

ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 22 (2022) #P4.08 / 637–648

https://doi.org/10.26493/1855-3974.2559.e4f

(Also available at http://amc-journal.eu)

Configured polytopes and extremal configurations

Tibor Bisztriczky

Department of Mathematics and Statistics, University of Calgary, Canada

Gyivan Lopez-Campos **(b)**, Deborah Oliveros * **(b)**

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla, Querétaro, 076230

Received 17 February 2021, accepted 7 January 2022, published online 19 August 2022

Abstract

We examine a class of involutory self-dual convex polytopes with a specified sets of diameters, compare their vertex sets to extremal Lenz configurations, and present some of their realizations.

Keywords: Involutory self-dual polytopes, configured polytopes, Lenz configurations, extremal configurations.

Math. Subj. Class. (2020): 52-01, 52A15, 52B11

1 Introduction

We describe points in \mathbb{R}^d by standard coordinates (x_1,x_2,\ldots,x_d) . For $3\leq i\leq d$, let $H_i(b_i)$ denote the hyperplane $x_i=b_i$, and $L_e(b_{e+1},\ldots,b_d)=\cap_{i=e+1}^d H_i(b_i)$, $e=2,\ldots,d-1$. $L_e(b_{e+1},\ldots,b_d)$ is an e-flat, and denote the (e-1)-sphere with centre c and radius t in $L_e(b_{e+1},\ldots,b_d)$ by $\mathbb{S}^{e-1}(c,t)$. We denote the origin of \mathbb{R}^d by c_d , and let $(\lambda w,p):=\lambda w+(0,\ldots,0,p)$, for a point $w\in H_d(0)=L_{d-1}(0)$ and $\{\lambda,p\}\subset\mathbb{R}$.

Let Y be a set of points in \mathbb{R}^d . Then $\operatorname{conv}(Y)$ and $\operatorname{aff}(Y)$ denote, respectively, the convex hull and the affine hull of Y. For sets $Y_1,Y_2,\ldots Y_n$, let $[Y_1,Y_2,\ldots Y_n]=\operatorname{conv}(\cup_{i=1}^n Y_i)$ and $\langle Y_1,Y_2,\ldots Y_n\rangle=\operatorname{aff}(\cup_{i=1}^n Y_i)$. If $Y=\{y_1,y_2,\ldots,y_n\}$ is finite, we let $[y_1,y_2,\ldots,y_n]=\operatorname{conv}(Y)$ and $\langle y_1,y_2,\ldots,y_n\rangle=\operatorname{aff}(Y)$.

^{*}Corresponding author. Supported by Proyecto PAPIIT IG100721, 106318 and CONACYT Ciencia Básica 282280.

E-mail addresses: tbisztri@ucalgary.ca (Tibor Bisztriczky), gyivan.lopez@im.unam.mx (Gyivan Lopez-Campos), doliveros@im.unam.mx (Deborah Oliveros)

Let $P \subset \mathbb{R}^d$ denote a convex d-polytope with $\mathcal{L}(P)$ and $\mathcal{F}_i(P)$, $0 \le i \le d-1$, denoting the face lattice and the set of i-faces of P. We let $f_i(P) = |\mathcal{F}_i(P)|$, $V(P) = \mathcal{F}_0(P)$ and $\mathcal{F}(\mathcal{P}) = \mathcal{F}_{d-1}(P)$, assume familiarity with the basic notions of convex polytopes, and refer to [3, 6] and [18] for basic terminology and definitions. Specifically, two polytopes P_1 and P_2 are combinatorially equivalent $(P_1 \cong P_2)$ if there is an isomorphism (inclusion preserving) from $\mathcal{L}(P_1)$ to $\mathcal{L}(P_2)$, and are dual if there is an anti-isomorphism (inclusion reversing) from $\mathcal{L}(P_1)$ to $\mathcal{L}(P_2)$. If there is an anti-isomorphism Φ from $\mathcal{L}(P)$ to $\mathcal{L}(P)$ then P is self-dual, moreover, if $\Phi^2 = id$ then P is involutory self-dual.

Let $P \subset \mathbb{R}^d$ be involutory self-dual via the anti-isomorphism on $\mathcal{L}(P)$ induced by the map $v \to v^*$ with $v \in V(P)$, $v^* \in \mathcal{F}(P)$ and $v \notin v^*$. A segment [v,w], with end-points v and w, both vertices of P and with $w \in v^*$, is called a *principal diagonal* of P and let $\mathcal{D}(P)$ denote the set of principal diagonals of P. Finally, we say that P is *configured* if each principal diagonal in P has length $\operatorname{diam}(P)$, and that P is *strictly configured* if it is configured and only principal diagonals of P have length $\operatorname{diam}(P)$. We note that odd regular polygons are strictly configured.

Let $X_n \subset \mathbb{R}^d$ be a set of $n > d \geq 2$ points and $M_d(X_n)$ be the number of pairs $\{x,y\} \subset X_n$ such that $\operatorname{diam}(X_n) = \|x-y\|$, the distance between x and y. Let M(d,n) be the maximum of $M_d(X_n)$ over all $X_n \subset \mathbb{R}^d$. Then X_n is an *extremal configuration* if $M_d(X_n) = M(d,n)$.

