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Abstract

We examine a class of involutory self-dual convex polytopes with a specified sets of
diameters, compare their vertex sets to extremal Lenz configurations, and present some of
their realizations.
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1 Introduction

We describe points in R4 by standard coordinates (z1,Z2,...,24). For 3 < i < d,
let H;(b;) denote the hyperplane x; = b;, and L(bet1,...,bq) = ﬂf:eHHi(bi), e =
2,...,d —1. Le(bey1,...,bq) is an e-flat, and denote the (e — 1)-sphere with centre ¢

and radius ¢ in L¢(bey1, . ..,bq) by S*71(c,t). We denote the origin of R? by ¢4, and let
(Aw,p) == dw + (0,...,0,p), fora point w € Hy(0) = Ly_1(0) and {\,p} C R.

Let Y be a set of points in R?. Then conv(Y") and aff (V') denote, respectively, the con-
vex hull and the affine hull of Y. Forsets Y1, Y5, ... Y, let [Y1,Ys,...Y,] = conv (U, Y;)
and (Y7,Ys,...Y,) = aff (U,Y;)). IfY = {y1,y2,...,yn} is finite, we let
[Y1,Y2, ..., yn) = conv(Y) and (y1,ya, ..., yn) = aff (V).
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Let P C R< denote a convex d—polytope with L(P) and F;(P),0 < i < d—1, denot-
ing the face lattice and the set of i—faces of P. We let f;(P) = |F;(P)|, V(P) = Fo(P)
and F(P) = Fyq_1(P), assume familiarity with the basic notions of convex polytopes, and
refer to [3, 6] and [18] for basic terminology and definitions. Specifically, two polytopes
Py and P, are combinatorially equivalent (P; = P») if there is an isomorphism (inclusion
preserving) from £(P;) to £(Pz), and are dual if there is an anti-isomorphism (inclusion
reversing) from L£(P;) to £(P). If there is an anti-isomorphism ® from £(P) to L(P)
then P is self-dual, moreover, if ®2 = id then P is involutory self-dual.

Let P C R< be involutory self-dual via the anti-isomorphism on £(P) induced by the
map v — v* withv € V/(P), v* € F(P) and v ¢ v*. A segment [v, w], with end-points
v and w, both vertices of P and with w € v*, is called a principal diagonal of P and
let D(P) denote the set of principal diagonals of P. Finally, we say that P is configured
if each principal diagonal in P has length diam(P), and that P is strictly configured if it
is configured and only principal diagonals of P have length diam(P). We note that odd
regular polygons are strictly configured.

Let X,, C R% be a set of n > d > 2 points and My(X,,) be the number of pairs
{z,y} C X, such that diam(X,) = ||z — y||, the distance between = and y. Let M (d,n)
be the maximum of M,4(X,,) over all X,, C R?. Then X,, is an extremal configuration if
Md(Xn) = M(dv n)

The problem of determining M (d, n) is due to ErdGs in [4]. We list contributions to
the problem in the References, with specific mention of [11, 12] and [17] and the following
results:

(1) M(2,n) = n, and X,, C R? is extremal if and only if V(P) C X,, C bd(P) for
some Reuleaux polygon P.

(2) M(3,n) = 2n — 2 and X,, C R3 is extremal if and only if X, is the vertex set of
certain types of polytopal (Reuleaux) ball polytopes.

(3) M(d,n), d > 4, grows quadratically with n, and extremal X, are attained only by
Lenz Constructions.

In this last regard, we note (cf. [17]) that an (even dimensional) Lenz Configuration in
R, d =2p > 2, is any translate of a finite subset of uleci where C; is a circle with
centre at the origin O and radius r;, so that TJZ + 7",3 = 1 for all 7, k and the subspaces U;,
spanned by C;, yield the orthogonal decomposition R = U; @ Uy & ... @ U,,. For odd
dimensions d = 2p + 1, C is replaced by a 2-sphere with centre O and radius r = %
Theorem 1.1 (K. Swanepoel). For each d > 4, there exists a number N (d) such that all
extremal configurations X,,, withn > N(d), are Lenz Configurations.

