function

g(e) = g(0,9), (3.1)

where e is a unit vector e = (z,y, z) = (sin 6 cos ¢, sin f sin ¢, cos #). In nematics, we
find empirically that g(e) = g(—e), or

9(07¢):g(ﬂ_97¢+ﬂ)7 (32)

i.e., there is no polar ordering. The distribution function ¢ carries to much in-
formation on the ordering — it cannot be determined experimentally, neither is it
convenient for analytical work. Therefore, the lowest nontrivial moment of g is cho-
sen to serve as the order parameter. The probability density g can be expanded in
spherical harmonics [21, p. 338]:

9(0,0) = 3 90(0,6) = ¥ gunV/5(0.0), g = [d2YE(8,6)9(0,0),  (33)
l I,m

where real combinations of the spheric functions Y} ,, have been used:

Yim ; m=20
V=4 0n+ (D™ imm) 5 m >0 (3.4)
ﬁ(Yl,m —(=D™Yi,-m) 5 m <0

Due to (3.2) g1, is zero for [ odd. Thus, the lowest nontrivial moment is the
quadrupole, [ = 2, and the set of 5 quantities go,, represents the nematic order
parameter. In the isotropic phase, where ¢ = ¢(0 = 1/4m, the order parameter
is zero as required. In the ordered phase, the quadrupole moment is nonzero, and
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g corresponds to the deviation (up to the quadrupole moment) of the probability
distribution ¢g from the isotropic distribution. It is customary to use the Cartesian
notation

2

9(2) = Z gQ,ng,zm =

m=—2
322 —1
%92,0T+\/ Tor [921221‘+92 _122y + gop (2 —y )+92,—22$y] =
)
EQU €i€j. (35)

Recalling that e = 22 + y? + 22 = 1, we have defined the nematic tensor order
parameter Q. Being symmetric by definition, the quadratic form can be diagonalized
for briefness:

5
g% = = (Qus 2+ Quaa® + Quv?) (3.6)
where
3(cos? §') —
Q.. = 4—7r 92,0 = %7 (3.7)
13{cos? @'
Qe = /2E G220 — 53/ Z o0 = = (sin® 0 cos 2¢") — %, (3.8)
p 1 3(cos® ")
Qy = — %gg,g 1/ 920—— (sin 9'c052¢>—§#. (3.9)
Note that Q is traceless. Briefly,
A5 P
Q= —3(S+P) : (3.10)
S
which can be expressed also in a general coordinate system as
1 1
Q; = ES(Bninj — 0i5) + EP(e}e —ejel), (3.11)
where S0 0 — 1
g_ % (3.12)
is the scalar order parameter, also called the degree of order, and
3
pP= §<sin2 6 cos 2¢") (3.13)

is the biaxiality. In Eq. (3.11) we have introduced an orthonormal triad (n,e', e?)
specifying the Q-tensor eigensystem: n is the director, and e' is the secondary direc-
tor. Usually, the director n represents the eigenvector with the largest in absolute
eigenvalue, but not necessarily (as in Chapter 9). In a general coordinate system, it
follows from Eq. (3.5) that

in‘j €€, sz 1( <d i > — 0 )7 (3-14)

@) (a) —
g% (e) y
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(a) uniaxial, P =0 (b) biaxial, P #0

Figure 3.1 The quadrupole contribution to the probability distribution func-
tion, ¢?, in the case of (a) uniaxial and (b) biaxial ordering. In Cartesian
coordinates, ¢(?) is given by the quadratic form ¢(*(e) = %Qij e;ej, where e
is a unit vector.

and
g?(e) = — (3((d-e)*) —1). (3.15)
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Director dynamics in nematics

The aim of this Chapter presenting the early stages of our research is to provide
the machinery for the hydrodynamic description of liquid crystal dynamics and to
get acquainted with the basic principles of flow generation and its influence on
the nematic director. Moreover, we present numeric solutions to two-dimensional
and quasi-three-dimensional switching processes, which are scarce in literature. We
demonstrate that in confined systems the backflow can lead to drastic effects far
from mere perturbations, for which it is usually recognized.

4.1 Introduction

Problems involving hydrodynamic motion of the nematic liquid crystal due to the
director reorientation have been studied mainly in terms of the Ericksen-Leslie con-
tinuum theory of the nematic liquid crystal [22-24]. For one-dimensional geometry,
Clark and Leslie [25] have given a thorough approximative analysis of nematic re-
laxation upon removal of electric or magnetic field; a complete numerical treatment
of the problem has been contributed by van Doorn [26]. One-dimensional back-
flow dynamics in the twist cell has been studied by Berreman [27,28]. Recently, an
optical observation of the backflow in the twist cell was reported [29]. Pieranski,
Brochard and Guyon [30,31] have studied, both theoretically and experimentally,
one-dimensional dynamic behavior in magnetic field for three geometries (twisted,
planar to homeotropic, homeotropic to planar), limited to small deformations (ap-
plying near-critical fields). They give the distortion wave vector and effective vis-
cosity dependence on the magnetic field strength. The instability against periodic
distortion in the case of the Freedericksz transition (first observed by Carr [32]) has
been studied by Guyon et al. [33] for the two-dimensional case, and by Hurd et al.
[34] for three dimensions. The pattern formation in a rotating magnetic field has
been observed experimentally and accounted for by a numerical study based on the
Ericksen-Leslie equations [35,36]. An experiment measuring the rotational viscosity
is presented by Bajc et al. [37], together with a full hydrodynamic numerical treat-
ment in cylindrical geometry (one-dimension), yielding an exact expression for the
effective viscosity, depending on the director field configuration. Lately, the inter-
est in hydrodynamic description of pattern formation in fluids has been increasing,
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amongst others involving also nematic and nematic polymer fluids [38—44].

In this Chapter a full two-dimensional hydrodynamic study of a nematic sam-
ple in magnetic field is presented, producing nontrivial backflow fields even in the
simplest geometries like a square or a rectangle. First a short review of nemato-
dynamic equations is given, followed by an introduction of characteristic scales of
the problem. In the second part the flow fields are tentatively interpreted by strict
analytic as well as less strict arguments. Also, the influence of the backflow on the
director reorientation is discussed. The idea pursued throughout the Chapter is to
give enough qualitative physical understanding of the backflow generation and its
effect on the director field to be able to explain or even foresee the global time path
of relaxation processes [45]. The relaxation with the backflow is then compared to
the simplified case where backflow is not taken into account. The issues in ques-
tion here are the change in the switching time of the cell caused by the backflow,
and the local departure of director orientation from the orientation in the simple
case, pursued along the whole path of relaxation. The drastic backflow effect as the
consequence of a special magnetic field switching is demonstrated in the 2D and
quasi-3D examples. The 3D geometry is closer to a possible experiment.

4.2 Ericksen-Leslie theory

Here we are going to present the Ericksen-Leslie theory [22,23], which is the dynamic
theory for the nematic director coupled to hydrodynamic flow. It can be derived
following the theoretical basis set in Chapter 2. At this point, we will skip the
derivation and invite the reader to visit Chapter 5, where the Ericksen-Leslie theory
in a generalized form is derived thoroughly.

Three basic equations are involved in the problem of nematodynamics; these are
the equation of motion of the director field (2.40), the generalized Navier-Stokes
equation (2.41), and the equation of continuity. The latter is simply reduced to the
equation of incompressibility (2.42), whereas the former two are relatively extensive
due to the (uniaxial) anisotropy of the nematic fluid as well as to the coupling
between the director reorientation and flow.

The time evolution equation for the director field is a balance between general-
ized elastic, electric, magnetic, and viscous forces. In principle, both electric and
magnetic fields can be used to manipulate the nematic director. However, the use
of the electric field, though more efficient due to larger susceptibility anisotropies,
brings about some difficulties to deal with, i.e., the dielectric problem has to be
solved exactly, and the convection of ions should be taken into account. As a result
of this, the theoretical study to be presented in this Chapter uses a magnetic field.

To obtain the elastic and magnetic part, the Frank elastic free energy density
[46-48], [49, pp. 102, 119] is used:

f= %K11(V-n)2+%[(22 n-(V x n)]2+%[(33 n x (V x n)]Q_%XaNU(n'H)27 (4.1)

where n is a unit vector representing the director, Ky, K9y, and K33 are the splay,
twist, and bend elastic constants, respectively, H is the magnetic field, and y, is the
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magnetic susceptibility anisotropy, i.e., the difference between the susceptibilities
parallel and perpendicular to the director. The case of x, > 0 will be considered
here, as this is the situation present in most nematic substances. In the one elastic
constant approximation, the elastic part of Eq. (4.1) reduces to

1
fore = iK(vn)? (4.2)
The surface terms have been dropped in Eqgs. (4.1) and (4.2) on account of fixed

boundary conditions, corresponding to infinitely strong anchoring.
The Euler-Lagrange equations for the free energy functional

fE:/dV(fULVn)—A@ﬁﬁ) (4.3)

with the constraint n? = 1 and f given by (4.1), give the generalized elastic and

magnetic force:
em_ Of o Of
hi™ = an, +0; (8(8jni)> : (4.4)

The equilibrium condition reads
h*" = —\(r)n, (4.5)

where A is the Lagrange multiplier, i.e., the force h®” must be parallel to n every-
where. One gets rid of the redundant director degree of freedom and the multiplier
by projecting Eq. (4.5) onto the plane perpendicular to the director.

The generalized viscous force is obtained from the dissipation function, Eq. (2.19)
containing scalar invariants formed with n, n, and Vv, being bilinear in the latter
two [50, p. 142]:

—h" =y N 4+ 1A - n, (4.6)

where the rotational viscosity v; and 7, are expressed in terms of the Leslie viscosity
coefficients «; [49, p. 206], 71 = a3 — ag, 72 = a3 + ap. With n being the material
time derivative of the director,

N:ﬁ—ngﬂxn:ﬁ+Wq1 (4.7)

is the vector of the relative director rotation with respect to the rotation of the fluid.
The symmetric and antisymmetric parts of the velocity gradient, A;; and W;;, have
been defined in Eq. (2.34). The viscous force h” also needs to be projected to the
plane perpendicular to the director. The equation of motion of the director reads
briefly

{wm+m} 0, (4.8)
1ln
or in more detail

on

%Ez{hem—72A-n—71[W-n+(v-V)n]} . (4.9)

1n
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The generalized Navier-Stokes equation,

p laa—z + (v~ V)V] =-Vp+V-(0"+ 0%, (4.10)

where p is the density, p is the pressure, and the divergence of a tensor defined as
(V-0); = 0,0,;, involves two stress tensor contributions. The viscous part is obtained
from the same dissipation function as the generalized force (4.6) [50, p. 142]:

0’ = amn®nmn-A-n)+an®N+uNen+
@A+ a;n® (A-n)+ag(A-n)@n, (4.11)

with the Leslie coefficients obeying the Parodi relation [51]
Qg — Q5 = (3 + Qg (412)

due to the Onsager’s reciprocity principle. For future purposes, let us split the
viscous stress tensor into the symmetric and antisymmetric parts:

0 = agn®n(n-A-n)+ oA+

%72(N®n+n®N)+%(a5+a6)[(A'n)®n+n®(A'n)]=

1 1
ot = 571(N®n—n®N)+§fyg (A‘n)®n—n® (A-n). (4.13)
The elastic part of the stress tensor (Eq. (2.26)) is a consequence of deformations
changing the director field gradients, Eq. (2.26), [49, p. 152]:
of
e —__9 5p,. 4.14
0ij - 31k ( )
The pressure field in Eq. (4.10) is set by the incompressibility condition (2.42), i.e.,
it has to be determined in such a way that Eq. (2.42) is satisfied.

4.3 Characteristic scales

The problems to be addressed in this Chapter involve two length scales: the con-
tainer size or the thickness of the capillary L and the magnetic coherence length [49,

p. 123]
1 | Kn
¢ = — . 4.15
H /u0|Xa| ( )

In order that field effects be prominent, &, must be small compared with L. There-
fore, &, is the length relevant for the dynamics of the system.

The director equation of motion (4.9) and the generalized Navier-Stokes equation
(4.10) introduce a characteristic time scale each. Typical relaxation time of the
director field is

&
.

— N 4.16
K (4.16)
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if &, is the characteristic length of the director variation. Since the dynamics is
governed by the director field relaxation, 7 is the characteristic time of the switching
process.

The other time scale is given by a typical transition time during which the
velocity field is equilibrated to its stationary value due to viscous forces,

_ oL

. (4.17)

To

The isotropic viscosity coefficient ay (see Eq. (4.11)) is of the same order of magni-
tude as the rotational viscosity ~;, so it is convenient to use the latter in the estimate
(4.18). Typically, the ratio of the two time scales — the unsteadiness parameter —
is of the order of
L? pK11
S
This means that unless the container size L is much larger than the coherence length,
the velocity field is adapted quickly to a given director field and its time derivative,
so that during the reorientation process it behaves quasi-stationary — the partial
time derivative in (4.10) can be dropped.

The characteristic magnitude of the velocity can be estimated by equating the
viscous force (the ay term in (4.11)) and the viscous force exerted by the director
rotation, which drives the flow (the oy and ags terms in (4.11)), yielding

Ky
a Y1ém
As indicated in (4.19), the same estimate can be obtained in a simpler fashion,
although it might not seem as lucid. Again it was assumed that a4y ~ @y ~ 7.
The characteristic length of the velocity variation is estimated to L. To be more

precise, both length scales, L and &,,, are intertwined here, but L is used in order
to overestimate the Reynolds number:

. £ pK11
En
Unless the magnetic coherence length is tiny in comparison with L, the Reynolds
number is much smaller than unity, and the nonlinear advective derivative term in
(4.10) can be dropped. In addition, if the ratio (4.18) is small as well, also the
partial time derivative in (4.10) can be omitted, as mentioned above. The reader
should note that usually the Reynolds number is more than an order of magnitude

smaller than the unsteadiness parameter. The final equation to solve is thus

0=—-Vp+V-(c"+0°. (4.21)

T0/T = ~ L?)€-107°, (4.18)

= &m/ T (4.19)

Vo

Re

~ L/&, -107°. (4.20)

Material parameters such as the viscosity and the elastic coefficients will corre-
spond to those for MBBA, listed in [49, pp. 105, 231]. It is convenient to give some
typical magnitudes. A magnetic field with strength 0.1 T gives a coherence length of
about 10 pum and the characteristic time (4.16) of around 2 s. Extrapolation lengths
[49, p. 113] as small as 100 nm or even smaller are readily observed, so that the
strong anchoring limit is realistic.
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4.3.1 Comment on heat diffusion

Throughout the Thesis we assume that the temperature is constant. One should
not proceed further without having justified this limit. In particular, the dynamics
of defects studied in Chapters 7 and 8 might be affected by temperature gradients,
since the motion of defect cores — regions of high free energy density — is generally
accompanied by a transport of heat. The heat diffusion equation

orT 1
— ——V-(A-VT) = 4.22
B V(YT =0 (422)

introduces yet another time scale,

l2
To = pc;’ , (4.23)

where [ is the characteristic length of the temperature variation, c, is the specific heat
capacity, and A is a typical component of the heat conductivity tensor. Comparing
7o and the characteristic dynamic time of the order parameter (4.16), both at the
same length [, one gets

TQ/T = S (4.24)

which is of the order of 5-10~* for typical material parameters of liquid crystals.
The ratio (4.24) is the same also if defects are present (Eq. (7.19)). This means that
the heat diffusion is fast compared to the order parameter diffusion, so that there
cannot exist any substantial inhomogeneities in temperature induced by the order
parameter dynamics. The constant temperature limit is realistic in fact.

4.4 Description of the problem and numerical im-
plementation

The relaxation of a confined nematic sample upon switching a magnetic field will
be studied. A container of square or rectangular cross section (the zy plane) is
adopted, extending to infinity in the z direction. Infinitely strong anchoring is
assumed, which fixes the director field at the boundaries. In practice, this means
that the extrapolation length [49, p. 113], £, must be much smaller compared both
with the sample size and the magnetic coherence length, i.e., £ < L and £ < &,,.
Standard no-slip boundary conditions are prescribed for the flow, setting the velocity
to zero at the boundaries.

The partial differential equations (4.9) and (4.10) are cast in dimensionless form
using characteristic scales introduced above. They are solved using finite difference
discretisation. The outline of the method is as follows. At a given director field
and its time derivative, the generalized Navier-Stokes equation (4.10) without the
advective derivative term is explicitly iterated in time. After that, knowing the
velocity field, the director equation (4.9) is explicitly iterated in time to yield the
new director field. Then the velocity is updated again, and so forth. According to
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the big difference in characteristic time scales (4.17) and (4.16), one makes many
iterations of Eq. (4.10) before updating the director field. For a generic set of
material parameters the unsteadiness parameter (4.18) is small enough, so one could
drop the time derivative term in (4.10) in the first place. However, with the explicit
iterative numerical scheme described above, this has little sense. On the other hand,
Eq. (4.10) without the nonlinear term and Eq. (2.42) together result in a large set
of linear equations for the discretized velocity and pressure variables, which can
be solved directly for the stationary velocity field. In practice it turned out that
the iterative method is far more efficient. The velocity and pressure variables are
discretized on a staggered grid [52, p. 331] in order to prevent the occurrence of
the well-known oscillatory pressure solution [53]. The incompressibility condition is
satisfied in a standard way by solving a Poisson equation for pressure corrections at
every velocity iteration step [52, p. 340] using the SOR method [54, p. 655]. At the
boundaries, normal pressure correction derivatives are specified in order to meet the
incompressibility condition there. The calculations were typically done on a square
mesh of size 60x60.