The problem of determining M(d,n) is due to Erdős in [4]. We list contributions to the problem in the References, with specific mention of [11, 12] and [17] and the following results:

- (1) M(2,n)=n, and $X_n\subset\mathbb{R}^2$ is extremal if and only if $V(P)\subseteq X_n\subseteq\mathrm{bd}(P)$ for some Reuleaux polygon P.
- (2) M(3,n)=2n-2 and $X_n\subset\mathbb{R}^3$ is extremal if and only if X_n is the vertex set of certain types of polytopal (Reuleaux) ball polytopes.
- (3) M(d, n), $d \ge 4$, grows quadratically with n, and extremal X_n are attained only by Lenz Constructions.

In this last regard, we note (cf. [17]) that an (even dimensional) Lenz Configuration in \mathbb{R}^d , $d=2p\geq 2$, is any translate of a finite subset of $\bigcup_{i=1}^p C_i$ where C_i is a circle with centre at the origin O and radius r_i , so that $r_j^2+r_k^2=1$ for all j,k and the subspaces U_i , spanned by C_i , yield the orthogonal decomposition $\mathbb{R}^d=U_1\oplus U_2\oplus ...\oplus U_p$. For odd dimensions d=2p+1, C_1 is replaced by a 2-sphere with centre O and radius $r=\frac{1}{\sqrt{2}}$.

Theorem 1.1 (K. Swanepoel). For each $d \ge 4$, there exists a number N(d) such that all extremal configurations X_n , with $n \ge N(d)$, are Lenz Configurations.

We note that in [17], Swanepoel also determines M(d, n) for sufficiently large n.

Our interests in this paper are realizations (constructions) of strictly configured d-polytopes $P, d \geq 3$, and values of $M_d(P)$ (number of principal diagonals of P). In Section 2, we will show that for strictly configured 4-polytopes there is a formula similar to 1) and 2) that depends on the number of vertices and edges; furthermore we show the convex hull of vertices of an extremal Lenz configuration is never a configured d-polytope. The former raises the question of whether in dimension $d \geq 4$ the situation for M(d,n) may have at least another possible scenario, if the points are not in Lenz configurations. In

Section 3 we will give constructions of configured d-polytopes P for $d \geq 3$ such that for $d=4, M_4(P) \le 4n$. These constructions consist of two steps: determining self-dual polytopes so that all principal diagonals have length (say 1), and then showing that the diameter of the polytope is 1.

2 Principal diagonals

In this section, we assume that $P \subset \mathbb{R}^d$ is an involutory self-dual d-polytope via the antiisomorphism on $\mathcal{L}(P)$ induced by $v \in V(P) \to v^* \in \mathcal{F}(P)$, and recall that $\mathcal{D}(P)$ denotes the set of principal diagonals of P.

Theorem 2.1. Let $P \subset \mathbb{R}^3$ be a configured 3-polytope. Then P is strictly configured and extremal, that is, $|\mathcal{D}(P)| = 2f_0(P) - 2$.

Proof. Since P is self-dual, we have that $f_0(P) = f_2(P)$ and so, $f_1(P) = 2f_0(P) - 2$ by Euler's Theorem.

Let $v \in V(P)$. Then $v^* \in \mathcal{F}_2(P)$ is a polygon and $f_0(v^*) = f_1(v^*)$. On the one hand, $f_0(v^*) = |\{g \in \mathcal{D}(P) \mid v \in g\}|$ by definition. On the other hand, $v \in e \in \mathcal{F}_1(P)$ iff $e^* \in \mathcal{F}_1(v^*)$, and so, $f_1(v^*) = |\{e \in \mathcal{F}_1(P) \mid v \in e\}|$. Thus $|\{g \in \mathcal{D}(P) \mid v \in g\}| = |\{e \in \mathcal{F}_1(V^*), v \in g\}|$ $|\{e \in \mathcal{F}_1(P) \mid v \in e\}|$ and $|\mathcal{D}(P)| = |\mathcal{F}_1(P)|$.

Theorem 2.2. Let $P \subset \mathbb{R}^4$ be a strictly configured 4-polytope. Then $|\mathcal{D}(P)| \leq 2f_1(P)$ $2f_0(P)$.

Proof. Let $V(P) = \{v_1, ..., v_n\}$ and $\mathcal{F}_1(P) = \{e_1, ..., e_m\}$. Then $\mathcal{F}_2(P) = \{e_1^*, ..., e_m^*\}$ and $\mathcal{F}(P) = \{v_1^*, ..., v_n^*\}$ by the self-duality of P.

We recall from [1] that $f_{jk}(P)$, $0 \le j < k \le 3$, is the number of pairs of j-faces G_i and k-faces G_k such that $G_i \subset G_k$, and that $f_{02}(P) \leq 6f_1(P) - 6f_0(P)$. By the self-duality of P, we have also that

$$\sum_{i=1}^{n} f_1(v_i^*) = f_{13}(P) = f_{02}(P),$$

$$\sum_{i=1}^{n} f_2(v_i^*) = f_{23}(P) = f_{01}(P) \text{ and}$$

$$f_{01}(P) = \sum_{j=1}^{m} f_0(e_j) = 2f_1(P)$$

Finally, let $v \in V(P)$ and $e \in \mathcal{D}(P)$ of a configured $P \subset \mathbb{R}^4$. Then $v \in e$ if, and only if, e = [v, w] and $w \in \mathcal{F}_0(v^*)$. Thus, $f_0(v^*)$ is the number of principal diagonals of P that contain v, and $\sum_{i=1}^n f_0(v_i^*) = 2|\mathcal{D}(P)|$. Then by Euler's Theorem,

$$|\mathcal{D}(P)| = \frac{1}{2} \sum_{i=1}^{n} (2 + f_1(v_i^*) - f_2(v_i^*))$$

$$= n + \frac{1}{2} \sum_{i=1}^{n} f_1(v_i^*) - \frac{1}{2} \sum_{i=1}^{n} f_2(v_i^*)$$

$$= f_0(P) + \frac{1}{2} f_{02}(P) - \frac{1}{2} f_{01}(P)$$

$$\leq f_0(P) + [3f_1(P) - 3f_0(P)] - f_1(P).$$
(2.1)

End of Theorem 2.2.