We note that in [17], Swanepoel also determines M (d, n) for sufficiently large n.

Our interests in this paper are realizations (constructions) of strictly configured d-
polytopes P, d > 3, and values of My(P) (number of principal diagonals of P). In
Section 2, we will show that for strictly configured 4-polytopes there is a formula similar
to 1) and 2) that depends on the number of vertices and edges; furthermore we show the
convex hull of vertices of an extremal Lenz configuration is never a configured d-polytope.
The former raises the question of whether in dimension d > 4 the situation for M (d, n)
may have at least another possible scenario, if the points are not in Lenz configurations. In
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Section 3 we will give constructions of configured d-polytopes P for d > 3 such that for
d = 4, M4(P) < 4n. These constructions consist of two steps: determining self-dual poly-
topes so that all principal diagonals have length (say 1), and then showing that the diameter
of the polytope is 1.

2 Principal diagonals

In this section, we assume that P C R< is an involutory self-dual d-polytope via the anti-
isomorphism on £(P) induced by v € V(P) — v* € F(P), and recall that D(P) denotes
the set of principal diagonals of P.

Theorem 2.1. Let P C R3 be a configured 3-polytope. Then P is strictly configured and
D(P)| =2fo(P) —

Proof. Since P is self-dual, we have that fo(P) = f2(P) and so, f1(P) = 2fo(P) — 2 by
Euler’s Theorem.

Letv € V(P). Then v* € Fy(P) is a polygon and fo(v*) = f1(v*). On the one hand,
fo(v*) = |{g € D(P) | v € g}| by definition. On the other hand, v € e € F;(P) iff
e* € F1(v*), and so, f1(v*) = [{e € F1(P) | v € e}|. Thus [{g € D(P) | v € g}| =
{e € F1(P) | v € e}| and [D(P)| = | F1(P)].

Theorem 2.2. Let P C R* be a strictly configured 4-polytope. Then |D(P)| < 2f1(P) —
2fo(P).
Proof. Let V(P) = {v1,...,v,} and F1(P) = {e1, ...,em }. Then Fo(P) = {e], ..., €5}
and F(P) = {v],...,v}} by the self-duality of P.

We recall from [1] that f;5(P), 0 < j < k < 3, is the number of pairs of j-faces
G; and k-faces G, such that G; C Gy, and that foo(P) < 6f1(P) — 6fo(P). By the
self-duality of P, we have also that

Zfl = f13(P) = fo2(P),

Zf2 = f23(P) = fo1(P) and

m

for(P Z o(ej) =2f1(P)

Finally, let v € V(P) and e € D(P) of a configured P C R*.
Then v € e if, and only if, e = [v,w] and w € Fy(v*). Thus, fo(v*) is the number

(
of principal diagonals of P that contain v, and >~ ; fo(v}) = 2|D(P)|. Then by Euler’s
Theorem,

PP = 3 20+ ACD - 107

=n+g Zfl Zf‘l(”f) .1)

= fo(P) + §f02(P) - §f01(P)
< fo(P) + [3fi(P) = 3fo(P)] — f1(P).
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End of Theorem 2.2. O

We let My(Q) = My(V(Q)) for a d—polytope @, and observe that if P C R* is strictly
configured then My (P) is linear in f1(P) and fo(P). This raises the following question: Is
there a set of n vertices of a strictly configured polytope in Lenz Configuration? We show
below that the answer is no if fo(P) > 5; in fact, we present in Section 3 a subfamily of
such P C R* with f1(P) < 3fo(P) and M4(P) < 4fo(P).

V6 /10
If n = 5 and d = 4, it is easy to prove that the polytope with vertices (0,0, ¥, ¥;7),

(0,0, ‘3f,0) I(COb %,sin Z,0,0), \[(cos 2r sin 27, 0,0) and f(l 0,0,0) is a Lenz
Configuration and that it is strictly configured. This is the only case with d = 4 where the

vertices of a strictly configured polytope is a Lenz Configuration.