4.5 2D problem

The first problem considered is fully two-dimensional (Fig. 4.1): the quantities in-
volved depend on x and y, while the director and the flow velocity are lying in the xy
plane. The orienting magnetic field points along the y axis. To avoid any frustration,
the alignment dictated by the strong anchoring is parallel for horizontal sides, while
for vertical ones it is homeotropic. Where convenient, the angle parametrization of
the director and the angle-conjugated generalized force (the torque) h will used:

n = (cosgp,singy,0), (4.25)
h = (0,0,h) x n. (4.26)

Throughout the Section 4.5, the following dimensionless quantities for length, time,
velocity, and magnetic field will be used:

r<r/L, t<«t/t,, v<wvr,/L, H <« H/H,, (4.27)
where
,YILZ L2
= = _ 4.28
TR e (425)

is the characteristic relaxation time for the director field deformation on the scale

of the container size L and
1 K
Hy=——+ (4.29)
L :U’0|Xa|

is the magnetic field with the coherence length of L.
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Figure 4.1 The calculations are performed in a square or rectangular geome-

try. Two types of relaxation are studied: (a) starting with a uniform director

field, the magnetic field is switched on, or (b) the magnetic field is switched

off to disorient a field-aligned sample. The director is fixed at the boundaries

as shown.
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4.5.1 Mechanisms governing the problem
Backflow generation

As indicated by calculations, the elastic stress tensor contribution (4.14) alters the
velocity field by up to 10%. Thus, while it is of some importance when studying
the flow fields, in first approximation it can be neglected when the influence of the
backflow on the director field is in question, this influence itself also being small.
Our interpretation of the velocity fields will be based solely on the viscous cou-
pling given by Eq. (4.11). What is more, it turns out that the anisotropy of the
fluid viscosity, described by the «;, as, and ag terms in (4.11) has no qualitative
importance. The driving force of all the interesting flow phenomena observed is the
anisotropy of the coupling to the director rotation given by the ay and a3 terms in
(4.11). Since ay/ag = 70, only the ay term needs to be taken into account when
trying to interpret the results. There are two contributions to the force exerted on
the fluid described by this term, one depending on the gradient of director rotation,
and the other on the director field gradient. Putting ¢ = w and ¢ = 0 one obtains

9
£, = ay (0 : a—j) (4.30)

for the rotation gradient dependent force. Generally, this force is always perpen-
dicular to the director, while its magnitude depends on the w derivative along the
director, n - Vw. The second contribution is best seen if we put Vi = (¢, , 0):

f, = —avwp, (cos2p, sin2yp) . (4.31)

Thus, the magnitude of this force depends only on w|V|, whereas its direction is
such that it makes twice the angle with V¢ as the director. The reader should bear
in mind that «as is negative and that the direction of the force just described depends
on the sign of w.

Influence of backflow on the director rotation

Let us discuss the torque on the director exerted by the flow. A flow field corre-
sponding to a pure rotation (W # 0, A = 0) imposes the same rotation on the
director, as Eq. (4.9) suggests putting h®" to zero. Conversely, pure extensional
flow (W =0, A # 0) aligns the director along the axis of extension. For shear flow,
which is a sum of the flows just mentioned, Eq. (4.9) gives

1
p=—=n <ﬁ cos2p + 1) : (4.32)
2°\m

where ¢ measures the angle relative to the velocity direction and 7 is the shear rate
(see Fig. 4.2 for the sign convention). Equation (4.32) has a stationary solution only
if |v2/m| > 1, i.e., if a3 < 0, which is the condition for the flow-aligning nematic, as
opposed to the flow-tumbling nematic, where a3 > 0 (see the end of Section 4.5.2 for
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Figure 4.2 The director angle ¢ in Eq. (4.32), is measured relative to the
shear as shown.

a short discussion on the backflow effect in flow-tumbling nematics). The stationary
solution of (4.32) gives
|po] <1, (4.33)

since v2/71 & —1. The director is thus rotated towards the velocity direction. The
solution with ¢y > 0 is stable, whereas that with ¢y < 0 is not. For MBBA the
alignment angle is approximately ¢y ~ 7°. Note that when out of equilibrium, the
director is rotated anticlockwise only for |¢| < |¢g|, whereas for any other orientation
the stationary state is approached by a clockwise rotation (for the situation as
depicted in Fig. 4.2).

4.5.2 Results and interpretation
Field-off relaxation

In this example the sample is initially aligned with a magnetic field. The field is then
switched off instantaneously, and the system relaxes back to the undeformed config-
uration. In the square cell, the early stages of this relaxation show an anticlockwise
central vortex, accompanied by two clockwise eddies at the bottom and top, whereas
there are no eddies near the vertical boundaries (Fig. 4.3(a)). Equations (4.30) and
(4.31) can explain this asymmetry, for both force contributions depend on the rel-
ative orientation of the director with respect to Vw and Ve, respectively, which
is different for the horizontal as it is for the vertical boundaries. The size of the
eddies is of the order of the magnetic coherence length. Their centers are located
near the region in which director field curvature is a maximum (¢ = 7/4). In the
course of time, the maximum curvature region moves to the middle of the cell, and
so do the clockwise eddies (Fig. 4.3(b)). Finally, the central anticlockwise current
is completely eliminated. Figure 4.4 shows the total deformation of the fluid due to
the backflow after the relaxation process has stopped.

Let us now take a qualitative look at the forces near the boundaries, considering
regions in the middle of the edges where lateral derivatives can be neglected to a
first approximation. Only the components parallel to the boundaries are considered,
since this must be the direction of the velocity there. One has to realize that the
initial relaxation rate |w| has a maximum at ¢ = 7/4, since the magnetic force is
the strongest there, implying a maximum elastic force to be balanced with. Note
that w is negative. For outermost parts of the sample, where ¢ < 7/4, |w| increases
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Figure 4.3 Field off in the square cell: subsequent snapshots of the velocity
three vortices are present

fields (left column), director fields and director angular velocity fields (rep-
in the opposite sense; the line of the stationary director field is indicated by

joined to form a single vortex, the sense of rotation now being opposite to

that at the beginning. The interior starts

the dashed contour. (b) Clockwise vortices are becoming dominant,
rate (compare with the rotation in (a)

resented by levels of gray) show a typical two-step relaxation.

reverse director deformation at the center.

beginning,
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Figure 4.4 The total deformation of the fluid after the field-off relaxation in
the square cell. In the field-on case, the deformation is similar (though not
the same) but opposite.

on moving away from the boundary. Hence, Eq. (4.30) gives forces trying to start a
clockwise current round the cell. However, the forces described by Eq. (4.31) oppose
the first ones for the vertical boundaries, whereas those for the horizontal boundaries
add constructively. This is one of the reasons for the missing eddies near the vertical
boundaries. Moving further away from the boundaries, ¢ becomes essentially /2
and there are no forces parallel to the boundaries given by Eq. (4.31). On the other
hand, Eq. (4.30) does yield forces for the horizontal boundaries (and none for the
vertical ones), starting an anticlockwise current.

Of course, the situation is too complicated for the square cell to be interpreted
completely due to the fact that the corners play an important role, the problem
there being fully two-dimensional. Therefore we aim to make a more exact analysis
for one-dimensional cases, obtained by extending either the horizontal or the vertical
boundaries to infinity. In this way we arrive at the systems studied by Pieranski,
Brochard and Guyon [30,31] in the limit of weak deformations. Figure 4.5 (and
Figure 4.10 in next section) representing a cell with a 5:1 side ratio, should serve as
an illustration for the one-dimensional cases.

Calculations for L, > L, clearly give three vortices (Fig. 4.5(a)), whereas those
for L, > L, result in a single vortex only (L, and L, are dimensions of the cell in =
and y direction, respectively). Being able to explain this on the basis of Eqs. (4.30)
and (4.31) would yield evidence for the nontrivial flow fields being a consequence of
the o term in (4.11). In the one elastic constant approximation (4.2),

1
h””::V2¢%—§H2ﬁn2¢, (4.34)

the initial director configuration for large enough fields is

T
= 2arctan (e") — = 4.35

© arctan (e ) 5 (4.35)

where H is the magnetic field used to align the sample (always lying in the vertical
direction), and r is the distance from the boundary. This solution is obtained
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Figure 4.5 Field off in a horizontal cell with L,/L, = 5 (note the scale):

two-step relaxation. See Fig. 4.3 for the key to the figures. (a) In the beginning

three vortices are formed (Fig. 4.7), the director field undergoes a reverse
rotation in the middle (note the zero rotation contour, shown dashed). (b) At
the moment of flow reversal, note the deformation of the central director field.

(c) A clockwise current results, while the director in the center is rotating in

the right sense at maximum rate (compare with the rotation in (a)).
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Figure 4.6 Total initial forces (sum of (4.30), (4.31)) for the horizontal and
vertical (dashed) cell as functions of the distance from the boundary (r = 0.5
in the center).

by using the boundary condition ¢’ = 0 for ¢ = 7/2, where the prime denotes
differentiation with respect to r. The correct condition requires ¢’ = 0 for r = 1/2

(center of the cell), which, however, introduces elliptic integrals. Thus, solution
(4.35) is valid if the field is large enough such that for r = 1/2 the director is well
aligned (¢ ~ 7/2).

Putting w = ¢" and w' = ¢, with ¢ given by the solution (4.35), one obtains
the forces (4.30) and (4.31). The components parallel to the boundary are shown in
Fig. 4.6. They behave as expected from the preceding discussion.

Now let us calculate approximate initial velocity profiles for both the horizontal

and the vertical one-dimensional cell. In one dimension the pressure term and the

elastic stress term in Eq. (4.21) can be dropped since they can only yield transversal
forces. The remaining equation

V.-o"=0 (4.36)

is solved easily when retaining only the ay and a4 terms in o (Eq. (4.11)). Together

with Eq. (4.35) the solution reads

_ 02 ] =3/2

v(r) = o H 12

1
}Cosgoi 60053<p+01n (cos’1<p+tan<p) + D
with the constants

|

C = !

3/2 1 4/3
+ — 3po —
In (cos— g + tan ¢p) H 1/2 }COSSOO 6Cos %0 { H )

2/3
o-{1}
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Figure 4.7 Initial velocity profile (Eq. (4.36)) for the horizontal and the ver-
tical (dashed) cell (H = 20). In the horizontal case, two opposing currents are
predicted. The width of the counter-current near the boundary is of the order
of the magnetic coherence length. On the other hand, the vertical cell gives
a single current only, although the net force changes sign near the boundary
(Fig. 4.6). Both analytical predictions based on the simplified viscous stress
tensor are consistent with numerical results.

where y represents the director angle in the middle of the cell. The upper expres-
sions stand for the horizontal cell, the lower ones for the vertical cell. The solutions
are plotted in Fig. 4.7, where the difference between the horizontal and vertical cases
is clearly seen. It is worth pointing out again that, qualitatively, it is also possible to
use these results for the regions close to the middle of the boundaries of the square
cell, where the situation resembles the one-dimensional case (compare Figs. 4.3(a)
and 4.5(a)).

So far, only the generation of the backflow has been studied. We now consider
the inverse phenomenon of how the backflow influences the director rotation. In both
one-dimensional cases we are confronted with pure shear flow, the effects of which are
described by Eq. (4.32). The situation is now completely different for the horizontal
and vertical cases. In the horizontal case, the shearing backflow slows down the
director rotation in the middle of the cell (Fig. 4.5(a)), and is moreover actually
able to reverse the direction of rotation due to weak elastic forces there (Figs. 4.5(b)
and 4.8). This phenomenon is known as the kickback effect [55, p. 167]. Near the
boundaries, however, the shear is opposite, thus accelerating the relaxation. As a
result, the gradient of w becomes larger, which induces an even stronger backflow (a
positive feedback effect). One has to keep in mind that the backflow effect is only
a perturbation to the relaxation which, in this case, is governed by elastic forces.
Thus, when talking about the positive feedback, one must remember that this is
only a small contribution to the director and flow fields, whereas global behavior
is still set by the elasticity. Eventually, elastic forces become dominant even in the
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middle of the cell (Fig. 4.8), reversing the rotation of the inner part and accelerating
it, while slowing the rotation of the outer part. We are then left with the center
reorienting faster than the edges (Figs. 4.5(c) and 4.8), a situation opposite to the
initial one. As a result, the backflow also changes direction, transforming from the
anticlockwise central current with two opposite eddies at the top and bottom to a
single clockwise current. The latter is then stable; accelerating the relaxation in
the middle of the cell it grows stronger initially (a positive feedback again), then
slowly fades as the elastic forces vanish. This type of process where, in a region of
the sample, the director is rotated backwards for some period of time and then the
flow direction is suddenly reversed, will be referred to as a two-step relaxation. One
can notice that in the square cell the relaxation path is quite similar. The kickback
effect is observed (Fig. 4.3(a), (b)), as well as the reversal of the flow (Fig. 4.3(c)).

For the vertical case, however, in the middle of the cell the director is not rotated
backwards by the backflow, but merely held in the field-aligned orientation. By
contrast, near the boundaries the reorientation is accelerated by the backflow as for
the horizontal case. As a result, the relaxation proceeds from the edges and then
gradually bites to the center, much like the case of a simple relaxation without taking
into account the backflow (Fig. 4.8, lower diagram). This conserves the direction
of the current. One can call a process like this a one-step relaxation. Eventually,
we end up with a reverse current in this case also, but this happens much later and
when the sample has almost relaxed. Besides, the reversal of the current proceeds
very slowly and steadily from the outside; it does not happen suddenly in the whole
cell as in the horizontal case.

Field-on relaxation

Now we consider the case in which the initial director field is undeformed, and a
vertical magnetic field is applied at a small angle (2°) off the normal to the director,
which does not significantly alter the critical behavior of the transition [55, p. 105].
Due to the increasing rate of rotation w toward the center, an anticlockwise current
is predicted by Eq. (4.30), whereas the force (4.31) is initially unimportant, since the
director is uniform. Calculations for the square cell show that in the course of time
the current is split into two vortices, while in between these two clockwise vortices
are also formed, and we finish with 4 major vortices (Fig. 4.9(b)).

Again it is useful if one first focuses on the one-dimensional cases. For the
horizontal cell initially there is no current, because the director is perpendicular to
the gradient of w (Eq. 4.30). If the cell is not infinite, but just extended in the
horizontal direction, the flow is limited to the short boundaries, where Vw points
along the director. For a long cell, however, this is unimportant. When the director
turns a little, the force (4.30) becomes larger initiating the anticlockwise current.
With the deformed director field the force (4.31) also starts contributing to the
anticlockwise current. After the director has reached the angle of instability (4.33)
in the center, the reorientation is accelerated by the current, resulting in a positive
feedback strengthening the backflow. The positive feedback is greatly amplified
by the magnetic torque, which in this case is the driving force of the relaxation.
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Figure 4.8 Vertical cross-sections through the center of the horizontal cell
(field-off): director angle as a function of transverse coordinate is shown for
subsequent moments in time (early stage only). The backflow alters the pro-
cess in the center (above), compared with the simple relaxation without the
flow (below).
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9 Field on in the square cell. See Fig. 4.3 for the key to the figures.

(b) Now the center is relaxing slower, as are the NW and SE corners

(©

(a) The director rotation is maximum in the middle; the asymmetry of the
corners is due to the backflow, not to difference in the splay and bend elastic
(which were faster in (a)). An interesting fourfold flow pattern is observed. (c)
Late stages of relaxation; the current has not changed direction completely.

Figure 4
constants.
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It acts like a fuse triggering the magnetic torque by rotating the director off the
field normal (Eq. (4.34)). On the other hand, near the boundaries the relaxation
is slowed by the shear there having opposite sign (the director tends to stay flow-
aligned). Consequently, when eventually the relaxation ceases in the middle of the
cell, the outer parts are still relaxing. Now the force (4.30) changes direction, trying
to start a clockwise current. It is opposed by the V- dependent force (4.31), which
is strongest near the boundaries. As a result, the flow dies out in the middle of the
cell first, followed by a cessation at the boundaries.

Again the situation is quite different for the vertical case (Fig. 4.10). However,
unlike the field-off relaxation, now it will be the more interesting one. Here the
anticlockwise flow due to the force (4.30) is initiated immediately, since now Vw
points along the director. Moreover, in the middle of the cell the shear starts to
rotate the director at a maximum rate as a result of being normal to the director
(Eq. (4.32)). On the other hand, near the boundaries the shear is opposite, thus
turning the director in the reverse sense, again at a maximum rate (Fig. 4.10(a)).
Here we are dealing with two effective mechanisms that turn on the magnetic torque,
one in the middle of the cell generating an accelerated anticlockwise rotation, the
other at the boundaries causing clockwise rotation, which is also amplified by the
magnetic field. Hence, this gives rise to a strong anticlockwise current first (positive
feedback again), as confirmed by Fig. 4.10(a). However, the force (4.31), becoming
more important as the deformation increases, opposes the clockwise rotation. The
flow is thus subject to a kind of frustration. As a result of this, it is able to change
direction very rapidly, as the force (4.30) ceases. One can make an estimate of
the director angle, at which the net force changes sign, using w = %H 2sin 2 with
Egs. (4.30) and (4.31), yielding

1
f= iaQHZ (2 cos? 2¢ + cos 2¢p — 1) @'

This gives ¢ = 30° for the angle of force reversal. Since the angle is maximum in the
center of the sample, this is where the flow reversal is initiated. After some time,
the interior has almost relaxed when the outer director field just begins to rotate in
the right sense (Fig. 4.10(b)). The gradient of w is reversed, the force (4.30) changes
direction, now acting in accordance with the force (4.31). The clockwise current
accelerates the relaxation of the outer part (positive feedback) while additionally
slowing the rotation in the center (Fig. 4.10(c)). Interestingly, this current is larger
than the initial anticlockwise current.

Thus, for the field-on relaxation, the interesting scenario also involves two steps:
in the beginning a weak magnetic torque generates backflow due to non-uniform
rotation. In some regions, the backflow accelerates the rotation which has a major
effect because in this way the magnetic torque becomes progressively larger. Con-
sequently, these regions are relaxed much more quickly than those for which the
backflow has a retarding effect. As a result, they are already far above the angle of
maximum magnetic torque when the delayed regions arrive at it. Now the latter re-
gions relax faster, which causes the backflow also to change direction. The two-step
scenario is fully developed in the vertical case, whereas the horizontal cell relaxes
more or less in one step, as described previously.
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Figure 4.10 Field on in the vertical cell with L,/L, = 5 (note the scale):
two-step relaxation. See Fig. 4.3 for the key to the figures. (a) Flow-induced
backward rotation near vertical boundaries is amplified by the field (contour
of zero rotation is shown dashed). (b) Backflow is changing direction, note the
director deformation near the vertical boundaries. (c¢) The flow has changed
direction, as well as the gradient of ¢. The situation is similar to that in (a),
but reversed. Note that the velocities are large in magnitude.
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% — with backflow
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Field OFF
0.0- 1
0.00 0.05 0.10 0.15

Figure 4.11 Time dependence of sin? ¢ (square cell), averaged over the cell,
for cases with and without taking into account the backflow. Magnetic field
of strength H = 10 is turned on and off.

The sudden formation of four vortices in the square cell can also be explained by
this mechanism, only that now all four boundaries are important, resulting in a more
complex fourfold flow pattern (Fig. 4.9(b)). Clearly the flow reversing mechanism is
present, in this case also, yet toward the end the original flow direction is restored.
However, calculations for L,/L, = 2 already yield a definite flow reversion.

Finally, it should be mentioned that the processes just studied do not depend
critically on the sign of the Leslie coefficient a3, which sets the flow-aligning or flow-
tumbling properties of the nematic, subject to the simple shear flow. If a3 is set
to zero or even its sign is reversed (keeping its value small), no radical changes are
observed. For our discussion to be valid, only the condition |as/as| < 1 must be
satisfied.