We let $M_d(Q) = M_d(V(Q))$ for a d-polytope Q, and observe that if $P \subset \mathbb{R}^4$ is strictly configured then $M_4(P)$ is linear in $f_1(P)$ and $f_0(P)$. This raises the following question: Is there a set of n vertices of a strictly configured polytope in Lenz Configuration? We show below that the answer is no if $f_0(P) > 5$; in fact, we present in Section 3 a subfamily of such $P \subset \mathbb{R}^4$ with $f_1(P) \leq 3f_0(P)$ and $M_4(P) \leq 4f_0(P)$.

If n=5 and d=4, it is easy to prove that the polytope with vertices $(0,0,\frac{\sqrt{6}}{12},\frac{\sqrt{10}}{4})$, $(0,0,\frac{\sqrt{2}}{3},0),\,\frac{1}{\sqrt{3}}(\cos\frac{\pi}{3},\sin\frac{\pi}{3},0,0),\,\frac{1}{\sqrt{3}}(\cos\frac{2\pi}{3},\sin\frac{2\pi}{3},0,0)$ and $\frac{1}{\sqrt{3}}(1,0,0,0)$ is a Lenz Configuration and that it is strictly configured. This is the only case with d=4 where the vertices of a strictly configured polytope is a Lenz Configuration.

Theorem 2.3. Let $X \subset \mathbb{R}^4$ be a 4-dimensional extremal Lenz Configuration with $|X| \geq 6$. Then P = conv(X) is not configured.

Proof. We assume $X \subset \mathbb{R}^4$ is a 4-dimensional Lenz Configuration with $X \subset C_1 \cup C_2$, $C_i \subset U_i$, where $\mathbb{R}^4 = U_1 \oplus U_2$. It is clear that P is a 4-polytope with V(P) = X and diameter 1. Let $X \cap C_1 = \{w_1, ..., w_a\}$, $X \cap C_2 = \{z_1, ..., z_b\}$ and note that for i = 1, 2, $G_i := U_i \cap P \in \mathcal{F}_2(P)$.

From [17], we have that $M_4(X)=M(4,n)$ with $|X\cap C_1|=\lceil\frac{n}{2}\rceil$ and $|X\cap C_2|=\lfloor\frac{n}{2}\rfloor$, say. Furthermore, $M(4,6)=t_2(6)+4$, $M(4,7)=t_2(7)+4$ and $M(4,n)\leq t_2(n)+\lceil\frac{n}{2}\rceil+1$ for $n\geq 8$ where $t_2(n)$ is the number of pairs $\{w_j,z_k\}$ such that $\|w_j-z_k\|=1$. Accordingly, there are $M(4,n)-t_2(n)$ diameters of X that have end points in either C_1 or C_2 .

We suppose that P is configured via the anti-isomorphism induced by $v \to v^*, v \notin v^*$, and seek a contradiction. Then $a \geq 3, b \geq 3, v \notin v^*$ and $\mathcal{F}(P) = \{w_1^*, ..., w_a^*, z_1^*, ..., z_b^*\}$ yield that $v^* \cap C_1 \neq \emptyset \neq v^* \cap C_2$ for $v \in X \cap C_1$, and $G_1 = z_1^* \cap z_2^*$ and $G_2 = w_1^* \cap w_2^*$ say: Thus, $w_j^* \cap G_1 \in \mathcal{F}_1(w_j^*)$ and $z_k^* \cap G_2 \in \mathcal{F}_1(z_k^*)$ for $3 \leq j \leq a$ and $3 \leq k \leq b$.

It now follows that the number of principal diagonals of P in G_1 and G_2 is:

- two through each w_i and z_k with $j \geq 3$, $k \geq 3$ and
- at least one through each of w_1, w_2, z_1 and z_2 ;

that is, at least $\frac{1}{2}(2(a-2)+2(b-2)+4)=a+b-2=n-2$ and $n-2 \leq \lceil \frac{n}{2} \rceil \neq 1$. Then $n=6, w_3^* \cap G_1 = [w_1, w_2]$ and so, $w_3 \in w_1^* \cap w_2^*$, $[G_1, w_3] \subset w_1^* \cap w_2^*$, and $w_1^* = w_2^*$; a contradiction.

We note that the arguments and the result in Theorem 2.3 extend to $d \ge 5$ for extremal Lenz Configuration X with sufficiently large |X|. This raises the issue of how to realize configured polytopes with a large number of vertices in higher dimensions.

3 Constructions of strictly configured polytopes

In this section, we present realizations of strictly configured polytopes that are (d-2)-fold d-pyramids or "stratified" d-polytopes. We note that configured polytopes play an important part in the study of, among others, graphs, hypergraphs, and bodies of constant width.