Theorem 2.3. Let X C R* be a 4-dimensional extremal Lenz Configuration with | X | > 6.
Then P = conv(X) is not configured.

Proof. We assume X C R* is a 4-dimensional Lenz Configuration with X C C; U Cy,
C; C U;, where R* = U; @ U,. Itis clear that P is a 4-polytope with V(P) = X and
diameter 1. Let X N C, = {w1,...,wa}, X N Co = {21, ..., 2p} and note that for i = 1,2,
G; = UzﬂPGFQ(P)

From [17], we have that M4(X) = M (4,n) with | XNCy| = [§]and [ XNCy| = [ F],
say. Furthermore, M (4,6) = t2(6) + 4, M(4,7) = t2(7) + 4 and M (4,n) < ta(n) +
[5 ]+ 1forn > 8 where t3(n) is the number of pairs {w;, 21} such that ||w; — z|| = 1.
Accordingly, there are M (4,n) — t2(n) diameters of X that have end points in either C;
or Cs.

We suppose that P is configured via the anti-isomorphism induced by v — v*, v ¢ v*,
and seek a contradiction. Thena > 3,b > 3, v ¢ v* and F(P) = {w], ..., w}, 27, ..., 2} }
yield that v* N Cy £ 0 £ v* N Cy forv € X NCY, and Gy = 27 N 25 and Gy = wi Nw}
say: Thus, wi NGy € fl(w]*») and zf NGo € Fi(zp)for3 < j<aand3 <k <b.

It now follows that the number of principal diagonals of P in G; and G5 is:

* two through each w; and zj, with j > 3, £ > 3 and
* at least one through each of w;, we, 21 and 2zs;

that s, at least £ (2(a—2) +2(b—2)+4) =a+b—2=n—2andn—2 < [2] # 1. Then
n =6, ws NGy = [wy,ws] and so, w3 € wi Nw3, [G1,ws] C wi Nw}, and wi = wj; a
contradiction. O

We note that the arguments and the result in Theorem 2.3 extend to d > 5 for extremal
Lenz Configuration X with sufficiently large | X|. This raises the issue of how to realize
configured polytopes with a large number of vertices in higher dimensions.

3 Constructions of strictly configured polytopes

In this section, we present realizations of strictly configured polytopes that are (d — 2)-
fold d-pyramids or “stratified” d-polytopes. We note that configured polytopes play an
important part in the study of, among others, graphs, hypergraphs, and bodies of constant
width.
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3.1 Prismoids

Letm > d > 3and Q C Hy(0) be a (d — 1)-polytope with V(Q) = {wy,wa, ..., wm}
and ¢4 as a relative interior point.

We consider translated homothetic copies (homotheties) Q;,, of Q. For £ > 2 and
1<57< k, let Qjm = [yjl;ija Ce ,yjm] with Yjr = ()\jrwr,pj),pk < P11 <:--<pP1
and A\; > 0. We let R, = [Qim; Qom, - - -, Qim), and say that Ry, is a k-layered
d-prismoid if |V (Ryy,)| = km and for r = 1,...,m, [yj—1)r, y;r] are the edges of Ry,
that intersect Q(]—,l)m and Q.

Then [Qip, Qjm] is a d-prismoid for 1 < i < j < m, {Q1m, Qrm} C F(Rim) and
we let Py = [400, Rim| for some point o0 = (0, ...,0,q) € RY. We say that Py, is a
stratified d-polytope if g is beyond either Qy,, or Qy,,, and beneath all other facets of
Ry (cf. [6] p. 78), and hence, |V (Pry )| = km + 1.

In what follows, we assume that Py, = [yoo, Rim] C R? is stratified with Ry, as
above and ygp beyond exactly Qy,,. It is clear that Py, is dependent upon the (d — 1)-
polytope Q = [wy,ws, ..., wy] C Hy(0), and we examine properties of P, that are
inherited from Q.