4.5.3 Comparison with the simplified treatment

The relaxation with the backflow is to be compared now with the simplified re-
laxation without taking into account the backflow. Figure 4.11 shows the time
dependence of sin? ¢, averaged over the square cell, for both the full and simple
treatments. Here the effect of the backflow is mainly to speed-up the relaxation
process, a situation that is most frequently observed. In some cases, however, the
influence of the backflow is more complicated and one cannot speak simply about
changes of the relaxation rate. This occurs in the vertical cell if a strong enough field
is applied so that the two-step process becomes very distinct (Fig. 4.12). At a lower
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Figure 4.12 Time dependence of the largest cosine Fourier components of
sin? ¢, for the full and simplified treatments (vertical cell, magnetic field of
strength H = 20 is turned on). The average is denoted by F(0,0), whereas
F(2,0) stands for the component belonging to cos(2mz/L;). It is shown
that the average behavior can be more complicated than normal (compare
Figs. 4.11, 4.13, or 4.14). Note that the difference is much larger for the
F(2,0) components than for the averages, indicating that due to the backflow
the rotation is indeed faster in the middle of the cell and slower near the
boundaries (see also Fig. 4.10).

field strength, on the other hand, the simple regime is again restored (Fig. 4.13).

The importance of the geometry is clearly seen if one compares Figures 4.12 and
4.14, showing the time dependence of the Fourier components of sin? ¢ in the vertical
and horizontal cells, respectively. The fields are rescaled relative to the critical field

H2_@

= /L) + (/L) (4.57)

so that the ratio H/H, is the same in both cases, allowing one to make a direct com-
parison. Evidently, when turning on the field, the backflow effect is much stronger in
the vertical cell (two-step process) than in the horizontal cell (single-step process).
As far as the field-off relaxation is concerned, the same conclusion holds. There the
effect is stronger in the horizontal geometry, which in this case yields the two-step
scenario.
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Figure 4.13 Time dependence of the cosine Fourier components of sin® ¢, de-
fined in Fig. 4.12, for the full and simplified treatments (vertical cell, magnetic
field of strength H = 10 is turned on). Note that due to the weaker field the
average behavior is less complex, when compared with Fig. 4.12.

0.8 1
—~+ 0.4 §
& (0,0) with flow
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«®o S F(0,2) with flow
0.0 ~~ ——— F(0,2) without flow | ]
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Figure 4.14 Time dependence of the cosine Fourier components of sin? ¢,
defined in Fig. 4.12, for the full and simplified treatments (horizontal cell,
magnetic field of strength H = 20 is turned on). The figure should serve as
a contrast to Fig. 4.12, showing that the backflow effect is less pronounced in
the horizontal cell.
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4.6 Amplifying the kickback effect

4.6.1 2D problem

If one takes the field-aligned configuration (the initial configuration in Fig. 4.3)
and applies a secondary magnetic field in the x direction immediately after the y
field has been turned of, the kickback produced by the backflow is amplified by
the secondary magnetic field. A domain of opposite director rotation is formed,
Fig. 4.15, separated from the rest of the sample by a domain wall with thickness
of the order of the magnetic coherence length &,,, Eq. (4.15). The strengths of the
primary and secondary magnetic fields are 20 and 40 units (4.29), respectively. Once
the domain is formed it begins to shrink, which is a slow process compared with
the formation and is driven by the domain wall curvature. The final configuration
is undeformed, just like in the field-off case depicted in Fig. 4.3.

Let us estimate the shrinking time of the domain. Neglecting the flow and the
elastic anisotropy, the shrinking rate of a thin circular domain wall with radius R is
[56, p. 213]

dR 1
pri 1 (4.38)
where length and time are scaled by L and 7, (Eq. 4.28), respectively, yielding
R*(0) — R*(t) = 2t. (4.39)

Note that the shrinking rate does not depend on the magnetic field. Assuming
R(0) ~ 1/4, the shrinking time is estimated to ¢t &~ 1/32, which is supported by
Fig. 4.16.

The presence of the domain wall is reflected in any integral property of the cell
A(t), e.g., in the cell average (sin? ), Fig. 4.16. In the case of a linear dependence
of A on the wall length (the above average is such a case), one can write

A(t) = A(0) + C[R(t) — R(0)], (4.40)
where C'is a constant. Then it follows from Eq. (4.39) that
t=Cy [A(t) — A0)] + Cy [A(t) — A(0)]. (4.41)

The constants C; and Cy are determined by fitting the polynomial (4.41) to the
slowly falling region in Fig. 4.16. The numeric data and the fit are ploted in Fig. 4.17
showing excellent agreement.

4.6.2 Quasi-3D problem

Let us now consider a more general example, which is closer to experimental set-ups
than the 2D problem. By contrast, the director and the flow velocity can point
out of the plane this time, while there is still no dependence on the z coordinate.
Two switching examples have been chosen. The nematic sample is confined to an
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Figure 4.16 Comparison of switching processes with and without the flow:
time dependence of the y director component squared, sin? ¢, averaged over
the cell. The backflow-affected switching proceeds in three steps. First almost
the whole sample aligns with the z field, except for the domain wall. The
characteristic time of this process is ¢2, = 1/H? = 1/900. Then the central
domain is slowly shrinking, driven by the domain wall curvature. In the end,
when the size of the domain is comparable to its thickness, the characteristic
time of the relaxation is again ¢2,. Time is scaled by 77, Eq. (4.28).

0.0125+ 7
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0.0025 .
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003  -002  -001 0.0
. 2 . 2
(sin“g)~(sin“g),
Figure 4.17 The fit of the polynomial (4.41) to the numeric data for (sin® )

in the time interval between ¢; = 0.0075 and ¢, = 0.02, when the domain wall
is well defined.
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Figure 4.18 The initial director field configuration. Shading (although redun-
dant in the case of the director field) represents the out-of-plane (z) compo-
nent, while the in-plane components are drawn as nails as customary. Magnetic
field with coherence length of L /30 is applied in the z direction.

infinitely long capillary of square cross section. The domain of calculation corre-
sponds to the cross-section (a square in the xy plane) and is thus two-dimensional.
The anchoring is infinitely strong, its direction is parallel to the tube axis (z axis).
Initial conditions are identical in both cases: the sample is aligned by an in-plane
magnetic field with the coherence length (4.15) of 1/30 of the tube thickness L,
pointing along the z axis (Fig. 4.18). Following the discussion in Section 4.3, for a
100 pm thick capillary the corresponding field is around 0.3 T, and the characteristic
time (4.16) is about 0.2 s.

The switching process is started by suddenly rotating the magnetic field to a
perpendicular direction. The switching time of the field must be short compared
with the characteristic time (4.16). In the first example, the final field is parallel to
the z axis, whereas in the second example, it lies in the yz plane at an angle 70°
with respect to the z axis. It will be shown that, due to the backflow, the switching
process is again altered completely.

4.6.3 Axial magnetic field

After the magnetic field has been switched to the z direction, near the boundary
the director is rotated out of the plane by elastic and field torques. On the other
hand, the elastic and field torques are almost zero in the center. If one disregards
the backflow, the director will align with the new field by a clockwise rotation about
the y axis, proceeding from the boundary toward the center.

The backflow, however, can produce a large effect in this case, since the director
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19 Axial magnetic field: velocity (left column) and director fields in
f-plane flow. (b) The kickback is amplified by the magnetic field,

selected moments of time (in units of 7 as defined in Eq. (4.16)). The number
of mesh points displayed has been reduced by a factor of two in each direction
to gain clarity. The key to the figures is given with Fig. 4.18. Blue and
in-plane velocity is denoted vy,q,. The velocity unit is vy as defined in (4.19).
The reader should not confuse the heads of nails with the nails themselves,
where the directors point almost in the z direction. (a) The kickback caused

red levels represent components up and down,

a domain is formed.
twice as large as Koo.

Figure 4
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orientation in the central region is labile with respect to the field, and thus quite
sensible to perturbations. The rate of director rotation has two minima — at the
boundary and in the center, and a maximum in between. As a result, an out-
of-plane fluid flow is generated (Fig. 4.19, (a)), where the velocity changes sign
three-times as we move along x direction, whereas on passing along y it is single-
signed. The mechanisms governing this phenomenon are explained in Section 4.5.1.
The flow rotates the director in the center in the opposite direction than expected
(the kickback effect). This rotation is amplified by the magnetic field. Thus, we
are left with the center rotating in the opposite direction as the outer part of the
sample, which leads to the formation of a domain (Fig. 4.19, (b)). The shrinking
time ¢t = R*(0)/2 (Eq. (4.39)), where R(0) =~ L/3&,, = 10 is the initial radius of the
domain, is estimated to ¢ &~ 50 in units of 7, Eq. (4.16). On the other hand, the
characteristic time for the formation of the domain is just 7.

4.6.4 Oblique magnetic field

In order to show that the effect is not limited only to a certain direction of the final
magnetic field, a second example is to be demonstrated. The initial configuration
is the same as in the previous case (Fig. 4.18), but now the final field is in the yz
plane at an angle 70° with respect to the z axis. It is important that the initial and
final fields are still perpendicular to each other, or close enough to this, i.e., a few
degrees. If not so, the field torque outweighs the backflow-generated one even in
the beginning, and the backflow can give only quantitative effects. The situation is
similar as in the previous example, only that now the flow is both out-of-plane and
in-plane and the domain wall is more complex (Fig. 4.20).

It is worth mentioning that, if the final field is too close to the cross-section plane
(a few degrees), even in the absence of the flow the director rotation is complicated
by the elastic anisotropy. Namely, due to the anisotropy, the director deviates
slightly from the x direction initially, which causes the director to rotate in opposite
directions in different parts of the sample. Despite the backflow is important in this
case also, we do not aim to give examples, since they are too complicated and thus
not particularly instructive.

4.7 Summary

In this Chapter, nematodynamic problems have been studied in their full form,
making no approximation other than a low Reynolds number, which is practically
exact for the problems concerned. First, one must note the remarkable non-triviality
of the generated velocity fields, i.e., the formation of several vortices, despite the
simple geometry and strictly laminar flow. It is a consequence of the delicate inter-
connection between the director and the flow field. In addition, it has been shown
that the form of the backflow, as well as its time evolution, depend very much on
the geometry of the system, as does the influence of the backflow on the director
reorientation. It is stronger for the two-step processes, which are characterized by
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Figure 4.20 Oblique magnetic field: velocity (left column) and director fields
in selected moments of time. The number of mesh points displayed has been
reduced by a factor of two in each direction to gain clarity. The key to the
figures is given with Figs. 4.18 and 4.19. (a) Both the out-of-plane and in-plane
flow velocities are comparable in magnitude, resulting in the kickback around
an oblique axis. (b) A part of the splay-bend domain wall first created (not
shown) is transformed to a twist wall due to the elastic anisotropy, resulting
in a complex wall structure. (c) As the domain shrinks, the structure of the
wall becomes simpler.
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a global reversal of the flow direction.

Besides numerical solutions, the qualitative picture of the backflow problem is
also highlighted in this Chapter. Thus, following the discussion in Section 4.5.2, one
is able to foresee the global flow dynamics in the cell, without having to perform any
extensive numerical calculations. In particular, it is worth pointing out again that
the backflow scenario depends crucially on the relative orientation of the magnetic
field with respect to the long axis of the cell. It has been assumed that |as/as| < 1
holds for the two Leslie coefficients, whereas the sign of a3 has proved not to be
significant.

It has been shown that there are cases where the backflow effect is crucial. If
in a part of the sample the director is near an unstable equilibrium with respect
to the field, the backflow usually produces a perturbation strong enough to change
the director rotation in that part. Of course, only those cases are interesting, where
the backflow has a frustrating influence on the director field, i.e., it creates regions
of opposite director rotation. Such relaxation processes have been referred to as
the two-step processes, as opposed to the one-step processes, where backflow is less
important.

Infinitely strong anchoring has been assumed throughout the Chapter 4. In
order to observe any relevant backflow effects in practice, the anchoring should be
strong enough (£/§,,, < 1), which can be readily achieved in experiments. Numerical
evidence for the ceasing backflow effect in the case of finite anchoring has been given
toward the end of [57]. Disregarding any surface viscosity effects, one can make a
simple estimate for the case when the anchoring becomes finite, £ > 0, but remains
strong, £/&,, < 1. Comparing the director profiles near the boundary for the infinite
and the finite anchoring in the presence of the magnetic field, one finds the director
gradient to decrease as &, /(&m + &) ~ 1 — £/&,. Upon removal of the field (or, in
the 3D examples, rotating the field into a perpendicular direction), the director is
rotated by elastic forces (Eq. (4.9)), decreasing as £2,/(&, +€)? &~ 1—2£/&,,. Tt then
follows that the divergence of the ay and ag terms in Eq. (4.11), which represents
the source driving the flow in Eq. (4.10), decreases as 1 — 3£/¢,, as the anchoring
gets weaker. Hence, the magnitude of the backflow and its torque exerted on the
director (Eq. (4.9)) decrease the same way.

As indicated by additional calculations not presented, the qualitative picture
does not depend on the exact geometry of the tube cross section, i.e., the square
could be replaced by a circle or a rectangle, etc., provided that the aspect ratio
stays roughly the same. Also, the detailed structure of the domain wall appears to
depend on the ratio of the elastic constants, as mentioned in captions to the Figures
4.19 and 4.20.

The reorientation problems described in this Chapter may be regarded as an
overture to the primary challenge — the influence of hydrodynamic flow on defect
dynamics. From the early days of our research we have speculated that these are
the processes where the flow should really come into play. Richer in experience and,
in particular, equipped with the numerical method, we are now ready to meet the
challenge. Of course, there is still a crucial step that yet has to be done — we
must go beyond the director description. There are two paths leading from here and
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we will take both, one after another. For nematic defects, one has no choice other
than resorting to the dynamic theory of the tensor order parameter. On the other
hand, defects in a vector order parameter field like that of the smectic-C phase are
mastered by a direct generalization of the Ericksen-Leslie theory.



5

Dynamics of a vector order parameter

In this Chapter, the dynamic theory for a general vector order parameter will be
derived. It represents a generalization of the standard Ericksen-Leslie theory to
include the nonhydrodynamic degree of freedom — the magnitude of the vector.
One should stress that the Ericksen-Leslie theory is a vectorial theory, and therefore
a consistent generalization is the one to the full vector order parameter, not to the
tensor. Moreover, the Ericksen-Leslie theory is not at all connected with the tensor
order parameter, except for the missing polar effects (e.g., electric polarization) —
the elastic free energy and the coupling to the flow are of the vectorial nature. As
we have not come across this statement in the literature, we decided to support it
in this Chapter. The general three-dimensional case will be considered. Although
vectorial quantities like the electric polarization appear in this case, we will omit
the electric and magnetic degrees of freedom and limit the discussion to the elastic
distortions and flow coupling only. A two-dimensional version of the theory will be
used in Chapter 8 for the description of the SmC thin film system.

5.1 Free-energy density

We will focus on the homogeneous and elastic parts of the free-energy density
f(c,Ve), where c is the vector order parameter:

1 1 1
f = 514 62 + ZC’ C4 + iLi‘jkl (aiCj)(akCl). (51)

The homogeneous terms (the first two terms) describe the phase transition, A =
A(T —TY%, A" >0, C > 0, and give the equilibrium modulus of ¢, ¢y = /—A/C,
which is the condensed quantity. In principle, the elastic part could contain also sec-
ond derivative terms L;j;, 0;0;ci, but these yield, besides the terms already contained
in (5.1), only surface contributions [50, p. 77]).

The demanding task is to find the elastic coefficients L;j; that are allowed by
symmetry. One requires that f is invariant to the inversion (r — —r, ¢ — —c),
which implies that L;j;; must be invariant as well. Furthermore, the permutation
symmetry (2.10), L;jr = Lgj, must be obeyed. It turns out that the set of scalar

95



56 Dynamics of a vector order parameter

‘ Liju ‘ elastic term ‘ comment
dik0ji Ly (8Z-cj)2 isotropic
00k Ly(0;¢;)? splay
0it0jk 2L3(0;¢5)(0;¢4) 0;(cj0¢; — ¢;0;¢;) + (0;¢;)?, surface
CiCkOji Ly cici(0;¢5)(0key) [c- (VC)]2, derivative parallel to c
cicrOik Ls c;jci(0;¢4)(0ic1) (Vc) - C]Z, dc parallel to ¢
(cxaiij + ciciow) | 2Lg cjer(05ck)(0ici) [c-(Vc)-c](V - c), length-splay
(cicedi + cicidjr) | 2L7 cje(05¢i) (0kc) [(Ve) - c]-[c- (Vc)], length-bend
CiCiCrCy Lg cicjcrei(05¢5) (Okcr) | [e- (Ve) - c]2, deriv. and éc parall. to c
CpCrEpijErki Lo (cpepij0ic;)? twist

Table 5.1 Elastic terms for the vector order parameter, Eq. (5.1), without
the prefactor 1/2 defined in Eq. (5.1). In the nonquadratic terms the factor 2
has been included for convenience.

> — — - _—

—> _ — -> _— _—

> — T —> _— __—
(a) (b)

Figure 5.1 The (a) length-splay and (b) length-bend distortions, accounted
for by the Lg and L7 terms, respectively.

invariants to form the elastic contribution is not unique, i.e., some invariants formed
with €;;, can be expressed by those formed with d;,. We decide to introduce the
minimum number of invariants containing €;;,. Among the sequence of invariants
like

(Dics)?, C?(aici)Qa (5.2)

we choose the one that is lowest order in ¢. This does not mean, of course, that terms
of order ¢* and higher are dropped everywhere in L;j. The nonzero components
Lij; and the corresponding scalar invariants are listed in Table 5.1. Elastic constants
L;, independent of the length of ¢, have been introduced. The L; term is an isotropic
term, i.e., it treats all distortions equally. The L, and Lg terms are the splay and
twist terms, respectively. The L3 term is essentially a surface term. The L, term is
related to the bend distortion, i.e., it is nonzero if the derivative of ¢ in the direction
of ¢ is nonzero. The terms with Ls, Lg, L7, and Lg are different from zero only if the
length of ¢ varies. The Lg and L7 terms are particularly interesting: they correspond
to distortions involving the variation of the length of ¢ and a simultaneous splay
or bend deformation (Fig. 5.1). There is no such term connected with the twist
distortion.
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A comparison with the Frank distortion terms (4.1) can be made to connect
the Frank elastic constants with the fundamental elastic constants L;. The splay
and twist terms are already among the invariants in Table 5.1. The bend term is
expressed as follows:

[C X (V X C)]2 = CiCk(aiCj)(aij) -+ cjcl(&-cj)(&-cl) — CjCk(aiCj)(akCi). (53)

Only the first term (the L, term) contributes if ¢? is constant. In addition, there
must be equal contributions from the isotropic (L;) term to the splay, twist, and
bend distortion. Thus,

K11 == 02L1 + CQLQ, (54)
Ky = Ly + 'Ly, (5.5)
Kss = 2L+ c*Ly, (5.6)

where also the leading order dependence of the Frank elastic constants on the length
of ¢ has been obtained (recall that the Frank terms involve the unit vector). To see
the contribution from the L term explicitly, one expresses the bend term in another
way:

e x (V x ) = 2 [(9hey)? — (D)) (@ye)] — [e- (Vx . (5.7)
Hence, if ¢? is constant, Eq. (5.7) represents a relation between the invariants, so
that one of them is redundant. In the Frank expression, one gets rid of the isotropic
term (9;c;)?. Furthermore, the second term in the bracket can now be written as a
divergence, as indicated in Table 5.1. This leads to

(8Z~cj) (V C) 1 [ . (V X C)]2 + é [C X (V X C)]2 + 8i(cj8jcz~ — CiajCj), (58)

02

showing that in fact the L; term merely renormalizes the constants for splay, twist,
and bend.