3.1 Prismoids

Let $m \ge d \ge 3$ and $\mathcal{Q} \subset H_d(0)$ be a (d-1)-polytope with $V(\mathcal{Q}) = \{w_1, w_2, \dots, w_m\}$ and c_d as a relative interior point.

We consider translated homothetic copies (homotheties) \mathcal{Q}_{jm} of \mathcal{Q} . For $k \geq 2$ and $1 \leq j \leq k$, let $\mathcal{Q}_{jm} = [y_{j1}, y_{j2}, \ldots, y_{jm}]$ with $y_{jr} = (\lambda_{jr}w_r, p_j)$, $p_k < p_{k-1} < \cdots < p_1$ and $\lambda_j > 0$. We let $R_{km} = [\mathcal{Q}_{1m}, \mathcal{Q}_{2m}, \ldots, \mathcal{Q}_{km}]$, and say that R_{km} is a k-layered d-prismoid if $|V(R_{km})| = km$ and for $r = 1, \ldots, m$, $[y_{(j-1)r}, y_{jr}]$ are the edges of R_{km} that intersect $\mathcal{Q}_{(j-1)m}$ and \mathcal{Q}_{jm} .

Then $[Q_{im}, Q_{jm}]$ is a d-prismoid for $1 \le i \le j \le m$, $\{Q_{1m}, Q_{km}\} \subset \mathcal{F}(R_{km})$ and we let $P_{km} = [y_{00}, R_{km}]$ for some point $y_{00} = (0, \dots, 0, q) \in \mathbb{R}^d$. We say that P_{km} is a *stratified* d-polytope if y_{00} is beyond either Q_{1m} or Q_{km} , and beneath all other facets of R_{km} (cf. [6] p. 78), and hence, $|V(P_{km})| = km + 1$.

In what follows, we assume that $P_{km} = [y_{00}, R_{km}] \subset \mathbb{R}^d$ is stratified with R_{km} as above and y_{00} beyond exactly \mathcal{Q}_{1m} . It is clear that P_{km} is dependent upon the (d-1)-polytope $\mathcal{Q} = [w_1, w_2, \ldots, w_m] \subset H_d(0)$, and we examine properties of P_{km} that are inherited from \mathcal{Q} .

As a point of reference, $P_{2m} \subset \mathbb{R}^3$ is called an apexed 3-prism in [11].

3.1.1

Let $Q = [w_1, w_2, \dots, w_m] \subset H_d(0)$ be involutary self-dual via the anti-isomorphism on $\mathcal{L}(Q)$ induced by $w_r \to \tilde{w}_r \in \mathcal{F}(Q)$. Then $\mathcal{F}(Q) = \{\tilde{w}_1, \tilde{w}_2, \dots, \tilde{w}_m\}$ and we have that

- Q_{jm} is involutary self-dual via the anti-isomorphism of $\mathcal{L}(Q_{jm})$ that sends $y_{jr} \to \tilde{y}_{jr}$, and $y_{is} \in \tilde{y}_{jr}$ if, and only if, $w_s \in \tilde{w}_r$,
- $\mathcal{F}(\mathcal{Q}_{jm}) = \{\tilde{y}_{j1}, \tilde{y}_{j2}, \dots, \tilde{y}_{jm}\},\$
- $\mathcal{F}(R_{km})=\{\mathcal{Q}_{1m},\mathcal{Q}_{km}\}\cup\{\tilde{y}_{(j-1)r},\tilde{y}_{jr}\}|2\leq j\leq k,1\leq r\leq m\}$ and
- $\mathcal{F}(P_{km}) = (\mathcal{F}(R_{km}) \setminus \{Q_{1m}\}) \cup \{[y_{00}, \tilde{y}_{1r}] | 1 \le r \le m\}.$

Then (cf. [2], Theorem 2.1) P_{km} is involutary self-dual via the anti-isomorphism on $\mathcal{L}(P_{km})$ induced by the map $y_{jr} \to Y_{jr}$ with $Y_{00} = \mathcal{Q}_{km}$, $Y_{kr} = [y_{00}, \tilde{y}_{1r}]$ and $Y_{jr} = [\tilde{y}_{(k-j)r}, \tilde{y}_{(k-j+1)r}]$ for $j = 1, \ldots, k-1$ and $r = 1, \ldots, m$.

3.1.2

With \mathcal{Q} as in 3.1.1, let $V(\mathcal{Q}) \subset \mathbb{S}^{d-2}(c_d,t) \subset H_d(0)$ and $\|w_r - w_s\| = 1$ for each $w_r \in V(\mathcal{Q})$ and $w_s \in \tilde{w}_r$. We say that P_{km} is metrically embedded in \mathbb{R}^d if $\|y - y'\| = 1$ for every $\{y,y'\} \subset V(P_{km})$ such that [y,y'] is a principal diagonal of P_{km} . Thus, a metrically embedded P_{km} of diameter 1 is configured.