As a point of reference, Py, C R3 is called an apexed 3-prism in [11].

311

Let Q = [wy,wa,...,wy] C Hy(0) be involutary self-dual via the anti-isomorphism on
L(Q) induced by w, — W, € F(Q). Then F(Q) = {wy,Wa, ..., W} and we have that

* Q,m, is involutary self-dual via the anti-isomorphism of £(Q;,,) that sends y;, —
Y;ir» and y;, € y;, if, and only if, wy € w,,

* ‘F(Q]m) = {gjhnga"'agjm}’
° F(ka) == {Qlwu ka} U {g(j—l)ragjr}p S] S k71 S T S m} and
¢ F(Prm) = (F(Rim) \ {Q1m}) U{lyoo, 71-]|]1 <7 <m}.

Then (cf. [2], Theorem 2.1) Py, is involutary self-dual via the anti-isomorphism on
L(Pypm) induced by the map y;, — Y, with Yoo = Qpm, Yir = [yoo,%1r) and Y}, =
[Gk—s)r> U—j+1yr) forj =1,...;k —landr =1,...,m. O

3.1.2

With Q as in 3.1.1, let V(Q) C S%2%(c4,t) C Hy(0) and ||w, — ws|| = 1 for each
w, € V(Q) and wy € ,.. We say that Py, is metrically embedded in R? if ||y — /|| = 1
for every {y,y'} C V(Pin) such that [y,y'] is a principal diagonal of Pj,,. Thus, a
metrically embedded P, of diameter 1 is configured.

From Theorem 4.1 in [2]; if yoo = (0,0,...,0,q), thenthereare 0 < A\, < Ay < --+ <
Aj <Ay <0 < )\[%1 = 1thatyield 0 = py, < pr—1 < --- < p1 < ¢ so that for every
Yjr € V(Pim): if yis € Y, then |Jy; —yis| = 1. Specifically, we note that ¢> = 1— A%t
pi = 1= |\wr — \ws||* and p 1 = p1 — VB with = 1 — [|Ap_qw, — Mjws*. O

Our present interest is to determine involutary self-dual Py, C R? of, say, diameter 1
and then to characterize its diameters. To that end, we seek involutary self-dual @ C H4(0)
of diameter 1 and with vertices on a (d — 2)-sphere.
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3.2 Pyramids with polygonal bases

With the a;’s to be specified, let d > 3 and Q C La(—as,..., —aq) be a regular m-gon
with cyclically labeled vertices wy,ws, ..., w,,, the circumradius ¢, the diameter 1 and
m = 2u + 1 > 3. Then it is well known that 1 = [|w, — Wyiy|| = ||wr — Wriut1]| for
each w,, and that Q has 2m diameters.

As asimplification, we write w, = (21, %2, —as, ..., —aq) as w, = (r1, x2) inrelation
to the plane Lo(—as, ..., —aq).
3.2.1
With 6 = 2% and w, = t(cos(rf),sin(r6)) for r = 1,...,m, we note that w,, =

(t,0), Wimgu = wy and 1 = [wp, — wy|* = 263(1 — cos(ub)) = 2t>(1 + cos(Z))
fromm = 2u + 1.

3.2.2

With m = 2u+ 1 > 5and A > 0, we claim that || Aw, — w;|| < [[Aw, — w4, for
w; € V(Q) \ {wr, Wriw, Wrput1}-

With coordinates as in 3.2.1, we may assume that w, = w,, and that w; is in the
upper half-plane. Then 0 < jf < uf < 7 and cos(uf) < cos(j6) and ||Aw,, — w,|?* —
| Awsm — w;]|? = 2At%(cos(j0) — cos(ub)). O

3.2.3

For A > p > 0 and ws € {Wyiy, Wriyt1}, we have that [Aw,., pw,, pws, Aws] is an
isosceles trapezoid of side lengths A, yz and (A—p)t and | Aw, —pws||? = Apu+(A—p)?t? =
INws — pw,||%. O