As mentioned in Section 2.2, the elastic free energy density can be written as a
sum of square terms only. All elastic terms in Table 5.1 are already in the square
form, except the L3, Lg, and L; terms. After taking care of these, one gets:

fel = %(Ll — 2L3)(8¢Cj)2 + %(LQ — LG)(&-ci)2 + %Lg(aiCj + ajCi)2 +
5(La — L7)(¢j0¢:)* + 5(Ls — L7)(¢j0icy)® + 5L6(0ici + cjexdey)” +
%L (cj(? Cj + ckakcz) %(Lg — LG)(CiCjaZ'Cj)2 + %Lg(ck€kijai0j)2. (59)

For the free energy density to be positive definite the coefficients of the square
terms must all be positive, which introduces inequality relations between the elastic
parameters L;.

5.2 Coupling to the flow

To describe the coupling to the flow, we must find the expressions for the viscous
stress tensor and the generalized viscous force on the vector c, i.e., we must determine
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‘ Sijki ‘ dissipation term H Rijki ‘ dissipation term ‘
00k (A;;)?, compressible
%(5%5]’! + (5]']9(5”) 770(Aij)2 %(6”66)[ — 6jk6il) (Wij)2; forbidden

Table 5.2 Parts of the matrices S and R, not depending on c¢. These are
the terms that remain in the case of the isotropic fluid (¢ = 0). There is no
c-independent contribution to M. The dissipation given by these terms must
vanish for a rigid rotation, which interdicts the term (W,;)?.

the matrices S, M, R, C, D, and B in Eqgs. (2.35)-(2.37) with the properties (2.39).
In addition, the entropy source density (2.38) must be invariant to the inversion,
implying that the matrices S, M, R, and B are even in ¢, whereas C and D are odd.
Again, the set of scalar invariants to form the entropy source density is not unique,
i.e., some invariants formed with ¢;;, can be expressed by those formed with d;.
Once more, we decide to introduce the minimum number of invariants containing
€ijk- The terms describing the dissipation in the isotropic fluid are collected in
Table 5.2, those appearing additionally in the anisotropic case in Table 5.3. Viscous
parameters 7); independent of the length of ¢ have been introduced.

There must be no dissipation (2.38) and no forces (2.35)-(2.37) for a rigid rota-
tion, v=w X r, ¢ = w X ¢, for which

1 .
A= O, WE = iﬁijkwij, C;, = _Wz'jcj- (510)

Requiring this for the isotropic part (Table 5.2) forbids the (W;;)? term. In the
anisotropic part (Table 5.3) it forbids the term cyc €pij€0W;jWy and introduces
the following relations between the material parameters:

g = M7 = 13,
M5 = T4- (5.11)

Finally, the symmetric and antisymmetric parts of the viscous stress tensor,
Eqs. (2.35) and (2.36), read

of = Ay + 3m(Aiwckcj + Ajrcrc;) + moAgcraicic; +
%774(Ni6j + NjCZ') + ngckc'kcicj,
o = %773(Nz~cj — NjCZ') + %774(Aikckcj - Ajkckci)a (5'12)

and the generalized viscous force on the vector ¢, Eq. (2.37), reads
—h;} = 773Ni + 774AijCj + UGAjijCkCi -+ nngéjCi, (513)

where

is the vector of the relative rotation of ¢ with respect to the rotation of the fluid. One
can compare Egs. (5.12) and (5.13) with the Ericksen-Leslie expressions (4.13) and
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‘ matrix ‘ matrix term ‘ dissipation term ‘
Sijki %(cicjékl + c,c1045) ¢;¢jA;jAgk, compressible
i(cick(sjl + CiCl(Sjk + CjCk(Sil + CjCl(Sik) T CiCkAijAkj
CiCiCrCy 12 CiCiCkCIA;j Ak
Rijkl i(cickéjl + Cjclfsik — Cjck(sil — Ciclfsjk) 73 CickWijij
CpCrepij€ril CpCrepij€rkiWij Wiy, forbidden
Mijkl i(_cickdjl - CjCk(Sz'z + CiCl5jk + CjCz(Sz'k) T4 CickAjink
Cijk Cr0ij crCLA;, compressible
%(Ci(Sjk + Cjéik) M5 Ciéinj
CiCiCy N6 CiCjCrlrPij
Dijk 5 (=i + ¢;0i) 7 it W
Bij 03 s
CiCy My (citi)?

Table 5.3 Parts of the matrices S and R, depending on ¢, and the remaining
matrices. These terms appear additionally in the case of the anisotropic fluid.
The term containing ¢;;; is forbidden due to the requirement of vanishing
dissipation at a rigid rotation.

(4.6), relating the five independent Leslie viscous coefficients «; to the fundamental
coefficients n;:

G4 = Tjo,

as + o =

o = 'y, (5.15)
M= ns,

V2 = 1,

with v = a3 — ap and 9 = a3 + ay as customary. The leading order dependence of
the Leslie coefficients on the length of ¢ has been obtained. In the general case, there
are two additional viscous parameters 75 and 79, connected with the dissipation when
¢ is parallel to c. They describe the component of the generalized force parallel to
c and introduce the time derivative of ¢ to the symmetric part of the viscous stress
tensor. Furthermore, the n, contribution to the generalized force is not restricted to
the direction perpendicular to ¢ any longer.
Finally, let us write down the dissipation, i.e., the entropy source density:

75 = mo(Ay)® +m(Ayc)? + m(Aycic))® +mN7 +
2774NiAijcj + 2776Aijcicjckék + N9 (clcl)2 (516)

As mentioned in Section 2.3, the entropy source density (5.16) can be diagonalized
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to square terms only:

2 2

T = no(Aiy)*+ (771 - %) (Aijc;) + (772 - %> (Aijcic;)” +
3

Mo
nshi + 1997, (5.17)
with
hi = Ni+%Aijcj, (5.18)
g = Ciéi+%Az’jCiCj- (5.19)

Hence, there are only five square terms determining the dissipation, with the co-
efficients that have to be positive. The two additional parameters are 7,/n3 (the
analogue of the reaction parameter v,/ in the Ericksen-Leslie theory) and ng/no.
They define the rotation in the flux space to yield the fluxes chosen originally, i.e.,
N; instead of (5.18) and ¢;¢; instead of (5.19).

We are now able to write down the dynamic equations (2.40)-(2.42). There is no
point in really writing them down here.
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In this Chapter, enough background on the defects will be covered to understand the
annihilation processes studied in next Chapters. It is not our aim to give a thorough
perspective of the subject here. In particular, we do not go into the group-theoretical
considerations of defect topology — the homotopy theory [58,59]. Nevertheless, we
do use some of its results relevant in our context. We will restrict the discussion
to point defects in a two-dimensional system or line defects in a three-dimensional
system, without discussing the point defects in the 3D system, as they will not be
studied in the Thesis. The discussion will apply both to defects of the director and
vector order parameters — the latter are merely a subset of the former.

Defects are a “registration mark” of systems with broken symmetry. Let us first
try to give a useful definition of the defect. Naively we can say that the defect is
an irregularity in the order parameter field, i.e., a discontinuity. It can take place
in a single point, a line, or a plane, resulting in zero-, one-, and two-dimensional
defects. Their fundamental properties depend on the order parameter, or more
precisely, on its symmetry. Of course, physically it is hardly possible to speak
about any discontinuities, so there may be a problem with our naive definition of
the defect. In fact, in the nematic the discontinuity is present only as long as the
director description with a fixed degree of order is considered. If this restriction is
abandoned and changes of the degree of order and/or the biaxiality are allowed, a
continuous solution is obtained [60-64]. Therefore, a more general definition of the
defect must be searched for. Fig. 6.1 shows a point defect in two dimensions or a
cross-section of a line defect in three dimensions. Orientational defects of the order
parameter that carries information on a direction are called disclinations. There are
two types of disclinations, wedge (Fig. 6.1) and twist disclinations [55, p. 126]. We
will concentrate on the wedge disclinations only, as they are easier to envisage.
If a loop is imagined around the defect and then traversed counterclockwise so as
to return to the starting point, a winding number s can be defined as a measure
of the total angle 6 the director/vector is rotated by on this trip, s = 6/27. Since
the loop passes over defectless structure only, the continuity of the director/vector
field imposes that the angle of rotation must be an integer multiple of © or 27,
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(a) s =1/2 (b) s =1

Figure 6.1 Examples of wedge disclinations. A loop is placed around each
defect to define its winding number s, (a) s = 1/2, (b) s = 1. In the vector
case, (a) does not represent a possible configuration.

Figure 6.2 Fingerprint “defects” resemble disclinations in the nematic. A
defect-antidefect pair with strengths 1/2 and —1/2 appears on my forefinger.
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respectively:

(6.1)

. 0, £5, 1, £3,... ; director
1 0, 1, £2, £3... ; vector

The winding number does not depend on the size or actual shape of the loop but
solely on the type of the defect encircled. Therefore, it identifies the defect com-
pletely and is also referred to as the strength of the defect. Even if the singularity in
the center (the core of the defect) is somehow smeared (e.g., by melting — restoring
the isotropic phase, to be the case below), the winding number does not change. In
fact, to determine the strength s of the defect we do not need any information on
what the central configuration is. Therefore, the core region is not of importance for
the macroscopic description of the so-called topological defects, i.e., defects that can-
not be converted to a defectless structure by means of any continuous transformation
of the director/vector field [58]. Topologically speaking, all defects transformable
into each other by continuous transformations are identical. This means that those
which can be transformed in this way to a defectless structure, are not defects in
the topological sense. At this point one should mention that the wedge and twist
disclination lines are topologically identical.

Usually, topological defects are energetically stable, although they do not cor-
respond to states of the lowest free energy [65]. Indeed, when trying to transform
them to a defectless structure, a high energy barrier occurs due to discontinuities
that inevitably take place at such a transformation.

6.1 Disclinations of a 2D director/vector

A two-dimensional order parameter is a convenient example to start with. The
system may be two- or three-dimensional, it is only the director/vector which is
restricted to a plane. Hence, the discussion will apply to point disclinations in the
2D system or line disclinations (disclination lines) in the 3D system. In the latter
case the free energies (6.5), (6.7), (6.11), (6.9), and (6.12) must be interpreted as the
energies per unit length of the disclination line. The classification of defects is quite
illustrative here, and in the one constant approximation (Eq. (4.2)) the calculation
of structures is simple [66, p. 147]. An example of the physical system possessing
the 2D vector order parameter is the smectic-C liquid crystal studied in Chapter 8
as a representative of the X'Y-model.

Apart from the surface terms, there is no difference in the lowest order director
and vector elastic free energies, i.e., the Frank expression applies to both cases. In the
one constant approximation (4.2), the equilibrium condition for a point disclination
located at the center of the coordinate system reads [67]

V20 =0, (6.2)
where 6 is the polar angle of the director/vector,

n = (cosf,sin ). (6.3)
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The solution of Eq. (6.2) can depend only on the polar angle ¢ and must satisfy the
continuity condition for the director/vector. Thus,

0=sp+0, = sarctgg + 0o, s=0,(x3),£1,(£d), .., (6.4)
T

where 6y is a free parameter. The (half-)integral number s is the strength of the
defect exactly as defined above. The elastic free energy of the defect structure is
obtained by integration of Eq. (4.2) for the solution (6.4):

K [k 2 00\*> [(00\° ,. R
F;= E~/ro rdr/o do [<%> + <a_y> ] =7Ks lnr—o, (6.5)

where R is a typical size of the sample, and r( is a microscopic cut-off required for
the free energy not to diverge. Physically, this means that at distances near ry the
director/vector configuration (6.4) cannot possibly be correct. In this region the
deformation becomes large, so that the Frank elastic theory ceases to be valid and
changes in the scalar invariants of the order parameter must be taken into account.
In first approximation, a core of radius ry with the system in the isotropic (melted)
state is invented, having then

_J 0 ;T <Tg
S_{Sozconst cor >y (6.6)

where S is the scalar order parameter of the nematic or the length of the vector order
parameter. Of course, this is not the configuration with the minimal free energy.
The core free energy F,. due to the presence of the isotropic phase is

F.=mriAf, (6.7)

where Af is the difference in free energy densities of the isotropic and the ordered
phase. By minimizing the total free energy F; + F., the radius of the core is set to

Kn?

ro =1 —— 6.8

so it increases linearly with the strength of the defect s. The size of the core is of
the order of the correlation length £, Eqs. (7.18) or (8.8), which is in the nanometer
range. It is very small if compared to wavelength of light so one can conclude that
optics cannot be used for investigation of defect cores. Finally, the total free energy
of the defect structure in this approximation is

1
F=F.+F,=75K (5 +In ?) . (6.9)
0

In case multiple defects with strengths s; are present, due to the linearity of
Eq. (6.2) the equilibrium configuration is obtained simply by summing the solutions
(6.4) for a single defect:

0=> (sihi +00:) = si arctgi{ : il + 6. (6.10)

)
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The free energy of two defects is [65, p. 529]

R
f:f1+f2+27TK81821H?, (611)

where r is the distance between the centers of the defects. The first two terms stand
for the free energies (6.9) of single defects, whereas the third terms represents their
interaction free energy. Evidently, defects with equally signed strengths repel each
other, while those with opposite signs of the strength are attracted. Explicitly, the
free energy of a defect pair with s = —s; reads

F =2rs’K <1 +1In L) , s=|s1|, ri=re=ry, (6.12)
2 To
i.e., the logarithmic divergence with system size is eliminated in this case.

Let us now discuss basic properties of the disclinations of the two-dimensional
director/vector order parameter. Our main interest will be in how topologically dif-
ferent defects are characterized and then, how they may combine. The disclinations
have already been characterized by their winding number or strength s. For the
two-dimensional director/vector it is found that disclinations of different strengths
are topologically different [58], i.e., they cannot be continuously transformed into
each other. Furthermore, two defects with strengths s; and sy can combine in a
continuous transformation to form a defect with strength s; + s, i.e., in combin-
ing the winding numbers are simply summed [58]. Particularly, it follows that two
defects with opposite winding numbers can combine to form a defectless structure
with zero winding number s = 0. Even if the pair remains unannihilated, Eq. (6.12)
shows that the logarithmic divergence is eliminated if s; + so = 0, so the free energy
of the defects is small, provided that they are not very far apart. This can be un-
derstood a priori, since using a loop that encircles both defects a winding number
s = s1 + s9 = 0 is detected, which reflects a defectless structure with low distortion
energy outside the loop.

Generally, defects with oppositely signed (not necessarily equal in magnitude)
strengths will combine in order to reduce the distortion energy. On the other hand,
it is energetically favorable for a defect with a large strength to decay into defects
with lower strengths, which can then move apart reducing the distortion energy. In
principle, one should be more precise and apply Eq. (6.12) to this cases, accounting
for the core energies and cut-offs ry that depend on the winding number. However,
these are small energy corrections, too subtle to be described in the current approx-
imation. Nevertheless, Eq. (6.12) shows, that changing the separation of the defects
for as little as only a few core sizes already predominates the other free energy
contributions.

6.2 Disclinations of a 3D director/vector

Allowing for a three-dimensional order parameter, the topological picture is changed
dramatically. Continuous transformations changing the winding number by an in-
teger are now possible [58]. This implies that topologically all defects with integer
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Figure 6.3 Radial dependence of the Q-tensor eigenvalues for (a) the £1/2
and (b) £1 disclinations. Length is scaled by the correlation length (7.18).
Analytic expansions for small r are given in Eq. (9.8).

strengths are no defects at all, since they can be continuously transformed to a de-
fectless structure. For the defect in Fig. 6.1(b) such a transformation (a so-called
escape in the third dimension [68,69]) is achieved by a progressive rotation of direc-
tors around the perpendicular axes lying in the plane when going from the boundary
towards the center. Hence, in the case of the vector order parameter there exist no
topological disclination lines (or points in the 2D system). Similarly, half-integer
defects are continuously transformable into each other, thus being topologically
identical. Hence, in the case of the director order parameter there exists only a
single topological line defect (or point defect in the 2D system); we choose it to be
the disclination line with winding number s = 1/2, Fig. 6.1(a). The combination
law is again simply the addition of winding numbers [58]. With only one topological
defect, there is little possibility left: two disclinations with strengths s = 1/2 can
combine to form a defectless structure with s = 0.

Let us just mention that there exist an exact analogy between the disclination
lines and magnetic systems [65, p. 530].

6.3 Structure of disclination cores

In the case of the vector order parameter c the structure of the disclination core is
very simple, i.e., the magnitude ¢ of the vector vanishes in the center. In the one
elastic constant approximation, the general solution for small r is

cocrl, (6.13)
where the vector c is expressed as
c=c(r) (& costy) +&éysiny), ¢ = (s—1)p+ . (6.14)

In the case of the director, the full tensor order parameter must be solved for
[60-62]. In the one elastic constant approximation (7.1), the solution for small r is
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given in Eq. (9.8). The cross section through the strength +1/2 and +1 disclinations
is depicted in Fig. 6.3. Far from the core the ordering is uniaxial, but also in the
center, where the largest in absolute eigenvalue is negative, i.e., the distribution
of molecules is planar. This can be best seen in Fig. 6.4 containing the complete
information on the Q-tensor field in the disclination cores.
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Pair-annihilation of disclination lines in nematics

7.1 Introduction

The research of defects in order parameter fields corresponding to various condensed
matter systems is driven by many aspects of motivation. Defects can be readily ob-
served, either directly (e.g., by optical methods) or through other physical properties
of the system, which are crucially modified in the presence of defects. In many cases
of application defect-free structures are required, while in the others (e.g., in some
liquid crystal displays) structures containing defects might be essential. In the latter
case, one must know something about static or dynamic properties of defects. The-
oretically, defects offer a rich playground for mathematically oriented excursions.
Their topological properties can be very interesting and nontrivial, if only the or-
der parameter has enough degrees of freedom. Defects play a decisive role in any
phase transition, since in the late stages the ordering is governed exclusively by the
dynamics of the defects created at the transition. An important part of the mo-
tivation arises from the universality of defects, i.e., they can occur in any system
with a rich enough order parameter. Their major properties are independent of
the underlying physics, determined solely by symmetries and dimensionalities of the
order parameter, the defect, and the system. Lately the aim towards the exploita-
tion of this universality has been experienced in the area, motivating the research
of laboratory-friendly condensed matter systems such as liquid crystals in order to
yield knowledge in completely different realms of physics (e.g., the physics of the
universe, elementary particles, and fields) [70-74].