From Theorem 4.1 in [2]; if $y_{00} = (0,0,\dots,0,q)$, then there are $0 < \lambda_k \le \lambda_1 < \dots < \lambda_j \le \lambda_{k-j} < \dots < \lambda_{\left \lfloor \frac{k+1}{2} \right \rfloor} = 1$ that yield $0 = p_k < p_{k-1} < \dots < p_1 < q$ so that for every $y_{jr} \in V(P_{km})$: if $y_{is} \in Y_{jr}$ then $\|y_{jr} - y_{is}\| = 1$. Specifically, we note that $q^2 = 1 - \lambda_k^2 t^2$, $p_1^2 = 1 - \|\lambda_k w_r - \lambda_1 w_s\|^2$ and $p_{k-1} = p_1 - \sqrt{\beta}$ with $\beta = 1 - \|\lambda_{k-1} w_r - \lambda_1 w_s\|^2$. \square

Our present interest is to determine involutary self-dual $P_{km} \subset \mathbb{R}^d$ of, say, diameter 1 and then to characterize its diameters. To that end, we seek involutary self-dual $\mathcal{Q} \subset H_d(0)$ of diameter 1 and with vertices on a (d-2)-sphere.

3.2 Pyramids with polygonal bases

With the a_i 's to be specified, let $d \geq 3$ and $\mathcal{Q} \subset L_2(-a_3,\ldots,-a_d)$ be a regular m-gon with cyclically labeled vertices w_1,w_2,\ldots,w_m , the circumradius t, the diameter 1 and $m=2u+1\geq 3$. Then it is well known that $1=\|w_r-w_{r+u}\|=\|w_r-w_{r+u+1}\|$ for each w_r , and that \mathcal{Q} has 2m diameters.

As a simplification, we write $w_r = (x_1, x_2, -a_3, \dots, -a_d)$ as $w_r = (x_1, x_2)$ in relation to the plane $L_2(-a_3, \dots, -a_d)$.

3.2.1

With $\theta = \frac{2\pi}{m}$ and $w_r = t(\cos(r\theta), \sin(r\theta))$ for r = 1, ..., m, we note that $w_m = (t, 0), w_{m+u} = w_u$ and $1 = \|w_m - w_u\|^2 = 2t^2(1 - \cos(u\theta)) = 2t^2(1 + \cos(\frac{\pi}{m}))$ from m = 2u + 1.

3.2.2

With $m = 2u + 1 \ge 5$ and $\lambda > 0$, we claim that $\|\lambda w_r - w_j\| < \|\lambda w_r - w_{r+u}\|$ for $w_j \in V(\mathcal{Q}) \setminus \{w_r, w_{r+u}, w_{r+u+1}\}$.

With coordinates as in 3.2.1, we may assume that $w_r = w_m$ and that w_j is in the upper half-plane. Then $0 < j\theta < u\theta < \pi$ and $\cos(u\theta) < \cos(j\theta)$ and $\|\lambda w_m - w_u\|^2 - \|\lambda w_m - w_j\|^2 = 2\lambda t^2(\cos(j\theta) - \cos(u\theta))$.

3.2.3

For $\lambda > \mu > 0$ and $w_s \in \{w_{r+u}, w_{r+u+1}\}$, we have that $[\lambda w_r, \mu w_r, \mu w_s, \lambda w_s]$ is an isosceles trapezoid of side lengths λ, μ and $(\lambda - \mu)t$ and $\|\lambda w_r - \mu w_s\|^2 = \lambda \mu + (\lambda - \mu)^2 t^2 = \|\lambda w_s - \mu w_r\|^2$.

3.2.4

From $1 = \|w_m - w_u\|^2 = 2t^2(1 + \cos(\frac{\pi}{m}))$ and $m \ge 3$, we obtain that $\frac{1}{4} < t^2 \le \frac{1}{3}$ and $\frac{1}{3} < \frac{1}{4(1-t^2)} \le \frac{3}{8}$. We let $t_2 = t$, $t_d^2 = \frac{1}{4(1-t_{d-1}^2)}$ for $d \ge 3$ and note that $\frac{1}{3} < t_3^2 \le \frac{3}{8} < t_4^2 \le \frac{2}{5} < t_5^2 \le \frac{5}{12} < t_6^3 \le \frac{3}{7} < t_7^2 \le \frac{7}{16} < t_d^2 < \frac{1}{2}$ with $d \ge 8$.

3.2.5

With $d \geq 4$ and $\mathcal{Q} \subset L_2(-a_3,\dots,-a_d) \subset L_3(-a_4,\dots,-a_d)$ as above, we write $w_r = (t_2\cos(r\theta),t_2\sin(r\theta),-a_3)$ in relation to $L_3(-a_4,\dots,-a_d)$. We consider the 2-sphere $\mathbb{S}^2 := \mathbb{S}^2\left((0,0,0),t_3\right) \subset L_3(-a_4,\dots,-a_d)$ with $t_3^2 = \frac{1}{4(1-t_2^2)}$, and let $a_3 = \sqrt{t_3^2-t_2^2}$. Then $V(\mathcal{Q}) \subset \mathbb{S}^2$ and with $w_{m+1} = (0,0,t_3)$, we claim that $\|w_{m+1} - w_r\| = 1$ for $r = 1,2,\dots,m$.

As $\mathcal Q$ is symmetric about the x_3 -axis, we verify the claim with $w_r=w_m=(t_2,0,-a_3)$. From $t_3^2=\|w_m\|^2=t_2^2+a_3^2$ and $t_2^2=\frac{4t_3^2-1}{4t_3^3}$, it follows that $\|w_{m+1}-w_m\|^2=t_2^2+(t_3+a_3)^2=2t_3^2+2t_3\sqrt{t_3^2-t_2^2}=2t_3^2+2t_3\left(\frac{(1-2t_3^2)^2}{4t_3^2}\right)^{\frac{1}{2}}=1$.