3.24

From 1 = ||wy, — wy||? = 2t*(1 + cos(Z)) and m > 3, we obtain that ; < ¢* < £ and
3 < ﬁ <2 Weletty =t,t3 = mford > 3 and note that 3 < t < 2 <

<2<iE< P <ti<i<ti<L<t<iwithd>38

O

3.2.5

With d > 4 and Q C Lao(—as,...,—aq) C Ls(—ay,...,—a4) as above, we write w, =
(ta cos(rh),ta sin(rf), —as) in relation to Lz(—ay,...,—aq). We consider the 2-sphere
S? == §2((0,0,0),t3) C L3(—au,. .., —aq) with t = 4(%4%’)’ and let ag = /13 — t3.
Then V(Q) C S? and with w,,+1 = (0,0,t3), we claim that |jw,,+1 — w,|| = 1 for
r=12,...,m.

As Q is symmetric about the x3-axis, we verify the claim with w,. = w,, = (3,0, —a3).

2
From t§ = ||wn,||*> = 3 + a3 and 3 = 4t43t§1,

1
2\2 5
124 (ts + as)? = 242 + 25\/12 — 13 = 242 + 25 (“—jés) ) P

it follows that ||wy,11 — wn|? =
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Theorem 3.1. Let d > 3 and Q® = [wy,...,wy] C La(—as,...,—aq) be a regular
m-gon of diameter 1 and circumradius to; m = 2u + 1 > 3. Then fore = 3,...,d,
t2 = ﬁ, a?=1t2—t2 jandc. = (0,...,—acy1,-..,—aq) ife # d, there is an
“le—1
involutary self-dual (e — 2)-fold e-pyramid Q° = (w1, ..., Wy, ..., Wnte—2] Of diameter
1 and basis Q? such that
(i) 9° C Le(—aet1,-..,—aq) ife #d,

(i) V(Q°) C S (ce,t.) and
(iii) Q° is strictly configured.

Proof. With reference to Subsections 3.2.1, 3.2.2, 3.2.3, 3.2.4 and 3.2.5, we let:

o w; = (tg cos(if), ta sin(ib), —as, ..., —aq) fori =1,...,m
* Wi =(0,...,0,ti42,—ait3,...,—aq) fori=1,...,d — 3 and
® Wm4d—2 = (07 . ,O7td)'

We observe first that for 2 < i < j < d, t?+a?,, =t? ; andso, t? +a2 |+ o+a§ = tf.
From this it follows that ||w; — c.||* = t3 + a3 + -+ + a2 = 2 for w; € V(Q?),
3<e<d|wpyi —celP =ty +al g+ +aZ=tifori+2<e<d—1and
lwj = call® = fJw;||* = 5 for w; € V(Q?).

Next, with w, = (tg cos(rd),tosin(rd), —as, ..., —aq) and w,. = (t3 cos(r + )b,
tosin(r + wu)d, —asz,--- — ag), we note that Q2 is involutary self-dual via the
anti-isomorphism of £(Q?) induced by w, — @, = [w].,w/.,,]. Thenfore = 3,...,d,

F(Q°) = {[Wr, Win+t1, - - Wmte—2]|r =1,...mPU{[V(Q)\{w,}]|r =m+1,...,
m+e—2}

and Q°¢ is involutary self-dual via the anti-isomorphism on £(Q°¢) induced by w, — W,
where

_ {[wr,merh...mereg], r=1,...,m;
" [V(Q°)\ {w:}], r=m+1,...,m+e—2.

Finally, we observe that for 1 < j < m —+ 1, |wm4; — w;||> = 2,1 + (tit2 + aiy2)?.
Then, as in 3.2.5, t7,, = 4t?zt2271 yields that ||wy,+; — w;|| = 1. From this and t =
m, we obtain that ||w, — ws|| = 1 for ws € w,; furthermore, if {w,,w,} C
V(Q?) and w, ¢ 0, then ||w, — w,|| < 1. O

We note that M, (Q°¢) = 2M,(Q?) + Z:Zﬁfgj = (e — 1)m + (%) and that Q% is
extremal.