In order to study the statics or dynamics of defects in nematic liquid crystals,
the full tensorial description of the nematic ordering must be considered. Neverthe-
less, there have been some attempts using the director description. The monopole-
antimonopole annihilation of point defects has been studied in the scaling regime
by Pargellis et al. [75]. The annihilation of a wedge disclination pair in a hybrid
nematic cell and the annihilation of straight disclination lines have been studied
by Minoura et al. [76] and Denniston [77], respectively. Peroli, Bajc, et al. [78-81]
have studied the annhilation of point defects in a capillary. The dynamics of loop
disclinations has been modelled by Sonnet and Virga [82]. Stark and Ventzki [83]
have calculated the Stokes drag of spherical particles in a nematic solvent.

69
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There are two reasons for the necessity of the tensor description. First, the half-
integer defects are only possible when the order parameter possesses the tensorial
symmetry. One can evade this problem by using a director description that preserves
this symmetry [84]. However, the approach is still inadequate for the second reason,
which is the inability of describing the defect core. The core must necessarily be
included, for it is only in this way that the length scale is defined to which other
lengths can be compared, i.e., the interdefect distance! Also, in the absence of
the core problems regarding the discretisation arise, e.g., the artifactural pinning of
defects. Puncturing a hole at the spot of the defect core and shrinking it to a point
as suggested by Gartland et al. [85] cannot be of benefit, as the length scale is still
not introduced, not to mention the obscure boundary conditions emerging at the
cutting surface. A uniaxial tensor description with a varying length of the director
has been used by Pismen and Rubinstein [86]. The complete tensor approach has
been taken by Kilian [87]. A nice tensorial calculation using an adaptive mesh
refinement approach has been performed by Fukuda et al. [88].

If one wants to include hydrodynamic effects, normally described by the Ericksen-
Leslie theory [22,23], Chapter 4, a generalization of the latter is required to describe
the coupling of the tensorial dynamics and the flow [89-92]. Still keeping the direc-
tor description, one might expect to remedy the problem just by allowing a variation
of the degree of order. It turns out, however, that in the defect center the equations
so obtained are ill-conditioned and incapable of accurately describing the hydrody-
namic part of the problem.

The effect of hydrodynamic flow on kinetics of nematic-isotropic transition has
been studied by Fukuda [93], a similar topic, however with a different method — the
lattice Boltzmann algorithm [94], has been studied by Denniston et al. [95]. Recently
a work on hydrodynamics of topological defects was published by Téth, Denniston,
and Yeomans [96]. They studied the effect of backflow and elastic anisotropy on the
pair-annihilation of straight line defects with strengths £1/2, again using the lattice
Boltzmann algorithm. Their treatment, however, is not based on the Ericksen-Leslie
theory and involves only two viscous coefficients. There is also a significant amount
of experimental work on the dynamics of defects in nematics [97,76,98].

The aim of this Chapter is to present the solution to the pair-annihilation of
straight disclination lines with strengths +1/2, starting from the dynamic theory
for the tensor order parameter [92]. We consider an unconfined bulk system. In
the theory [92], only those dissipation terms are included that reduce to the Leslie
terms in the uniaxial limit with a constant degree of order. Therefore, the tensorial
theory involves the same number of viscous parameters as the Ericksen-Leslie theory,
expressed as simple linear combinations of the Leslie viscosity coefficients.

Symmetry properties of the stress tensor with respect to changing the sign of
the winding number will be discussed, resulting in a simple identification of stress
tensor terms, responsible for the observed flow asymmetry and the acceleration of
the annihilation process. Further, it is to be shown that the hydrodynamic effect
depends on the director phase angle, i.e., unlike the order parameter dynamics in
case of elastic isotropy considered here, it is not invariant under the homogeneous
rotation of directors. Again the corresponding stress tensor term will be pointed
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out.

It should be stressed that although the tensorial approach works very well at
small defect separations, the passage to >1 um length scales that can be resolved
experimentally is hindered by enormous computational complexity of the problem
and the large (several orders of magnitude) ratio of the defect separation to the size
of the defect core.

7.2 Dynamic equations

The starting point is the bulk free energy density expression in terms of Q [10, p.
156]:

f = 0(Q)+ 5L (0.0 (0.Q0) (7.)

where the homogeneous part is given by
1 1 1
?(Q) = §AQiijz‘ + gB Qij Qi Qi + ZC (Qij Q). (7.2)

It was taken into account that Cy (Q;;Q;i)*+Ca QijQxQuQu = (C1+1/2C5)(Q;;Q;:)?
and a new constant C' = C + Cy/2 was introduced. In the elastic part of (7.1), only
the term with L; = L is retained, resulting in isotropic elasticity. Terms of third
order in Q are needed to reach the splay-bend elastic anisotropy [99], the effects of
which have been studied in [96].

Requiring the Q tensor be traceless and symmetric, the Euler-Lagrange equation
for the free energy functional

F= / dV [£(Q, VQ) — AQu: — Ai€ijr Qi) (7.3)

gives the homogeneous and elastic part of the generalized force on the tensor order
parameter Q:
o¢
h?je = La]%QZ] — W + )\6” + )\kﬂgij. (74)
ij
The Lagrange-multiplier terms merely state that the isotropic and antisymmetric
components of (7.4) are not specified and have to be determined by the constraints,
i.e., the isotropic and antisymmetric parts must be subtracted from the force h?j"’
(projection to the traceless symmetric subspace). To put it in another way, h’¢
must be projected onto the symmetric and traceless subspace of Q. The elastic
stress tensor is obtained in a standard manner, Eq. (2.26), as
e of

0ij = _78(@le)an“. (7.5)

The viscous stress tensor and the viscous generalized force on the Q tensor are [92]

1
oy = B1QijQuriAr + BaAij + BsQikArj + BoQjrAri + §N2Nij — 11 QikNgj + 11 Q% N,
(7.6)
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1
—hij; = SHeAij + Ny, (7.7)
where
N = Py
i = + W, Qi — QieWij, (7.8)

with the material time derivative dQ;;/dt = 0Q;;/0t + (v - V)Q;; and the symmetric
and antisymmetric parts of the velocity gradient A and W, Eq. (2.34). Only those
terms have been included that in the uniaxial limit with a constant degree of order
reduce to the standard Leslie viscous terms «;. Thus, the viscous coefficients in
(7.6) and (7.7), linked by the relation uy = fs — (5, can be expressed in terms of
the Leslie coefficients and the constant value of the scalar order parameter [92].

Finally, the equation of motion for the Q-tensor is the traceless symmetric part
(denoted by L) of the generalized force balance,

{h"+hn"} =0, (7.9)

with the constraints
Qi =0, €;xQjr = 0. (7.10)

The generalized Navier-Stokes equation within the low-Reynolds-number approx-
imation (omitting the nonlinear advective derivative term (v-V)v), regularly used to
describe the order parameter elasticity driven dynamics in liquid crystals (Chapter
4), reads

8vi

P ot

with the density p and the viscous and elastic stress tensors given in (7.6) and (7.5).

Usually, also the steady state approximation is made, omitting the time derivative

term (Chapter 4). The pressure field p must be such that the incompressibility
condition

= —@-p + aj(O';}l + O';-:Z-), (711)

is satisfied.

7.3 Characteristic scales

Let us rewrite the free energy density using the uniaxial ansatz (3.11)
1
Qi = 55(37%'”]' — 6ij), (7.13)
f=23A8"+1BS*+2CS*+2L(VS)?+ 2L S*(Vn)2 (7.14)

The Euler-Lagrange equation for S, putting Vn to zero, reads

of _

3 2qg _
JLVES — o5 =0, (7.15)
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For a homogeneous system, the second term must vanish in equilibrium, from where
the bulk equilibrium value of S is obtained,

Sy = % (—3/30 +/(B/3C)? - 8A/3(J> . (7.16)

Linearizing Eq. (7.15) for small deviations from equilibrium, S(r) = Sy + AS(r),
one gets

2 0°f

VZAS — = =

3L 052150

from where a characteristic length scale can be extracted — the nematic correlation

length

AS =0, (7.17)

3 L
é‘: 5 fu )
2 f"]s,
Using the correlation length (couple of nanometers usually) and a corresponding
characteristic time (Eq. (4.16))
-

(7.18)

— €K = L, (7.19)

where v, is the director rotational viscosity and K is the director elastic constant,
Eq. (7.9) and the stationary Eq. (7.11) are both put to a dimensionless form. The
time 7 is the characteristic relaxation time of the order parameter deformation on
the length scale of &, which is typically tens of nanoseconds. In the following,
dimensionless quantities will be used, i.e. r < r/¢ for length, t < ¢/7 for time
and v < v7/& for the velocity. After doing so, the material parameters enter the
equations only through combinations given in (7.22) and (7.23).

Let us estimate the Reynolds number and the unsteadiness parameter of the
flow, i.e., the ratio of characteristic dynamic times of the flow field and the order
parameter field. The estimate differs from those made in Chapter 4, in that now
there is no simple relation between characteristic deformation length (7.18) of the
order parameter field and its relaxation time. Instead, one can empirically identify
the latter with the annihilation time. This yields the Reynolds number and the
unsteadiness parameter of

(7.20)

where R2 is the initial defect separation and ¢ is the annihilation time. The isotropic
viscosity was put equal to v, for brevity. The value of R3/t, obtained empirically, is
of the order of a few units. What is more, following the phenomenological equation
of motion given by Pleiner [100,101,96],

R L <§> : (7.21)

where R(t) is the actual defect separation and £ scales with &, the value of R3/t
exhibits only a weak logarithmic dependence on R. Thus, for large enough defect
separations compared with £, the empirical estimate is quite general in validity. In
conclusion, the Reynolds number and the unsteadiness parameter are tiny indeed,
so that in Eq. (7.11) both the advective and partial time derivatives can be omitted.
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7.4 Technicalities and material parameters

The numerical method used is described in Chapter 4. The calculations were done
on an inhomogeneous square mesh, consisting of a fine mesh of 160x160 points in the
center containing both defects, and a coarser inhomogeneous grid with increasing
spacing around it to yield the total of 280x280 points. The position of the defects
was determined by finding a local minimum of the trace Q;;Q;;.

The velocity was set to zero at the boundary. In order to meet the situation
present in a bulk system, the defect separation was small compared to the size of the
computational area (the ratio of the two was 3/20) and the derivatives of the order
parameter normal to the boundary were set to zero. Initially, the Q tensor was set
to Qi = 22 (3nym; — 6;;), where n = (cos ¢,sin¢) and ¢ = Y j_, my, arctan (ﬁ),
which is the one elastic constant equilibrium director configuration with two defects
of strength my positioned at (zg,yx), Eq. (6.10). Afterwards, enough computing
steps without the hydrodynamics were performed to first establish the full tensorial
configuration. The initial defect separation was above 70 correlation lengths (7.18),
in order to reach the far regime of motion, where the defects are well isolated. As one
realizes, there are three length scales in the system, which should be well enough
separated: the correlation length and the defect spacing as the relevant physical
scales, plus the container size as the technical one.

The viscosity coefficients in (7.6) and (7.7) were obtained from the standard
Leslie coefficients corresponding to MBBA [49, p. 231] as described in [92]. Numer-
ical values of the relevant ratios are

prof/pn = —1.92,  Bi/pm =017, By/p = 1.99, Bs/pu = 0.70,  Bs/p = —0.79.
(7.22)

The Landau coefficients A, B, C' and the elastic constant L in (7.1) and (7.2) were
taken from [102]. Numerical values of the relevant ratios are

A& /L ~ —0.064, BE*/L ~ —1.57, C&*/L ~1.29, (7.23)

with the correlation length (7.18) & &~ 2.11 nm. The characteristic time (7.19)
T & 32.6 ns completes the set of material parameters.

7.5 Results and discussion

The results for the pair annihilation of £1/2 defects (Fig. 7.1) are presented in
Fig. 7.2. Tt should be pointed out that due to the high computational complexity of
the problem and the broad range of length scales involved, only defect separations of
less than 1 pm and annihilation times of less than 1 ms can be reached. This means
that for the time being there still exists a large gap between numeric capabilities
and possible experimental observations.

In Fig. 7.2 one notices two distinct features: due to the hydrodynamic flow the
annihilation is faster and asymmetric. Fig. 7.3 shows that it is particularly the +1/2
defect whose motion is affected by the flow. Also clearly demonstrated by Fig. 7.3
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Figure 7.1 A schematic representation of a pair of £1/2 defect lines: the

eigenvectors corresponding to the largest absolute eigenvalue of Q (directors)

are depicted in the cross-sectional plane, perpendicular to the disclination

lines. Two isomorphs (a) and (b) are shown, differing only in a homogeneous
rotation of the directors. For clarity, the number of mesh points has been

reduced by a factor of 4 in each dimension and the correlation length has been

increased by a factor of 2 (only the central homogeneous region of the mesh is

shown).
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Figure 7.2 Position of the defects as a function of time, measured from the
initial middle point between the defects. Three situations are displayed: the
two isomorphs (a) and (b) (see Fig. 7.1) and the case without the flow (c),
where the isomorphs become degenerate. Recall that length is measured rel-
ative to £ = 2.1 nm, and time is measured relative to 7 = 33 ns.

Figure 7.3 Velocity of the defects as a function of the interdefect distance
(isomorph (a)). For comparison, the same is shown for the case without the
hydrodynamic flow. The velocity of the +1/2 defect is strongly increased
by the flow. Note the nonmonotonic behavior at early stages of the process,
where the initial equilibrium Q-tensor configuration is adapting to a dynamic
one. The distance and the velocity are measured relative to £ =~ 2.1 nm and
&/T = 65 nm/us, respectively.
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Figure 7.4 Velocity of the defects without the contribution of advection as
a function of the interdefect distance. Without the hydrodynamic flow, both
defects move symmetrically. Note that the part of the velocity coming from
the order parameter dynamics is larger for the —1/2 defect. Also note the
difference between the isomorphs originating from the different coupling to
flow and different flow field itself, both of which are mostly due to the us
viscous term.

(see also Figs. 7.4 and 7.5) is the nonmonotonic behavior of the defect velocities
at early stages of the annihilation [86], [72, p. 58]. It is a consequence of starting
with the equilibrium configuration of fixed defects rather than with a dynamic one,
which is being approached by the system in the course of annihilation. Since our
simulations represent only the very late stage of an actual annihilation process, this
nonmonotonic behavior should be viewed as an unphysical artifact of the initial
condition. Later we will show that it can be eliminated by starting with a proper
dynamic configuration, even without throwing away computational resources for
simulating larger defect separations. Alternatively, it can be regarded as an inertial
effect due to an effective mass that can be attributed to the defect [100]. As the
defect moves with a speed v, it distorts the order parameter around it, the distortion
depending on v. The part of the distortion energy quadratic in v can be regarded
as an effective kinetic energy, from where the effective mass can be extracted.

First, let us concentrate on qualitative features of the flow-driving mechanism
by inspecting the stress tensors (7.5) and (7.6). One is tempted to explain the easily
perceived characteristic of the flow field (Fig. 7.6(a)): due to advection the +1/2
defect is sped up, while the flow is much weaker around the —1/2 defect.

As estimated in Chapter 4 and verified numerically, the “passive” i, 35, and
P terms in the viscous stress tensor (7.6) (or their counterparts in the standard
Ericksen-Leslie theory, ay, as, and ag), describing the dependence of the fluid vis-
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0.00 A .
-0.02 1 .
v
-0.04 1 .
isomorph (a)
————— isomorph (b)
-0.06 1 -

10 20 30 40 50 60 70
r

Figure 7.5 The advective contribution to the velocity of the defects for the
two isomorphic cases. The surprisingly large difference between the velocities
of the +1/2 defect is mainly due to the ps viscous term. At small separations
not shown, the motion driven by the order parameter dynamics (Fig. 7.4)
becomes dominant.

cosity on the order parameter, give only minor quantitative effects. Therefore one
can ignore them in striving to gain a qualitative picture. On the other hand, the
remaining j; and po terms, which contain the order parameter time derivative Q,
and also the elastic stress tensor (7.5), represent the source driving the flow and
therefore have to be analyzed carefully.

7.5.1 The flow asymmetry

At this stage, we are interested only in symmetries, i.e., the behavior of the stress
tensor terms considered upon changing the order parameter field locally as to trans-
form the +1/2 and —1/2 defects one into the other. In one elastic constant ap-
proximation, this can be achieved by mirroring the Q tensor on the axis joining the
defects (the y axis, Fig. 7.1) [95]: Qzy — —Qgy, since the free energy density (7.1)
is left unchanged by this procedure. Any stress tensor terms, invariant with respect
to this transformation, treat both defects equally and clearly do not contribute to
the flow asymmetry. On the other hand, any noninvariant terms must be identified
as the flow symmetry-breaking components.

By definition (7.5) the elastic stress tensor is invariant, which is a direct conse-
quence of the elastic isotropy. As a result, the flow field is the same for both defects
(Fig. 7.6(b)). In addition, its direction is such as to reduce the interdefect separa-
tion and thereby the free energy of the system. This follows immediately from the
definition of any stress tensor, Eq. (2.25).

The viscous terms will be analyzed for the case v = 0, i.e., only the driving (Q—
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Figure 7.6 Flow fields resulting from different driving stress tensor terms: (a)

the complete stress tensor, (b) elastic stress, (c) the pp viscous term, and (d)

the po viscous term. In all cases also the isotropic 4 viscous term is included.

For clarity, the number of mesh points has been reduced by a factor of 4 in

each dimension; only the central homogeneous region of the mesh is shown.