Theorem 3.1. Let $d \geq 3$ and $\mathcal{Q}^2 = [w_1, \ldots, w_m] \subset L_2(-a_3, \ldots, -a_d)$ be a regular m-gon of diameter 1 and circumradius t_2 ; $m = 2u + 1 \geq 3$. Then for $e = 3, \ldots, d$, $t_e^2 = \frac{1}{4(1-t_{e-1}^2)}$, $a_e^2 = t_e^2 - t_{e-1}^2$ and $c_e = (0, \ldots, -a_{e+1}, \ldots, -a_d)$ if $e \neq d$, there is an involutary self-dual (e-2)-fold e-pyramid $\mathcal{Q}^e = [w_1, \ldots, w_m, \ldots, w_{m+e-2}]$ of diameter 1 and basis \mathcal{Q}^2 such that

(i)
$$Q^e \subset L_e(-a_{e+1}, \ldots, -a_d)$$
 if $e \neq d$,

(ii)
$$V(\mathcal{Q}^e) \subset \mathbb{S}^{e-1}(c_e, t_e)$$
 and

(iii) Q^e is strictly configured.

Proof. With reference to Subsections 3.2.1, 3.2.2, 3.2.3, 3.2.4 and 3.2.5, we let:

•
$$w_i = (t_2 \cos(i\theta), t_2 \sin(i\theta), -a_3, \dots, -a_d)$$
 for $i = 1, \dots, m$

•
$$w_{m+i} = (0, \dots, 0, t_{i+2}, -a_{i+3}, \dots, -a_d)$$
 for $i = 1, \dots, d-3$ and

•
$$w_{m+d-2} = (0, \dots, 0, t_d).$$

We observe first that for $2 \le i < j \le d$, $t_i^2 + a_{i+1}^2 = t_{i+1}^2$ and so, $t_i^2 + a_{a+1}^2 + \dots + a_j^2 = t_j^2$. From this it follows that $\|w_i - c_e\|^2 = t_2^2 + a_3^2 + \dots + a_e^2 = t_e^2$ for $w_i \in V(\mathcal{Q}^2)$, $3 \le e \le d \|w_{m+i} - c_e\|^2 = t_{i+2}^2 + a_{i+3}^2 + \dots + a_e^2 = t_e^2$ for $i+2 \le e \le d-1$ and $\|w_j - c_d\|^2 = \|w_j\|^2 = t_d^2$ for $w_j \in V(\mathcal{Q}^d)$.

Next, with $w_r = (t_2 \cos(r\theta), t_2 \sin(r\theta), -a_3, \dots, -a_d)$ and $w_r' = (t_2 \cos(r+u)\theta, t_2 \sin(r+u)\theta, -a_3, \dots -a_d)$, we note that \mathcal{Q}^2 is involutary self-dual via the anti-isomorphism of $\mathcal{L}(\mathcal{Q}^2)$ induced by $w_r \to \bar{w}_r = [w_r', w_{r+1}']$. Then for $e = 3, \dots, d$,

$$\mathcal{F}(\mathcal{Q}^e) = \{ [\bar{w}_r, w_{m+1}, \dots w_{m+e-2}] | r = 1, \dots m \} \cup \{ [V(\mathcal{Q}^e) \setminus \{w_r\}] | r = m+1, \dots, m+e-2 \}$$

and \mathcal{Q}^e is involutary self-dual via the anti-isomorphism on $\mathcal{L}(\mathcal{Q}^e)$ induced by $w_r \to \tilde{w}_r$ where

$$\tilde{w}_r = \begin{cases} [\bar{w}_r, w_{m+1}, \dots w_{m+e-2}], & r = 1, \dots, m; \\ [V(\mathcal{Q}^e) \setminus \{w_r\}], & r = m+1, \dots, m+e-2. \end{cases}$$

Finally, we observe that for $1 \le j \le m+i$, $\|w_{m+i}-w_j\|^2 = t_{i+1}^2 + (t_{i+2}+a_{i+2})^2$. Then, as in 3.2.5, $t_{i+1}^2 = \frac{4t_{i+2}^2-1}{4t^2}$ yields that $\|w_{m+i}-w_j\|=1$. From this and $t_2^2 = \frac{1}{2(1+\cos(\frac{\pi}{m})}$, we obtain that $\|w_r-w_s\|=1$ for $w_s \in \tilde{w}_r$; furthermore, if $\{w_r,w_z\} \subset V(\mathcal{Q}^2)$ and $w_z \notin \tilde{w}_r$ then $\|w_r-w_z\|<1$.

We note that $M_e(\mathcal{Q}^e)=2M_2(\mathcal{Q}^2)+\sum_{m+1}^{m+e-3}j=(e-1)m+\binom{e-2}{2}$ and that \mathcal{Q}^3 is extremal.

Theorem 3.2. Let $d \geq 3$, m = 2u + 1, n = m + d - 3 and $k \in \{2,3\}$. Then there is an involutary self-dual stratified $P_{kn} = [y_{00}, R_{kn}] \subset \mathbb{R}^d$ of diameter 1 that is strictly configured.

Proof. With reference to Subsection 3.1 and Theorem 3.1 with e = d - 1 and $a_d = 0$, we consider P_{kn} with the property that:

• y_{00} is beyond exactly Q_{1n} .