Theorem 3.2. Letd > 3, m = 2u+ 1, n = m+d— 3 and k € {2,3}. Then there
is an involutary self-dual stratified Py, = [yoo, Rin] C R? of diameter 1 that is strictly
configured.

Proof. With reference to Subsection 3.1 and Theorem 3.1 withe = d — 1 and ag = 0, we
consider P, with the property that:

* Yoo is beyond exactly Q1.
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[ Q = [wl, ...,wn] C Ld,l(—ad) = Hd(O),

+ Q% lisainvolutary self-dual (d—3)-fold (d — 1)-pyramid with diameter 1 and basis

02, and
e Q% = [wy, ..., W] C La(—ag, ..., —aq) is a regular m-gon of diameter 1.
Then cq—1 = (0,...,0,—aq) = cq and with to,...¢4_1 as in 3.2.4, we simplify notation

and lett = t4_1.
We now apply 3.1.2 with yoo = (0,...,0,¢) and py < pr—1 < -+ < p1 < q.

Case 1: £ = 2 and hence, A\ = 1 and po = 0.

With 0 < )\2 < 1: Pgn is Stratiﬁed, YOO = an, Yh« = [?jlr; QQT} and YQT = [y007glr]-
With ¢ = 1 — Xt and p7 = 1 — |[Agw, —ws > = 1 — (A + (1 — X2)?#?) (cf. 3.2.3), we
have that ||y, — yis|| = 1 for y;s € Y.

4—¢2 2—t2

With Ay = 1; we have ¢> = 455, p? = 2= and claim that ||y;, — y;.|| < 1 for

Yi € Yjr. From & < t? < 3, we obtain that

ly00 — yir > = [1(0,0) — (wy, p1)||* = [Jw,||* + (g — p1)?
=t*+¢* +pl — 2qp1

= 3(6—2752—2\/4—752\/2—162) 3.1

ORI

Let Yiz 7é Yoo 7é Yjir and Yiz ¢ Y—jr Then Yiz = ()\iwz;pi), Yjr = ()\jwrvpj) and Wy ¢
w, (cf. 3.1.1). Since Q1,, and Q2,, are homothets of ), we may assume by Theorem 3.1(iii)
that j = 1 and ¢ = 2, say. Since w, ¢ ., it follows as in the proof of Theorem 3.1 that
w, = w, or {w,,w,} C V(Q?). If w, = w,, then ||y, — y2.||* = % +p? = % If
{w.,w,} C V(Q?), then it follows from 3.2.2 that [|w, — Jw.| < [lw, — Fw,]|| with

ws € 1w, NV (Q?). Hence, ||y1, — Yoz || < |ly1r — y2s]| = 1.

IN

Case 2: k = 3 and hence, Ay = 1 and p3 = 0.

Let Yoo = Q3n, Y1, = [J2r,U3r)s Yor = [§1,92,] and Y3, = [yoo, J1r]. With
A=A =X =Zandg® = 1-M? = 2L p? = 1— | Aw, —dw,||> = 1-2% = 3 (cf.3.1.2
and 3.2.3), B = 1 — | Agw, — Mwy|2 =1 — [Jw, — Mwg||2 = 1= A+ (1 — 122 = 222
and po = p1 — /3, we obtain that ||y;, — yis|| = 1 for y;s € Y.

Let y;. ¢ Yjr. We claim that ||y, — y;.|| < 1 and then it follows that each Y}, is a
facet of Ps,,; thatis, R, is a 3-layered prismoid and Ps,, is stratified.