The approximate positions of defects are marked with circles, the radius of

the defect core is roughly four grid points. The maximum velocity magnitude

Umaz corresponding to the longest velocity vector is given for each flow field
(relative to &/T).
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dependent) part in (7.8) will be considered. The py term has no definite symmetry
for some of its components transform symmetrically and some antisymmetrically.
At the defect spots the flow driven by this term is rather weak compared to the
contribution from the other terms in question, because Q is extremal there yielding
a vanishing divergence. Hence, the us term does not give a dominant contribution
to the advective motion of the defects.

On the other hand, the p; term is fully antisymmetric with respect to the trans-
formation, yielding exactly the opposite flow for the —1/2 defect as compared with
that near the +1/2 defect (Fig. 7.6(c)). One notices that the flow is the strongest
at the defect positions in this case. Thus, due to advection this term alone can give
rise to the flow asymmetry observed. One can verify by inspecting Eqgs. (7.6) and
(7.7) that the relative magnitude of this antisymmetric contribution to the advective
derivative term (v -V)Q in (7.9) is approximately proportional to p;, provided that
all other material parameters are kept fixed. On the other hand, scaling all vis-
cosities equally with respect to the elastic constant leaves the dynamics unchanged
completely and merely alters the characteristic time (7.19), a statement based purely
on dimensional grounds (see Section 7.2).

In addition to the flow asymmetry, the annihilation process is also significantly
sped up when compared to the annihilation without the flow. Following the previous
discussion, this effect is caused mostly by the elastic stress driven flow. Thus, the
annihilation dynamics offers a nice example showing the importance of the elastic
stress in liquid crystals, which is usually considered less significant, e.g. in LC cells.
Additionally, the elastic and jp viscous terms act in concord near the +1/2 defect,
whereas for the —1/2 defect they combine destructively. This explains the different
velocity magnitudes in the vicinity of the defects (Fig. 7.6(a)).

7.5.2 Reorientation-driven defect motion vs flow advection

It is also of one’s interest to quantify the ratio of defect motion due to advection as
opposed to the motion propelled by the order parameter dynamics. Figures 7.4 and
7.5 show that the velocities in question are quite comparable in magnitude. More-
over, in Chapter 9, where the repulsive motion of two 1/2 disclination is studied, we
find that the contribution of the advective transport to the total motion increases
with the increasing interdefect separation (Fig. 9.10). We expect this to be the case
also for the attraction. Once again this reflects the importance of the flow in defect
dynamics as compared with the limited perturbing effects it normally has, e.g. in
LC cells, Chapter 4. Furthermore, one must realize that also a secondary flow effect
besides advection is important, namely the influence of the flow on the order pa-
rameter dynamics. It is clear from Fig. 7.4 that the order parameter dynamics itself
is faster because of the coupling to the flow. Comparing Figs. 7.4 and 7.5 one can
state that the contribution of this coupling to the flow asymmetry is less important
than that of the advection, whereas its accelerating effect is just as important.
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7.5.3 Influence of the director orientation angle on the flow

In one elastic constant approximation, the free energy density (7.1) and thus the
order parameter dynamics are invariant with respect to a homogeneous rotation of
the eigensystem of the Q-tensor in every space point. Consequently, defect pairs
differing only in this constant phase angle of director rotation — let us call them
isomorphs (Fig. 7.1) — behave exactly in the same way (e.g., for the case of a +1
defect such isomorphs are the radial and tangential defects, as well as any other
form between the two). With the flow present, however, this symmetry is broken
(Fig. 7.2). It is quite instructive to study the dependence of the important stress
tensor terms upon such a rotation. Besides the elastic term (7.5), the p; pair of
terms is also left unchanged by the rotation. This is why the effect of advection
should be roughly similar for all isomorphs. It is worth mentioning that also the
influence of the flow on the Q-tensor given by the py term in (7.7) is not affected by
the rotation.

On the other hand, the py stress tensor term is not invariant. One can see
in Figure 7.5 that it introduces significant differences even as far as the advection
of the defects is concerned. For general isomorphs the py term yields a flow field
lacking the symmetry of reflection on the axis joining the defects. Additionally,
the p15 term in the viscous force (7.7) is different for different isomorphs. It is due
both to the different coupling of the flow to the order parameter dynamics and to
the differences in advection that the isomorphs are not equivalent dynamically. As
verified numerically, the 3, (5, and (g terms again bring only a very small difference.

7.6 Summary

We have studied the attraction and annihilation of straight line defects with strength
+1/2 in bulk nematics. Our approach is based on the Ericksen-Leslie-like dynamic
theory for the tensor order parameter of the nematic liquid crystals. It has been
shown that due to the hydrodynamic flow, the annihilation is faster and asymmetric.
Further, we have identified the governing stress tensor terms: the u; and uy viscous
terms and the elastic stress. Symmetries of the terms upon inverting the sign of
the winding number and performing a homogeneous in-plane rotation of the Q-
tensor eigensystem have been discussed. Both the u; term and the elastic stress are
invariant upon the rotation and hence identical for all isomorphs. The p; term is
antisymmetric with respect to changing the sign of the defects, thereby contributing
dominantly to the annihilation asymmetry. On the other hand, the elastic stress is
symmetric, so that it causes the annihilation process to go on faster. The only terms
distinguishing between different isomorphs are the ps terms in (7.6) and (7.7) (they
also distinguish between the +1/2 and —1/2 defect). Thus, one can conclude that
the difference in dynamics between the isomorphs is governed by the ratio po/ .
The remaining 3y, (5, and fg terms in the viscous stress tensor (7.6) introduce only
inferior corrections to the flow field.

One should emphasize once more that due to length scales several orders of
magnitude apart and enormous computational complexity of the problem, with the
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present method one is unable to reach the >1 pum range of interdefect distances,
which can be resolved in experiments. Nevertheless, it is quite reasonable to believe
that the hydrodynamic effects described in this Chapter, i.e., the flow asymmetry
and the reduction of the annihilation time, will be present and even stronger at
larger defect separations.



8

Pair-annihilation of vortices in SmC films

Our research of defect dynamics in SmC films has been motivated by a preliminary
experiment on the free-standing SmC thin film system by Link et al. [103-106],
showing an unexpected behavior of a pair of annihilating vortices. This triggered
speculations on the flow effects being responsible for it. Apart from an approximate
analytical study of forces on a single defect by Pleiner [100], there have been no hy-
drodynamic studies of defects in SmC films reported so far. For a nonhydrodynamic
treatment see the work by Pargellis et al. [107].

In this Chapter, we define the SmC order parameter and set the scene for an
adequate description of defect dynamics in SmC films. The SmC thin film system is
reduced to the XY-model. Then we show that the pair-annihilation of vortices with
winding numbers +1 (Fig. 8.2) is accompanied by strong hydrodynamic flow, which
speeds up the process as compared with the model situation without the flow, and,
assisted by the elastic anisotropy, gives rise to asymmetry in defect speeds.

8.1 SmC order parameter

In the phase sequence I — N — SmA — SmC, the SmC phase occurs, if present,
at the lowest temperature. In the SmA phase, the director n is normal to the
smectic layers, whereas in the SmC phase, this symmetry is broken and the director
is tilted. Experimentally most convenient liquid crystal system for the study of
defects is the free-standing SmC thin film, only a few smectic layers in thickness.
The projection of the director onto the smectic plane is a two-dimensional vector,
called the c-director, which is the order parameter of the SmC phase. One has to
point out immediately, that the c-director, despite its name, is in fact a vector, i.e.,
¢ # —c. The length of the vector (also called the tilt or amplitude) is the condensed
quantity that becomes nonzero at the transition, while its angle (or phase) is the
hydrodynamic quantity with a Goldstone mode. Originally, the c-director has been
considered a unit vector, representing only the hydrodynamic degree of freedom.
For description of defects, however, one must include also the variation of its length.
In general, the c-director is coupled to the smectic order parameter and possesses
also the nematic tensorial structure. To first approximation, both will be neglected,
assuming a uniaxial nematic ordering with a constant degree of order and straight
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and fixed smectic layers with a constant thickness, irrespective of the c-director.

Topological defects of the c-director are disclination lines with integer winding
numbers, i.e., vortices. Half integer strengths are not allowed due to ¢ # —c. In
order to avoid discontinuities in the c field, the tilt must be allowed to vary. With
that, in the defect core the system reverts locally to the SmA configuration.

It must be stressed that the order parameters of the SmC and nematic phases are
fundamentally different, and it is the SmC thin film system — within the restrictions
given below — rather than the nematic that is a representative of the XY -model.
Therefore, it is believed that the SmC dynamics has a wider range of applicability,
which essentially motivates its analysis. Moreover, the +1 vortex is unstable in
the nematic case (Chapter 9) — it is decomposed into a repelling pair of +1/2
disclinations, so that its dynamics cannot be followed. Thus, one has to resort to
the vector order parameter to study vortices.

8.2 Dynamic equations

The starting point is the hydrodynamic theory of SmC liquid crystals proposed by
Carlsson, Leslie, Stewart, and Clark [108,109]. It assumes a constant smectic layer
thickness and a constant average tilt of the molecules. In order to describe the
structure of the vortices, however, at least the constraint of constant tilt has to be
relaxed, i.e., a slight generalization of the theory is necessary. At the same time,
a substantial simplification will be made, that is, a system with variations only in
two dimensions and with straight smectic layers will be assumed, eliminating the
layer normal degree of freedom completely and fixing it to €,. Experimentally, SmC
thin films are much closer to the two-dimensional theoretical description than the
nematics in Chapter 7, where the disclination lines can curve and fluctuate. Due to
the thin film geometry, two spatial variables x and y, with V = €,0, + €,0,, and
a planar flow, v = v,e, + v,e,, are assumed. Hence, we have reduced the SmC
thin film system to the XY -model. It can be shown that under these assumptions,
the constant-tilt SmC theory [108,109] reduces to the Ericksen-Leslie (EL) theory
of the nematic liquid crystal exactly. In addition, the modulus of ¢, corresponding
to the sine of the tilt, will be allowed to vary [100]. We have thus arrived at a two-
dimensional version of the vector order parameter dynamics, considered in Chapter
5. Nothing changes in the 2D case, except for the missing twist term in Eq. (5.1).
There is, however, a principal difference in the inversion symmetry of the general
3D vector and c-director systems, stemming from the fact that in reality the 2D
c-director is embedded in the 3D space and that n = —n still holds: c is invariant
to a global inversion ¢ — —c. As a result, the free energy and the dissipation of
the SmC system are invariant to separate inversions of the coordinate and the order
parameter, i.e., they are invariant tor — —r, ¢ — c, aswellastor - r, c — —c, as
opposed to the 3D system. For example, the distortions depicted in Fig. 8.1 are not
equivalent in the general vector case, whereas in the case of the c-director defined
on straight smectic layers they are identical. One just needs to flip over the smectic
layers to see this. Nevertheless, this distinction does not play a role with the free
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(a) (b)

Figure 8.1 The distortions (a) and (b) of a general vector field are not equiv-
alent, whereas in the SmC system modelled they are.

energy of the form (5.1) and the dissipation of the form (2.38), as they are already
invariant to the separate inversions.

In spite of the thin film geometry, we ignore the surface terms in the free energy
density. Moreover, in order to keep the number of material parameters as low as
possible, we will neglect a great number of the elastic terms in Table 5.1. However,
we do want to account for the splay-bend elastic anisotropy, which in SmC liquid
crystals can be large due to spontaneous polarization effects [110-112]. Then the
free energy density can be conveniently expressed as

1 1 1 1

f=2AF+-Cc" + =B (Vxc)+=By(V-c) (8.1)
2 4 2 2

By comparison with the elastic terms in Table 5.1, one can show that up to the

surface terms the relations

B1 - Ll; B2 - L1 + L2 (82)

hold. Thus, disregarding the surface terms, the terms with L,-Lg have been con-
sistently omitted from Eq. (8.1). Their relevance is limited to regions, where the
modulus of ¢ varies, i.e., to the defect cores.

In the original constant-tilt description [108], the elastic part involves 9 coeffi-
cients, which for fixed and straight smectic layers reduce to a bend and splay term
only. In our case, allowing for a variation of the length of c the bend and splay
elastic constants B; and By are tilt-independent, Eq. (8.2). If one wanted to use
a director of unit length instead of ¢, Eq. (8.1) would imply the elastic constants
to depend on the tilt § as B; o< ¢ = sin?#, which is in accord with the symmetry
considerations in [108].

The Euler-Lagrange equation for the free energy functional F = [dV f(c, Vc)
gives the homogeneous and elastic part of the generalized force acting on the vector
c:

h; = —(A + 002)Ci + B 8ch + (Bg — Bl) 8i8jcj. (83)
The elastic stress tensor is obtained from (8.1) using Eq. (2.26):
o= —ia ¢ (8.4)

Oij a(aick) Jjbk-

Originally, the theory [109] involves 20 viscous terms, of which only the standard
Leslie terms are left in the present limit of lateral flow, straight smectic layers and no
gradients in the direction of the layer normal. Accounting in addition for the variable
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length of ¢, Egs. (5.12) and (5.13) represent the proper description of the dissipative
forces in our system. Nevertheless, to resort to the known material parameters, we
we will reduce the number of viscous terms to the Leslie terms only, omitting the
terms with the coefficients 7 and 7y in Eqgs. (5.12) and (5.13). Again, the omitted
terms affect only the core region of the defect. Hence, the viscous stress tensor is

ol = Mo Aij + T2 CkCZAleiCj + %7’/3 (NZ'C]' — CiNj) +
%774 (Nicj + ¢iNj) + %(771 — N1) CiAjrCr + %(771 +n4) Aivcrej,  (8.5)

and the generalized viscous force on the vector c is
—h;} =13 Nz + U AijCj, ]\/vZ = Cz + Wijcja (86)

with the material time derivative ¢ = 0c/0t + (v - V)c and the symmetric and anti-
symmetric parts of the velocity gradient A and W, Eq. (2.34). Although Egs. (8.5)
and (8.6) are exactly those of the Ericksen-Leslie theory (Egs. (4.11) and (4.6)),
there is a fundamental distinction in that here the viscous parameters do not de-
pend on the condensed quantity — the tilt, whereas the original Leslie coefficients
do (Eq. (5.15)).

One must emphasize, that by allowing the modulus of ¢ to vary in Egs. (8.1),
(8.5), and (8.6), we make a natural generalization of the EL description to the
case of the non-unit vector order parameter. Hereby we automatically recover also
the correct tilt dependence of the viscous forces, which in [109] must be regulated
by tilt-dependent coefficients, suggested by symmetry arguments. For nematics,
in contrast, only the tensorial description will provide the proper dependence of
the material parameters on the degree of order/biaxiality. Hence, it is exactly the
modelled SmC film system rather than the nematic to which the EL theory applies
rigorously (within the restrictions considered).

The equation of motion for the vector c reads briefly

h+h"=0. (8.7)

Together with the generalized Navier-Stokes equation (2.41) and the incompressibil-
ity condition (2.42) it forms the set of three partial differential equations governing
the dynamics of the SmC film system.

The equations are cast in dimensionless form by introducing a characteristic
length, i.e., the tilt correlation length

By

SR (- — 8.8
¢ (A+3Cc)’ (88)
couple of nanometers usually, and a characteristic time
13€°
= > 8.9
’ By’ (8.9)

where By = (By + Bs)/2. The time 7 is the characteristic relaxation time of the
c deformations on the length scale of &, or equivalently, the dynamic time of the
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modulus of ¢, typically tens of nanoseconds. In the following, dimensionless quan-
tities will be used, i.e. r < r/¢ for length, ¢ <— t/7 for time and v «— v7 /¢ for the
velocity. Doing so, the material parameters enter the equations only through ratios
given below.

8.3 Technicalities and material parameters

The numerical method is the same as in Chapter 7. The calculations were done on
a square mesh, consisting of a fine homogeneous mesh of 80x80 points in the center
containing both defects, and an inhomogeneous grid with increasing spacing around
it to yield the total of 140x140 points. The velocity was set to zero at the boundary.
In order to simulate a bulk system, the defect separation was small compared to the
size of the computational area (the ratio of the two was 3/20) and the derivatives
of the order parameter normal to the boundary were set to zero.

A generic set of viscous parameters in (8.5) and (8.6) was used, corresponding
to the Leslie coefficients of the nematic substance MBBA [49, p. 231], with the
relevant ratios 7y/n3 &~ —1.0, no/n3 & 0.085, 1ny/n3 ~ 1.1, 1 /13 =~ 0.19, The Landau
coefficients A, C, and the elastic constants in (8.1) were in the ratios of A?/By ~
—0.50, C&%/By =~ 2.0 (yielding equilibrium tilt value of 30°), with the correlation
length £ =~ 2.4 nm. The characteristic time 7 &~ 88 ns completes the set of material
parameters.

Early stages of the annihilation process exhibit a dependence on the initial con-
figuration (Fig. 8.4). Starting with the equilibrium structure containing two fixed
defects, a transition period exists, during which the equilibrium configuration is
changing to a dynamic one [72,86], Chapter 7. It can be also regarded as the inertial
effect due to the effective mass [100], as mentioned in Chapter 7. As the relaxation
time of the c field on the length scale of the interdefect distance R is proportional
to R? and so is the annihilation time in the limit of R/ > 1, the transition period
makes up roughly a constant fraction of the annihilation time, which is unpleasant
as it wastes the computational resources. Therefore, a scaling technique was used
to obtain a more suitable starting configuration, based on the self-similarity of the
c field, attained when far away from the start but still in the limit R > £. The
defects were left to annihilate to half the initial separation, followed by a rescaling of
the c field to the initial defect separation and a short simulation run to equilibrate
the tilt. This starting configuration is considered as a useful approximation — in
reality, the scaling regime, where R o (ty — t)l/ 2 would hold, is approached only at
very large distances due to logarithmic corrections [101].

8.4 Results and discussion

First we focus on the hydrodynamic effects on the pair-annihilation in the one elastic
constant approximation, By = Bs. Significant asymmetry in the defect motion and
reduction of the annihilation time as compared to the nonhydrodynamic treatment
is observed (Fig. 8.3), very similar to the case of +1/2 defects in nematics (Chapter
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Figure 8.2 Left: radial-hyperbolic pair of annihilating +1 disclinations in ¢
field (the grid has been coarsened for clarity, only the central region of the
mesh is shown). Vector heads have been omitted for legibility; yet there is no
ambiguity, since in the absence of any external fields the system is invariant
under a global transformation ¢ =+ —c. Right: the central part of the corre-
sponding flow field. The +1 defect is subject to strong advection, as opposed
to the —1 one.

7). Tt is possible to understand this easily by inspecting the flow-driving terms in the
stress tensor (those containing ¢): the elastic terms (8.4) and the 73 and ny terms
in the viscous stress (8.5). The main flow effect appears to be the advection, i.e.,
the hydrodynamic mass transport, which is to be discussed in the following. The
viscous influence on the c vector comes second, though it is not negligible.