- $Q = [w_1, ..., w_n] \subset L_{d-1}(-a_d) = H_d(0),$
- \mathcal{Q}^{d-1} is a involutary self-dual (d-3)-fold (d-1)-pyramid with diameter 1 and basis \mathcal{Q}^2 , and
- $Q^2 = [w_1, ..., w_m] \subset L_2(-a_3, ..., -a_d)$ is a regular m-gon of diameter 1.

Then $c_{d-1} = (0, \dots, 0, -a_d) = c_d$ and with $t_2, \dots t_{d-1}$ as in 3.2.4, we simplify notation and let $t = t_{d-1}$.

We now apply 3.1.2 with $y_{00} = (0, ..., 0, q)$ and $p_k < p_{k-1} < \cdots < p_1 < q$.

Case 1: k=2 and hence, $\lambda_1=1$ and $p_2=0$.

With $0 < \lambda_2 < 1$: P_{2n} is stratified, $Y_{00} = Q_{2n}$, $Y_{1r} = [\tilde{y}_{1r}, \tilde{y}_{2r}]$ and $Y_{2r} = [y_{00}, \tilde{y}_{1r}]$. With $q^2 = 1 - \lambda_2 t^2$ and $p_1^2 = 1 - \|\lambda_2 w_r - w_s\|^2 = 1 - (\lambda_2 + (1 - \lambda_2)^2 t^2)$ (cf. 3.2.3), we have that $\|y_{jr} - y_{is}\| = 1$ for $y_{is} \in Y_{jr}$.

With $\lambda_2=\frac{1}{2}$; we have $q^2=\frac{4-t^2}{4}$, $p_1^2=\frac{2-t^2}{4}$ and claim that $\|y_{jr}-y_{iz}\|<1$ for $y_{iz}\notin Y_{jr}$. From $\frac{1}{3}< t^2<\frac{1}{2}$, we obtain that

$$||y_{00} - y_{1r}||^2 = ||(0, q) - (w_r, p_1)||^2 = ||w_r||^2 + (q - p_1)^2$$

$$= t^2 + q^2 + p_1^2 - 2qp_1$$

$$= \frac{1}{4}(6 - 2t^2 - 2\sqrt{4 - t^2}\sqrt{2 - t^2})$$

$$\leq \frac{1}{4}\left(6 + 2\left(\frac{1}{2}\right) - 2\sqrt{4 - \frac{1}{3}}\sqrt{2 - \frac{1}{3}}\right) < 1$$
(3.1)

Let $y_{iz} \neq y_{00} \neq y_{jr}$ and $y_{iz} \notin Y_{jr}$. Then $y_{iz} = (\lambda_i w_z, p_i)$, $y_{jr} = (\lambda_j w_r, p_j)$ and $w_z \notin \tilde{w}_r$ (cf. 3.1.1). Since Q_{1n} and Q_{2n} are homothets of Q, we may assume by Theorem 3.1(iii) that j=1 and i=2, say. Since $w_z \notin \tilde{w}_r$, it follows as in the proof of Theorem 3.1 that $w_z = w_r$ or $\{w_z, w_r\} \subset V(Q^2)$. If $w_z = w_r$, then $\|y_{1r} - y_{2r}\|^2 = \frac{t^2}{4} + p_1^2 = \frac{1}{2}$. If $\{w_z, w_r\} \subset V(Q^2)$, then it follows from 3.2.2 that $\|w_r - \frac{1}{2}w_z\| < \|w_r - \frac{1}{2}w_s\|$ with $w_s \in \tilde{w}_r \cap V(Q^2)$. Hence, $\|y_{1r} - y_{2z}\| < \|y_{1r} - y_{2s}\| = 1$.

Case 2: k=3 and hence, $\lambda_2=1$ and $p_3=0$.

Let $Y_{00}=Q_{3n},\ Y_{1r}=[\tilde{y}_{2r},\tilde{y}_{3r}],\ Y_{2r}=[\tilde{y}_{1r},\tilde{y}_{2r}]$ and $Y_{3r}=[y_{00},\tilde{y}_{1r}].$ With $\lambda=\lambda_1=\lambda_3=\frac{1}{2}$ and $q^2=1-\lambda t^2=\frac{4-t}{4},\ p_1^2=1-\|\lambda w_r-\lambda w_s\|^2=1-\lambda^2=\frac{3}{4}$ (cf. 3.1.2 and 3.2.3), $\beta=1-\|\lambda_2 w_r-\lambda_1 w_s\|^2=1-\|w_r-\lambda w_s\|^2=1-\lambda+(1-\lambda)^2t^2=\frac{2-t^2}{4}$ and $p_2=p_1-\sqrt{\beta}$, we obtain that $\|y_{jr}-y_{is}\|=1$ for $y_{is}\in Y_{jr}$.

Let $y_{iz} \notin Y_{jr}$. We claim that $||y_{jr} - y_{iz}|| < 1$ and then it follows that each Y_{jr} is a facet of P_{3n} ; that is, R_{3n} is a 3-layered prismoid and P_{3n} is stratified.