We observe that if @ < t? < b then

oo — yarll> = 11(0,9) — (wp, p2)|I* = llw,||* + (g — p2)?
=2+ +pP+B+20/B—2m (q+\/ﬁ)

:%(9+2t2+2 (47752)(2*#)*2\/3(\/47t2+\/27t2>
<i<9+2b+2 (4—a)(2_a)_2\/§(m+m)

(3.2)
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|en

and ”yOO - y2TH < 1 for (avb) € {(%7 %)v (%7 %)a (%’ %)7 (1 ’ %)’ (%7 llfi)’ (1776’ %)}’ that
is, for each d > 3 (cf. 3.2.4).

It is clear that ||yoo — %1r]l < |lyoo — y2r|, and hence, we may assume that
Yiz = (Niwz,pi), Yjr = ()‘jwrapj) and w, ¢ w,. Then er —w| < er - wSH
for wg & W, and ||y1» — Y3z || < ||y1r — y3sl| = 1 for y35 € 1 C Y1,

From 2 < %,weobtainthatﬂ > % = %,pg =p—VB < Bl and py < p1 — po.
Thus, ||ys, — y22|| < ||y1r — y2-|| and we argue as above that ||y1, — y2.|| < 1.

In summary; |ly;» — ¢'|| < 1 for {y;r,v'} C {woo} U {yjrlsj = 1,...,k and
r=1,...,n}, and with equality if and only if y’ € Y},. Thus

N

F(Pin) = {Yoo U{Yjrli=1,...,k,r=1,...,n},

V(Pkn) = {yOO}U{ijU = 1,...,]17,7‘ = 1,...,71}
and P, is involutary self-dual under the anti-isomorphism on £ (P}, ) induced by y;, —
Yo O

Theorem 3.3. Let P, C R? be an involutary self-dual stratified 3-polytope that is con-
figured with diameter 1; k > 2 and m = 2u + 1 > 3. Then there is an involutary self-dual
stratified P,y 1ym C R3 that is configured with diameter 1.

Proof. Weletl =k + 1 and denote Py, asin 3.1.1 and 3.1.2 with d = 3. Specifically,

* @ = [wy,...,wy] C Hs(0) is a regular m-gon of diameter 1 and circumcentre
c3 = (0,0,0) as in 3.2.1,

o Qjm = [yj17~-~7yjm] with Yjr = ()\jwr,pj) and 0 < >\k < )\1 < - K )\j
Ak—j <o <A =1L0<pp <pp1 <+ <p1 <g<landye = (0,0,q),

IN

* the anti-isomorphism on £(Pjy,, ) is induced by y,, — Yj, with Yoo = Qm, Yim =
[yOOang]’ )/jr = [g(k—j)rag(l—j)r]’ 1< J< k —1, and ng = [yj(r+u)7yj(r+u+1)]’
and

* |lyjr — yis|| = L1if, and only if, y;s € Y},

Let S(y) := S%(y, 1) for y € R3, and consider the homothets Qo,, = [Yo15 - - - » Yo Of
Q with yo, = (Aowr,p0)7 0 <A < Arandp; < pg < g. From [yk(r+u)ayk(r+u+l)] =
Jkr = Yoo N Y1, it follows that ||yoo — yks|| = 1 = ||y1r — yrs|| for s € {r+u,r+u+1},
and so,

{yOO» ylr} - Ck‘r = S(yk(r+u)) N S(yk(r+u+1))v

a circle with centre %(yk(ﬂru) + Yk(r+u+1))- It is now clear that

(1) foreach p; < pg < g, there is 0 < Ag < A1 such that yg, € Ck,..

In fact, yo, € g, the shorter arc of Cg,. with end points 399 and y1,.. We note also
that V(Qom) NV (Pgm) = 0 for each such pg. Let V = V(Pypm), B(y) = [S(y)]
and B(V) = Nyev B(y). Since diam(Py,y,) = 1, it follows that

(il) agr C bd(B(V)) forr=1,...m.