If one performs a reflection of the ¢ vectors in the line joining the defects, the
winding number of the defects is reversed, but the order parameter dynamics stays
the same in the one elastic constant approximation. To recover the original config-
uration (up to an irrelevant global minus sign), a 7 rotation of the sample around
an axis perpendicular to the film through the middle point between the defects is
required. Performing the reflection on the stress tensor terms mentioned, one can
verify that the 73 term is antisymmetric (provided that the flow is generated by this
term only and that the n; and 7, terms are neglected), the 7, term has no definite
symmetry, while the elastic stress is symmetric by definition. This means that the
flow generated by the elastic stress is symmetric with respect to the rotation about
the perpendicular axis, while the one driven by the 73 viscous term is antisymmetric
(Fig. 8.5). With other words, the elastic stress driven flow carries the defects sym-
metrically toward each other (Fig. 8.5(b)), as in this way the free energy is reduced.
Thereby it contributes to the speedup of the process. On the other hand, the flow
driven by the n3 term carries both defects with equal speeds and in the same direc-
tion, downward in Fig. 8.5(c). This is the main reason for the +1 defect moving
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Figure 8.3 Position of the defects vs. time, measured from the initial mid-
dle point between the defects. The cases with one elastic constant: (a) RH
(Fig. 8.2) and (b) TH defect pair, (c) the case without hydrodynamics, (d)
RH pair with the n3 coefficient doubled. Combined effect of flow and elastic
anisotropy, with the average elastic constant By fixed: (e) B1/B2 =5 (RH),
(f) Bo/B1 = 5 (TH). Length and time are measured relative to ¢ ~ 2.4 nm
and 7 = 88 ns, respectively.
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Figure 8.4 Velocity of the defects (relative to £/7 ~ 27 nm/us) vs. inter
defect distance, one elastic constant. The +1 defect is strongly sped up by
the flow, the —1 is slightly slowed down (there the flow is opposite to its
motion, Fig. 8.2). Starting with the equilibrium configuration of fixed defects,
a nonmonotonic behavior is observed (dashed).
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faster. What is more, on this basis it can be understood why the flow near the +1
defect is much stronger as compared with that near the —1 defect (Fig. 8.5(a)): in
the first case the flow fields from the two sources are added, while in the second they
combine destructively. Finally, the velocity magnitude of both flows relative to the
speed of defect motion just due to reorientation of c is proportional to 73 /1nq.

The asymmetric 7, viscous term complicates the situation (Fig. 8.5(d)). It is this
term that is mainly responsible for the different flow effect in case of different defect
pairs (e.g. radial-hyperbolic (RH) vs. tangential-hyperbolic (TH, a homogeneous
7/2 rotation of ¢ vectors on the RH structure), Fig. 8.3 (a), (b)), since the 73 and
the elastic terms are left unchanged by the homogeneous rotation, and so is the
viscous torque on the ¢ vector, given by the n3 part of the viscous force (8.6). The
passive viscous terms (71, 72, 174) need not be discussed in the qualitative picture.

The asymmetry of defect motion is given rise to also by elastic anisotropy. In
SmC chiral systems, this can be large due to c-vector deformation induced gradients
of polarization P and thus appearance of an electric charge, e = —V - P. The polar-
ization vector lies in the smectic plane, usually perpendicularly to c, thus increasing
the bend elastic constant [110]. However, in very thin systems surface polarization
might dominate [112], strengthening the resistance to the splay deformation [111].
The annihilation processes at different ratios of the elastic constants are presented in
Fig. 8.6, combined effect of the flow and the anisotropy is demonstrated in Fig. 8.3,
curves (e) and (f). Without the flow, inverting the ratio and correspondingly chang-
ing the structure, RH <+ TH, does not change the dynamics, so it is enough to
consider one type of elastic anisotropy only.

8.5 Summary

Under the restrictions mapping the SmC thin film system to the XY-model, we
have reduced the SmC dynamic theory [108,109] to the EL theory. We have demon-
strated, that the latter, naturally generalized to the variable modulus of the vector
order parameter, exactly describes the model system containing vortices. Numeri-
cally, we have shown that the influence of hydrodynamics depends primarily on the
ratio of rotational and translational viscosity 73/m, controlling the hydrodynamic
acceleration of the process and the defect speed asymmetry, and on the ratio n4/nq,
breaking invariance upon configurations, differing only by a homogeneous rotation
of the vectors c. To a lesser extent, the motion asymmetry is contributed to also
by the elastic anisotropy. On the other hand, rescaling the elastic constants with
respect to the viscosities has no effect on the dynamics other than changing the
characteristic time.
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Figure 8.5 Flow fields resulting from different driving stress tensor terms: (a)

the complete stress tensor, (b) elastic stress, (c¢) the 73 viscous term, and (d)

the 74 viscous term. In all cases also the isotropic 79 viscous term is included.

For clarity, the number of mesh points has been reduced by a factor of 2 in

each dimension; only the central homogeneous region of the mesh is shown. In

(a) the approximate positions of defects are marked with circles, the radius of

the defect core is roughly two grid points. The maximum velocity magnitude

Umaz corresponding to the longest velocity vector is given for each flow field

(relative to /7 as defined in Eqgs. (8.8) and (8.9)).
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Figure 8.6 The effect of elastic anisotropy (without the hydrodynamics). The
ratio of elastic constants is (a) 1, (b) 2, (c) 4, (d) 8, and (e) 16; By is kept
constant. (f) For comparison, the hydrodynamic one elastic constant case with
n3 doubled is shown.
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Decay of integer disclinations in nematics

In this Chapter, we study in some respects an opposite phenomenon to the annihila-
tion — the decay of disclinations with integer strengths and the subsequent motion
of the resulting disclinations. The study has been motivated by a numerically ob-
served instability of the strength 1 disclination line, leading to the decomposition
into a pair of repelling strength 1/2 disclinations.

Like in Chapter 7, straight and infinitely long disclination lines are assumed.
First we focus on the early stage of the process, performing a stability analysis of
the integer strength disclination. We want to check whether there exists any local
stability. Should it not, it will be interesting to see what is the nature of the fluctu-
ations responsible for the instability, i.e., which components of the order parameter
are coupled. With this intention we study the complete Q-tensor dynamics without
the flow for small deviations from the initial structure.

The fluctuation problem of the strength 1 disclination line has been studied in the
director description with and without variable degree of order by Ziherl and Zumer
[113,114]. In the former case, a model radial profile for the scalar order parameter
was assumed, but with an incorrect behavior near the origin. In the spherical geom-
etry, the stability of a radial point defect (hedgehog) has been studied in [115] by
constructing a specific perturbation without solving the eigenmode problem, and in
[116] by assuming the Lyuksyutov’s constraint [117] and a restriction to a subspace
of perturbations. We solve a general linearized Q-tensor fluctuation problem for a
disclination line with any integer winding number. This enables us to find the grow-
ing fluctuations, which are responsible for the instability of the integer disclination.
For the strength 1 disclination, we determine the correction to the growth rate of the
critical fluctuations due to the flow. In the nonlinear regime, we study numerically
the influence of the flow on the repulsive motion of the +1/2 disclinations, created
after the decay of the strength +1 disclination.

9.1 Fluctuation problem

In this Section, we study the dynamics of perturbations of a long and straight
nematic disclination line with a general integer winding number. Cylindrical coordi-
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94 Decay of integer disclinations in nematics

nates (7, ¢, z) with corresponding orthonormal base vectors (&,, &, €,) will be used.
The disclination line coincides with the z axis.

In the one elastic constant approximation (9.3), the free energy is invariant upon
a homogeneous rotation of the Q-tensor. This implies that the Q-eigensystem will
rotate as ¢ = 1y + (s—1)¢ with respect to the above base vectors when we encircle a
defect of strength s located at the origin; ¢ is the angle between the director and &,
and vy is the free parameter of the defect configuration, corresponding to the angle
between the director at ¢ = 0 and the z axis (e.g., for +1 defects ¢y = 0 represents
the radial defect, while the circular one has ¢y = 7/2). There is no dependence on
¢ other than this rotation, i.e., the scalar invariants of Q (the degree of order and
biaxiality) are independent of ¢. It is due to this generalized cylindrical symmetry
of the unperturbed defect structure that the eigenmode problem is tractable.

Let us define another orthonormal triad (&;,é,,8é,),

. [ costyy  sin ¢]
~ |—sinty cos
With this, in the unperturbed configuration (or ground state, as referred to below)

the Q-tensor eigensystem coincides with the triad everywhere. Further, we define
the five orthonormal symmetric traceless base tensors [118-120], Fig. 9.1,

€

€2

;} . (9.1)

Ty =1/V6(36. @ 8. —1),

T =1/V26, 28 —& 08,

T, =1/V2@ ®8+8&®8&), (9.2)
To=1/V2(e. 28 +8é ©8,),
TL=1/V2(.08&+618,),

with Tr(T,;T;) = §;;. By virtue of the definition (9.1), the resulting eigenmode
equations will be independent of 1y, but will depend on the winding number s
through spatial derivatives of the base tensors (9.2).
In one elastic constant approximation, Eq. (7.1), the standard free energy density
in terms of Q reads
f=3ATIQ? + :BTrQ* + 1C (TrQ?)? + L Tr(VQ - VQ), (9.3)

2

where in the last term the contraction over the gradient components is denoted by
the dot. Expressing the Q-tensor as

Q(r,t) = a;(r,t)Ti(r), i=-2,-1,0,1,2, (9.4)

and inserting it into Eq. (9.3) while being careful with the gradient V = &,0/0r +
€,0/10¢ of the base tensors, f is expressed in terms of the tensor components a;.
The balance of generalized forces leads to the equations of motion for the components
a;, in a dimensionless form:

_8f_8f_28f 1 0f o of of
oVa; aai_arﬁ% ra% 7“8(;58% Oa;’

(9.5)

pa; =V
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Figure 9.1 Schematic representation of the perturbations described by the
base tensors (9.2) for a uniaxial distribution with a positive degree of order
(dashed). The Q-tensor eigensystem is represented by the box, the length of
the edges corresponds to the eigenvalue (plus a constant). The long axis of the
box (usually called the director) is parallel to e,. Ty describes a perturbation
of the degree of order, T; describes a biaxial perturbation, T 1, To, T o
represent rotations of the eigensystem. The interpretation of the perturbations
varies according to which of the axes has been identified with the director.
Irrespective of this, the perturbations given by T_;, To, and T_5 possess
Goldstone modes, while those given by Ty and Ty are massive.

By symmetry, the ground state consists solely of the components ay and ay,
as opposed to perturbations, where all the components are allowed. According to
Eq. (9.5), the ground state components, ¢y = ag, ¢1 = a1, satisfy

82(]0 18q0 A 1 B 2 2 C 2 2

o2 ;E—ZCIO—%Z(CIO—CI1)_Z(‘J0+(J1)CI0—0, (9.6)
?qr 10q; 4s® A 2B c,, 9

52 T T ot gf%%—f(%‘i“h)‘h—o; (9.7)

and in the vicinity of » = 0 behave as
G = co+ car?,  q ~ br!*l (9.8)
with ¢y = co(A + Bey/v/6 + Cc2) /4 and ¢y, b extracted from the numerical solution
if needed. Putting
a(r, ) = { ;I;l((i),;;xz(r,t) : z i (}11,27 o (9.9)
where qo; are the ground state components and z; are the perturbations, z; <

o1, and linearizing the equations (9.5), one obtains two groups of coupled linear
equations for the perturbations z;:

gy = V2o — fo(r)zo+ for(r)a, (9.10)
o= V= e = B0 e+ () (0.11)
ry = 1 2 1 2 06 1\r) 1 01\") Zo, .
45 4
3.1'_1 = V2x_1 - il'_ + —8% - f_l(T) r_1, (912)

p2 T2 0
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and

52 ox_

.’1.72 = VQJ;Q T2[L‘2 — 2s agﬁ - f2( )ZL‘Q, (913)
. 5 52 0z
T o = Vv T_9 — ZL' 2+288—¢ —f ( )37,2, (914)

2 9%z 10z %z : : : : :
where Vix = 55 + 158 + -5 5z 18 the Laplacian in cylindrical coordinates and

folr) = A+/2/3Bg +C(3¢ + ¢2),

fi(r) = A—\/2/3Bg+ C(¢ +342),

fa(r) = A—\[2/3Bg +C(G + ¢2), (9.15)
(r)
(r)

r

for(r) = (\/%B —2Cq)q,
f+2 = A+ B/V6(q £ V3a) + Clgs + q)).

,
In Egs. (9.10)-(9.15), dimensionless quantities have been introduced: r <« 7/,
t « t/7, (A,B,C) + (A, B,C)&*/L, with the correlation length of the degree of
order (7.18) and the characteristic time (7.19). It is worth pointing out that there
is no difference between defects with strengths s and —s except for two minus signs,
which can be absorbed in the base tensors, ie., s = —s and T_; o — —T_;
conserves the equations (9.10)-(9.15).

9.1.1 Fluctuation eigenmodes

The eigensolutions of the systems (9.10)-(9.12) and (9.13)-(9.14) are sought by sep-
aration of variables using the ansitze (we write cos(me¢) instead of C) cos(me) +
Cysin(me), m is an integer)

o Eo(r) cos(m)
T = ( ) cos(mg) o exp(—At), (9.16)
T _1(r) sin(me)

{7} {Jffifﬁfzm Jesp(-) o1

Proper combinations of the angular functions have been chosen in (9.16) and (9.17)
to satisfy the equations. One could also include a factor cos(kz) and add the depen-
dence on z to Egs. (9.10)-(9.14), which is only through 9*/92% in the Laplacian, so
that the z coordinate is easily separated. Then the eigenvalue A (the inverse time
constant) would be

A=\ + K% (9.18)

where A, is the eigenvalue of the radial and angular part. This time we are not
interested in the z dependence and have omitted it from the equations for brevity.
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In either case, only eigenvalue systems for the radial functions R;(r) remain, where
A; is the eigenvalue (we write A instead of A,):

m2
V2R0 + ()\ — fo(T) — F) Ro + f01 (T) R1 = 0, (919)
m?4+4s? 4sm
V2R1 + ()\ — f1 (T) — T) R1 — 7 Rfl + fgl(r) Rg = 0, (920)
24452 4
VIR, + ()\ () - m+723> Ry ——"R =0, (9.21)
r r
and
2, .2
2
V2R, + <)\ — folr) = 2 ) Ro— =" R,=0, (9.22)
r r
2, .2
2
V2R_, + ()\ — () — m;S ) R_o— % Rs = 0. (9.23)

One notices that the three- and two-function operators (9.10)-(9.12) and (9.13)-
(9.14) are self-adjoint, implying real eigenvalues and orthogonal eigenmodes. These
must be solved for numerically, either by discretization, Bessel-function expansion,
relaxation, or shooting. Although for linear systems the first two methods would
usually be preferred [121], we decide to use the shooting procedure [54, p. 582] as
it is simple and quite efficient when only a few eigenfunctions are searched for. In
what follows, we will focus our attention to possible growing modes, i.e., those for
which A < 0.

Due to the singularity of the cylindrical coordinates, the behavior of the radial
eigenfunctions near the origin must be determined analytically prior to numerically
solving the eigensystems (9.19)-(9.23). One makes use of the ground state expan-
sion (9.8), which enters the functions f;. The unknown coefficients of the radial
eigenfunction expansion have to be determined together with the eigenvalue A. For
numerical reasons, we restrict the eigenmodes to vanish at an arbitrary, but not too
large a value of r = r3. The modes concerned are localized and hence remain un-
affected by the restriction, if only rgy is large enough compared to the characteristic
decay length of the mode. For nonlocalized modes the restriction corresponds to
a physical cylindric confinement of the defect with strong anchoring; in this case,
however, no numerical difficulties prevent ry from larger values. Thus, starting with
the analytic expansion of the radial functions and a trial value of A, the equations are
integrated to ro by a Runge-Kutta method with an adaptive step size [54], where it
is required that R;(ro) = 0. With n radial functions coupled, there are n unknown
coefficients of expansion, one of which is arbitrary. Together with A\ this gives n
free parameters, which in the shooting procedure are determined by the n ending
conditions.

9.1.2 Eigenmodes leading to decay

The modes responsible for the decay do not involve the components x5 or x_5, since
by symmetry the Q-tensor eigensystem does not get rotated out of the xy plane in
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Figure 9.2 Radial eigenfunctions of the growing fluctuation, s = 1, m = 2,
A = —0.22. The length unit is £ = 2.11 nm, the time unit is 7 = 32.6 ns. The
fastest growing mode leading to the escape of the defect has A =~ —0.0042.

this process. Therefore, the system (9.10)-(9.12) must be examined. The lowest-
order expansion of the system (9.19)-(9.21) around the origin does not involve the
ground state coefficients (9.8), but requires

+qy rlm—2sl

ay T\m+25| )

Ry=r", Ru~ { (9.24)

where the two solutions for R; and R_; are independent and the coefficients a;, as
must be determined together with the eigenvalue.

We study in detail the simplest case, i.e., the decay of the +1 defect. Then
we make a generalization to defects of higher integer strengths. In the case of the
decay of the +1 defect to two +1/2 defects, the modes in question must exhibit a
quadrupolar symmetry, which sets m = 2 in the angular part of Eq. (9.16). A single
growing mode (A &~ —0.22) is found (Figs. 9.2 and 9.3), which is localized within a
few correlation lengths, while all the others (including those with different m) are
decaying and nonlocalized. Due to the localization, the growing mode cannot be
affected by any confinement unless it comes down to the & scale — it is an intrinsic
feature of the defect structure. It is no sooner than at a confinement of ry ~ 3.5¢
that the mode becomes decaying.

More precise, and applying to any integer strength, it is the function R_; that
is localized if and only if the eigenmode is of the growing type, which can be seen
from its asymptotic behavior

R_y =< 72 etVAr, (9.25)
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Figure 9.3 Cross section through the disclination line with s = 1: the ground
state (gray) is perturbed by the growing mode (red, shown exaggerated), lead-
ing to two 1/2 disclinations on the z axis.
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The functions Ry and R; are found to be localized also for the decaying modes in
the region of low enough A. Significantly, the modes with A < 0 have a discrete
spectrum, whereas the spectrum of those with A > 0 is continuous. Thus, the
growing modes can be counted.

One can test the time evolution of the growing mode in a pure numeric sim-
ulation. Regardless of the initial perturbation, i.e., if only it contains a nonzero
projection onto the growing mode, an exponential growth of any quantity linearly
depending on the mode amplitude is observed after a short transient (decay of other
modes), with a time constant very close to A.