Since Py, is involutary self-dual with no fixed points, it follows from Theorem 3.2
of [13] that B(V) is polytopal and the face polyhedral structure of B(V) is a lattice
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(iii)

(iv)

)

(vi)

(vii)

(viii)

(ix)
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isomorphic to L(Py,). Accordingly, B(V) is similarly self-dual and from Theo-
rem 4.1 of [13], any surface ® C R? obtained from bd(B(V')) (by performing their
surgery on one edge-arc of each pair of dual edge-arcs of bd(B(V))) is the boundary
of a body of constant width. In this case, V' C ® and diam (V) = 1 yield ® is of
constant width 1.

We note that dual edge-arcs of bd(B(V')) correspond to dual edges of L(Pry,).
Thus, the duality [y(]()7 ylr] +—— Yy NYy, = gkr

yields that ay, is dual to the shorter edge-arc in S(yoo) N S(y1,) with end point
Yk (r+u) AN Yr(r4ut1)- We consider those @ that contain each of a1, gz, - - -, -
Then the symmetry of Py, about the x3—axis and ) yield that

V' =V UV(Qom) C ® and diam(V’) =1,

S(y00)NV' = V(Qpm ) and the spherical region S(ygo) NP is not empty and bounded
in H3(0) by the circumcircle of Q.. and

ybo = (0,0, — 1) € S(yoo) N ®.

From diam(V) = 1, |[V| = km + 1, M(3,km + 1) = 2km and Theorem 2.1, we
have that M5(V') = 2km + 1. From diam(V") = 1, |V’| = lm + 1 and i), we have
that M3(V') > M3(V') + 2m = 2lm. Thus, M3(V') = 2lm and

llyor — yll < 1for yo, € V(Qom) and y € V \ {Yr(r+u)s Ye(r+ut1) -

Let V"' = V' U {yyo}- Then diam (V") =1, |[V"| = Im + 2, ||yoo — Yo/l = 1 and
2[V"| =2 =2lm+2 > M3(V") > 2lm + 1. From the rotational symmetry of V"
and S(y(,,) about the x3—axis, it follows that

lyoo — yll < 1fory € V'\ {yo}, and

lye —yll < 1fory € V'\{yo} for sufficiently small ¢ > 0 and y. = (0,0,g—1—¢).

Let pg = ¢— € and p be the radius of the circle Hs3(po) NS(y(g). Then {(0,0,pp)} =
Hs(po)NS(ye) C Qom C [Hs(po)NS(yho)] and with Ag chosen so that 0 < Ay < Ay
and yor € oy, we have that 0 < Aot < p. Accordingly, there is a point zpp €
[Y60s Ye] such that Mgt is the radius of H3(pg) N S(zgo); that is,

llzo0 — yor|| = 1 forr =1,2,...,m.

Finally, let zj, = ya—j)r.Zjr = Ua—j)r and @, = Q—jym forj =1,2,... 1 and
r = 1,2,...,m. Inaddition, let Zoo = Q},, = Qom. Zir = [200, 21+] = [200, Ukr]

and Zj,. = [Z4—j)rs Z1—j+1)r] = [Ujr> J(j—1)r]- From the preceding, we have that
Py = (200, Qs - - -5 Q)] 1s involutary self-dual via z;. — Zj,, stratified and
configured with diameter 1. [

Finally, we show that if a set of n points are the vertices of a configured 4-polytope P
such as in Theorem 3.2 then M4 (P) < 4n.

Theorem 3.4. Let Pi,, = [yoo, Rkm| C R* be a configured stratified 4-polytope, with
n = km + 1 vertices. Then number of principal diagonals of Py, is at most 4n.

Proof. By Theorem 2.2, it is sufficient to prove that f1(P) < 3n for every configured
stratified 4-polytope. By construction, Rim = [Q1m, Qom, - - - Qkm] Where each copy
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Q;m is self-dual and contains m vertices, and thus, f1(Q;,,) = 2m— 2 by Euler’s Theorem
and self-duality.

Finally, there are m edges through yoo and m(k — 1) edges connecting the & homothets
Qim,and so, f1(Pxm) = k(2m—2)+m(k—1)+m =3km —2k <3km+3=3n. O
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