It is instructive to study the influence of the hydrodynamic flow generated by
the order parameter dynamics on the growth rate of the mode. This is performed
numerically, where the coupling of the flow and Q-tensor fields is described by the
tensorial version of the Ericksen-Leslie theory [92], Chapter 7. The one elastic
constant approximation is used, the numerical method and the material parameters
are the same as in Chapter 7. It is found that the hydrodynamic correction to the
growth rate is small, i.e., less than 5%, speeding up the modes. The correction
is expected to be small, since the velocity of the flow generated decreases with
decreasing Q (that is, decreasing TrQ?), as does its influence on Q (Egs. (7.6) and
(7.7)). At the same time, one should be quite reserved, since the description of
the flow-to-Q-tensor coupling [92] is not complete [122], and the missing terms [123]
could play an important role in the dynamics of the defect core. Besides, one
must also realize that the applicability of hydrodynamic equations is questionable
at length and time scales that small (1 nm, 10 ns).

In the case of defects with higher strengths there is an increasing number of
growing modes, as there are more and more ways the defect can decay. It turns
out that for every decomposition allowed topologically, one can find at least one
growing mode, provided that none of the resulting winding numbers is too high.
Each of these modes exhibits a distinctive angular symmetry, set by its value of m.
Generally, a defect of strength +s decays to m symmetrically placed +1/2 defects
surrounding a +sFm/2 defect, which remains in the center (Fig. 9.4). For example,
a possible decay channel of a defect with strength 2 is: 2 — —1+46 x 1/2, where the
—1 defect stays in the middle, surrounded by the 1/2 defects. The corresponding
mode has a sixfold symmetry, m = 6. On the other hand, the +2 defect is stable
with respect to the decay 2 — —3/2 + 7 x 1/2 and higher. All possible decay paths
of defects with strengths 2 and 3 are given in Tables 9.1 and 9.2. The decay to +1/2
defects only is always the fastest.

In principle, there is no limitation to the winding numbers. There are, however,
two technical points. Firstly, the core size of the defect increases proportionally
to its strength s, which gets time and space consuming with progressing winding
numbers. Secondly, more terms should be added to the expansion (9.24) to reach
better accuracy, required particularly for the localized modes with higher values of
m. The series is more complicated in this case, as it contains both the ground state
coefficients (9.8) and the eigenvalue A. It is beyond our aim to pursue accuracy
issues here.

Instead, one must emphasize an important point regarding the numeric simu-
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‘ decay ‘ m ‘ -\ ‘
[1—52x1/2 [ 2] 022 |
251+2x1/2 2 [ 0.066
2—>1/2+3x1/2 3| 0.23
2 4x1/2 4] 0.39
2——-1/24+5x1/2| 5| 0.23
2—>—-1+6x1/2 6 | 0.045

Table 9.1 Fastest decay modes with a given m of the s = 1,2 disclination

lines
‘ decay ‘ m ‘ —A ‘
3—242x1/2 2 10.043
3—3/243x%x1/2 3 1 0.15
3—=>14+4x%x1/2 4 | 0.26
3—1/245x%x1/2 5 | 0.36
3—6x1/2 6 | 0.45
3——1/24+7x1/2| 7 | 0.36
3= —-14+8x1/2 8 | 0.26
3—-3/2+9x1/2| 9 | 0.14
3——-24+10x1/2 |10 |0.012

Table 9.2 Fastest decay modes with a given m of the s = 3 disclination line

lation of defects with winding numbers higher than 1. The square grid standardly
used in simulations reduces the symmetry of the space to a fourfold symmetry only,
i.e., Cx — C4. If a growing mode is invariant under Cy (m = 4,8,12,...), it will
experience an artificial boost from the grid, such that its growth rate will not vanish
with vanishing amplitude! Now, as soon as the spectrum contains a single such
mode, it will overwhelm other possibly faster modes, leading to an artificial fourfold
decay of the defect. An example of such decay is shown in Fig.s 9.5 and 9.6. To
envisage the origin of the boost it is appropriate to ask why there is not any with
a non fourfold-symmetric mode. In this case, the rotations of Cy generate at least
two different modes, as opposed to the identity representation in the previous case.
These are degenerated with respect to their placement on the grid, since the grid is
invariant to C4. Therefore, in a pure ground state neither must be favored and hence
their growth rate must vanish at zero amplitude. Since all defect structures except
the +1 one possess fourfold-symmetric growing modes, the numerical simulation of
the mode dynamics is only possible for the +1 defect.

9.1.3 Eigenmodes leading to escape

In an unconfined system, planar defects of integer strengths can escape to the un-
deformed configuration with a zero deformation free energy (escape in the third
dimension) [68,69]. The issues concerning the (meta)stability of defect cores have
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Figure 9.5 Radial eigenfunctions of the growing modes with m = 4 for the
s = 2 defect: (a) A = —0.39, (b) A = —0.035
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Figure 9.6 Decay of the s = 2 defect to four 1/2 defects, m = 4; the
corresponding radial eigenfunctions are depicted in Fig. 9.5. The four-
fold-symmetric (m = 4) modes are numerically boosted due to the fourfold
(m = 4) symmetry of the computational grid.



104 Decay of integer disclinations in nematics

been addressed by R. Meyer [69] in 1973. At that time the tensorial defect structure
had not been presented yet, so a direct answer could not have been given. Equipped
with the present formalism, one should look for another type of possibly growing
modes leading to the escape. As here the Q-tensor eigensystem is rotated out of
the zy plane, the system (9.13)-(9.14) must be examined this time. In particular,
one expects the perturbation x5 to be crucial, as it corresponds to a rotation of the
director out of the plane. The lowest-order expansion of the system (9.22)-(9.23)
around the origin is

+q, rlm—sl
R:I:Z ~ { s T|m+s| ) (926)

the ratio of a; and a, is determined together with the eigenvalue in the shooting
procedure as before. For m = 0 the equations (9.22) and (9.23) are decoupled. It is
indeed in this case that one finds A < 0 and the discrete spectrum for all the modes
x9. The modes x_, are decaying, as are all the other modes with m # 0.

Noting that fo(r > &) — 0 and foo(r > &) — f_a(c0) > 0, the general
asymptotic behavior is

Ry =< r /2 etV A T R_gx 2tV Izl mAT (9.27)

i.e., Ry is localized for A < 0. It turns out that here the localized modes are much
more extensive than those of the decay.

One may think there is little point in studying the decay if the defects are always
unstable to the escape. There exist, however, a large difference in growth rates of
the two types of unstable modes, connected with the large difference in localization.
In the case of the strength +1 defect the decay is approximately 53-times faster than
the escape. Whence, provided we prepared the configuration with the strength +1,
it would always decay before it could even start escaping. Of course, it is just due
to the fast decay that the initial configuration is very hard to prepare.

9.1.4 Remarks on the fluctuation problem

The eigenmode problem has been solved in the one elastic constant approximation.
Beyond this approximation, one would have to include more elastic terms in the free
energy density (9.3). There is only one additional bulk term quadratic in Q and
in the first derivative: (0;Qix)(0;Qjx). It distinguishes between the splay and bend
distortions (relevant for the decay) only if the scalar invariants of Q vary, which does
take place in our case. To distinguish between the splay and bend in the uniaxial
limit with constant degree of order, however, one has to include the third-order term
Qi;(0:Qxt) (0;Qui). In both cases the generalized cylindrical symmetry of the ground
state is lost, making the eigenmode problem two-dimensional, i.e., the variables r
and ¢ cannot be separated any longer. It is only in the case of the 41 disclination
with ¢y = 0 or 1y = 7/2 (radial and circular disclinations) that the cylindrical
symmetry is retained, so that without the third-order term the separation would
still be possible. The third-order term, however, brings about mixed derivatives,
which inevitably prevent the separation.
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Figure 9.7 Position of the repelling defects as a function of time, after the
strength (a) 1 and (b) —1 defects has decayed: (a) 1/2 defects, (b) —1/2

defects, and (c) the degenerate case without the flow. Recall that the length
unit is £ = 2.11 nm and the time unit is 7 = 32.6 ns.

As mentioned, the dependence of the eigenmodes on the coordinate z is simply
cos(kz) or sin(kz), with k entering Eq. (9.18) to give the eigenvalue. Furthermore,
it is also possible to study the disclinations with the half-integer winding numbers,
in particular the 1/2 disclination line. To satisfy the continuity of the eigenso-
lutions in this case, in the angular part of the ansatz (9.17) it is required that
m = 1/2,3/2,5/2, ..., while the ansatz (9.16) remains the same. Thus, with the
approach taken in this Chapter, one is able to solve the full fluctuation problem of
a straight and infinitely long 1/2 disclination line.

9.2 Hydrodynamic speedup

Now let us study the repulsive motion of the two +1/2 disclinations, created after
the strength £1 disclination has decayed. We shall focus on the influence of the
hydrodynamic flow. Due to the symmetry of the problem, there is no flow-induced
asymmetry (Fig 9.7) like the one encountered in Chapter 7. However, the speedup
caused by the flow is larger this time, because both the elastic stress (7.5) and
the viscous stress given by the p; term (Eq. (7.6)) drive the defects apart (see the
discussion of Chapter 7). The effect depends on the ratio u1/8s, Fig. 9.8.

There is also no subtlety with the initial condition (the final state in this case)
like that in Chapter 7. This enables us to study the behavior of the defect velocity
at larger separations. Figure 9.9(a) shows the velocity of the defect v as a function
of the defect separation r. After the defects have been well isolated from each other,
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Figure 9.9 (a) Defect velocity v and (b) the quantity vr as functions of the
separation r. The behavior at small r is not particularly informative as the
defect position is ill-defined there.

the velocity decreases with r. Before that, the velocity cannot be properly defined.
Figure 9.9(b) shows the r-dependence of the quantity vr, which at least for the
nonhydrodynamic case is constant in the limit /£ — oo (scale invariance).

Figure 9.10 is particularly significant. It displays the ratio of the advective
velocity (transport by the flow) and the total velocity of the defect. One can see
that the ratio increases with 7, and reaches a value well above 0.5 as hinted by
a rough eye-made extrapolation to the data points. This means that at larger
separations the contribution of the translational motion (advection) to the defect
speed is more important than that of the director reorientation, especially if one
recalls that the separations reached in our calculations are still quite small — only
~ 80& or 0.17 pm.
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Figure 9.10 Ratio of the advective and total velocities of the defect as a
function of the inter defect separation. By a rough extrapolation, the ratio
is well above 0.5 at large separations, indicating the importance of the flow
transport.
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Conclusion

It is now time to summarize what has been presented in the Thesis, reviewing
the concepts and results and putting them into context of the research going on
in the field. The aim of the Thesis has been to study selected problems coupling
hydrodynamics and order parameter dynamics in liquid crystals. They were chosen
according to theoretical and experimental interest, and, of course, our capability of
solving them.

The backflow switching problems of Chapter 4 have been studied in terms of the
well-established Ericksen-Leslie theory for the nematic director. Primarily they were
intended to serve as an introduction to the research area, setting up the numerical
approach to be used in the work to follow. Conceptually, they do not represent
any novelty. Regarding their computational complexity, however, they are quite
advanced compared to the one-dimensional examples that had been studied previ-
ously. More confined geometries increase the number of spatial variables, but at
the same time offer more possibility for manipulation with external fields. Having
managed to cope with the increasing complexity, we were able to point out special
cases, where the hydrodynamic flow causes the perturbation enough to completely
alter the time evolution of the system. Effects of this kind had only been studied
in context of spinodal instabilities of liquid crystals, mostly in the linearized form,
and in various pattern-forming systems involving electro- and thermal convection.

The derivation of the dynamic theory for the complete vector order parameter
presented in Chapter 5 features two viewpoints of importance. The vectorial theory
is required if one wants to study defects in a medium with the vector order parameter
— the SmC system in our case. On the other hand, by demonstrating that the
Ericksen-Leslie theory can be naturally extended to yield the vectorial theory, or,
in other words, the latter can be consistently reduced to the former, we have shown
that the Ericksen-Leslie theory is exactly the reduced version of the vectorial theory,
restricted to the unit vector. Despite the Ericksen-Leslie theory has been derived
and used for nematics, it does not have any connection with the nematic tensor
order parameter.

To study the dynamics of defects in nematics, which has been our primary ob-
jective, one has to start over and construct the tensorial theory. It can be reduced
to the Ericksen-Leslie theory in the limit of constant scalar invariants of the ten-

109



110 Conclusion

sor order parameter. The converse path is not possible, i.e., trying to upgrade the
Ericksen-Leslie theory, which is linear in the director, by adding a variation of the
scalar order parameter results in a hybrid with severe drawbacks. In Chapter 7, we
have solved the hydrodynamic pair-annihilation problem of straight nematic discli-
nation lines using an abridged form of the tensorial theory. We were able to account
for the speculated velocity difference of the two disclinations, which arises mainly
due to the flow effects. Unfortunately, couple of months before ours the work of
another group was published [96], demonstrating essentially identical flow effects.
The fact that their treatment is not based on the customary phenomenological de-
scription of nematics but rests on a somewhat leaner microscopic model with fewer
material parameters has been less important so far. The situation might change in
the future.

Despite experimental convenience of the SmC film system, there have been no
numerical studies of defect dynamics reported in the literature. A possible reason for
the deficiency could be the enormous complexity of the governing equations and the
great number of mostly unknown material parameters. In addition, the generaliza-
tion of the original equations to the variable length of the smectic c-director needed
for the description of defects would be a backbreaking task. Instead, in Chapter 8
we have benefited from the observation that under the restricting assumptions the
equations can be reduced to the Ericksen-Leslie equations exactly. At this level,
the passage to the variable length of the c-director is also quite comfortable. The
modelled SmC film system corresponds to the class of the XY-model. Its dynam-
ics is governed by the dynamic equations for the vector order parameter derived in
Chapter 5. We have shown that the flow effect accompanying the pair-annihilation
of vortices is qualitatively equal to the one in nematics, i.e., the disclination with
the positive winding number is faster.

Vortices of strength 1 are unstable in the nematic case, i.e., they spontaneously
decay to a pair of identical £1/2 disclinations, which we first observed numerically.
In Chapter 9, this motivated us to study the dynamic behavior of a perturbed
strength 1 disclination line. In one elastic constant approximation we were able
to solve the complete tensor fluctuation problem for the straight disclination line
with a general integer winding number. We found two types of growing fluctuation
eigenmodes, leading to the decay to disclinations with lower winding numbers or
to the escape in the third dimension, respectively. They are localized and exhibit
discrete spectra. In accord with the stronger localization, the characteristic time of
the modes leading to the decay is more than an order of magnitude smaller than that
of the escaping type, suggesting that the decaying scenario is what takes place, e.g.,
after a temperature quench, rather than the escaping one. We have also studied
the hydrodynamic correction to the growth rate of the fluctuation leading to the
decay of the strength 1 disclination, and found it to be under 5%, increasing the
growth rate. The validity of this result is questionable due to the incompleteness
of the tensorial approach and short (nonhydrodynamic) length and time scales. In
Chapter 9 we also studied the influence of the flow on the repulsive motion of the
two 1/2 or —1/2 disclinations, created after the strength 1 or —1 disclination has
decayed. A strong speed-up has been observed.
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If there is one thing one should learn from the Thesis, it is the importance of
the hydrodynamic flow accompanying the dynamics of defects in liquid crystals. We
have shown that the contribution of the flow transport (advection) to the motion
of the defect is quite comparable to the contribution due to the order parameter
reorientation. For the specific choice of viscous material parameters, corresponding
to the nematic substance MBBA, the advective contribution even dominates at
relevant defect separations.

10.1 Future perspectives

There is still a lot of work to do, either improving the methods used, or challenging
new problems related to those that have been solved.

In my opinion, by far the most important improvement to be done is to replace
the somewhat cumbersome method of solving the Navier-Stokes equation with a
more efficient method, e.g., a Fourier-based solver, or a function expansion method.
The main difficulty in defect simulations is the large discrepancy between the size
of the defect core and the interdefect distance relevant for experiments, which are
readily in a ratio of 1/10°. The replacement of the Navier-Stokes solver is absolutely
inevitable if one wants to reach defect separations of the order of 100 pum, so that
numerical results could be directly compared with the measurements.

One of the problems to be attacked in the future is the dynamics of nematic point
defects, e.g., the annihilation of a hedgehog-antihedgehog pair, either in a capillary
where most of the measurements have been done, or in bulk. This is a 3D problem.
One could get rid of the extra spatial coordinate by assuming cylindrical symmetry
about the axis joining the defects. However, numerical indices exist that the actual
configuration does not possess this symmetry.

Another open problem, which has been already solved to some extent in Chapter
9, are the fluctuations of the strength +1/2 nematic disclination line. As suggested
by the equations, a part of the fluctuation spectrum corresponds to the simple one-
dimensional diffusion spectrum with the dispersion A\ = k2, where \ is the relaxation
rate and k is the wave vector of the mode, which is parallel to the disclination line in
this case. In other words, as far as these fluctuations are considered, the disclination
line behaves like a damped massless string subject to line tension. In addition, it
would be interesting and quite nontrivial to study the influence of hydrodynamics on
the relaxation rates of the fluctuations, particularly those just mentioned. According
to what we have learned about the flow effects on defect dynamics we should expect
significant corrections, especially for long wavelength fluctuations.

Similar calculations (a bit simpler) as in Chapter 9 can be performed also for the
disclinations of the vector order parameter. In these systems, one could thus study
the fluctuations of the strength +1 disclination and the decay of higher strength
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disclinations.
* K *

Is it in the human nature or just in mine the impression that after the problems
have been solved they inescapably start to seem trivial? After a fortnight or so. If
I was to start over from scratch again, I would have done many things differently.
Much better, I believe. Nevertheless, after all the uncertainty of the early days,
months (years?!), I am pretty satisfied with the outcome. And I can hardly consider
myself being someone who gets satisfied easily. Still, I would have done many things
differently... But if someone had foretold me about the present situation when I
was just starting with my research, I would probably never have had the nerve to
compete with it. Time is a killer. Especially if one makes effort.
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Izjava

V disertaciji sem predstavil rezultate lastnega znanstvenoraziskovalnega dela.

Ljubljana, marec 2003 Daniel Svensek






ERRATUM

While Egs. (5.9) and (5.17) (pp. 57 and 60) themselves are intact, they do not
represent the diagonalized quadratics f¢ and T's* as referred to in the text, but
merely express them as the sums of square terms. Thus, Egs. (5.9) and (5.17) do
not stipulate the positivity of the coefficients, as falsely stated in the text. The
quadratics can be diagonalized in principle. However, the diagonalized forms are
too convoluted to be useful.