We observe that if $a < t^2 \le b$ then

$$||y_{00} - y_{2r}||^{2} = ||(0, q) - (w_{r}, p_{2})||^{2} = ||w_{r}||^{2} + (q - p_{2})^{2}$$

$$= t^{2} + q^{2} + p_{1}^{2} + \beta + 2q\sqrt{\beta} - 2p_{1}\left(q + \sqrt{\beta}\right)$$

$$= \frac{1}{4}\left(9 + 2t^{2} + 2\sqrt{(4 - t^{2})(2 - t^{2})} - 2\sqrt{3}(\sqrt{4 - t^{2}} + \sqrt{2 - t^{2}}\right)$$

$$< \frac{1}{4}\left(9 + 2b + 2\sqrt{(4 - a)(2 - a)} - 2\sqrt{3}(\sqrt{4 - b} + \sqrt{2 - b}\right)$$
(3.2)

and $||y_{00} - y_{2r}|| < 1$ for $(a, b) \in \{(\frac{1}{3}, \frac{3}{8}), (\frac{3}{8}, \frac{2}{5}), (\frac{2}{5}, \frac{5}{12}), (\frac{5}{12}, \frac{3}{7}), (\frac{3}{7}, \frac{7}{16}), (\frac{7}{16}, \frac{1}{2})\}$, that is, for each $d \ge 3$ (cf. 3.2.4).

It is clear that $\|y_{00}-y_{1r}\|<\|y_{00}-y_{2r}\|$, and hence, we may assume that $y_{iz}=(\lambda_i w_z,p_i),\ y_{jr}=(\lambda_j w_r,p_j)$ and $w_z\notin \tilde{w}_r$. Then $\|w_r-w_z\|<\|w_r-w_s\|$ for $w_s\notin \tilde{w}_r$, and $\|y_{1r}-y_{3z}\|<\|y_{1r}-y_{3s}\|=1$ for $y_{3s}\in \tilde{y}_{1r}\subset Y_{1r}$.

From $t^2 < \frac{1}{2}$, we obtain that $\beta > \frac{3}{16} = \frac{p_1^2}{4}$, $p_2 = p_1 - \sqrt{\beta} < \frac{p_1}{2}$ and $p_2 < p_1 - p_2$. Thus, $\|y_{3r} - y_{2z}\| < \|y_{1r} - y_{2z}\|$ and we argue as above that $\|y_{1r} - y_{2z}\| < 1$.

In summary; $||y_{jr} - y'|| < 1$ for $\{y_{jr}, y'\} \subset \{y_{00}\} \cup \{y_{jr}|j = 1, \dots, k \text{ and } r = 1, \dots, n\}$, and with equality if and only if $y' \in Y_{jr}$. Thus

$$\mathcal{F}(P_{kn}) = \{Y_{00}\} \cup \{Y_{jr} | j = 1, \dots, k, r = 1, \dots, n\},\$$

$$V(P_{kn}) = \{y_{00}\} \cup \{y_{jr} | j = 1, \dots, k, r = 1, \dots, n\}$$

and P_{kn} is involutary self-dual under the anti-isomorphism on $\mathcal{L}(P_{kn})$ induced by $y_{jr} \to Y_{jr}$.

Theorem 3.3. Let $P_{km} \subset \mathbb{R}^3$ be an involutary self-dual stratified 3-polytope that is configured with diameter 1; $k \geq 2$ and $m = 2u + 1 \geq 3$. Then there is an involutary self-dual stratified $P_{(k+1)m} \subset \mathbb{R}^3$ that is configured with diameter 1.

Proof. We let l = k + 1 and denote P_{km} as in 3.1.1 and 3.1.2 with d = 3. Specifically,

- $Q = [w_1, \dots, w_m] \subset H_3(0)$ is a regular m-gon of diameter 1 and circumcentre $c_3 = (0, 0, 0)$ as in 3.2.1,
- $Q_{jm} = [y_{j1}, \dots, y_{jm}]$ with $y_{jr} = (\lambda_j w_r, p_j)$ and $0 < \lambda_k \le \lambda_1 < \dots < \lambda_j \le \lambda_{k-j} < \dots < \lambda_{\lfloor \frac{j}{2} \rfloor} = 1, 0 < p_k < p_{k-1} < \dots < p_1 < q \le 1 \text{ and } y_{00} = (0,0,q),$
- the anti-isomorphism on $\mathcal{L}(P_{km})$ is induced by $y_{jr} \to Y_{jr}$ with $Y_{00} = Q_{km}, Y_{km} = [y_{00}, \tilde{y}_{1r}], Y_{jr} = [\tilde{y}_{(k-j)r}, \tilde{y}_{(l-j)r}], 1 \le j \le k-1$, and $\tilde{y}_{jr} = [y_{j(r+u)}, y_{j(r+u+1)}],$ and
- $||y_{jr} y_{is}|| = 1$ if, and only if, $y_{is} \in Y_{jr}$.

Let $\mathbb{S}(y) := \mathbb{S}^2(y,1)$ for $y \in \mathbb{R}^3$, and consider the homothets $Q_{0m} = [y_{01}, \dots, y_{om}]$ of Q with $y_{0r} = (\lambda_0 w_r, p_0)$, $0 < \lambda_0 < \lambda_1$ and $p_1 < p_0 < q$. From $[y_{k(r+u)}, y_{k(r+u+1)}] = \tilde{y}_{kr} = Y_{00} \cap Y_{1r}$, it follows that $||y_{00} - y_{ks}|| = 1 = ||y_{1r} - y_{rs}||$ for $s \in \{r + u, r + u + 1\}$, and so,

$$\{y_{00}, y_{1r}\} \subset C_{kr} := \mathbb{S}(y_{k(r+u)}) \cap \mathbb{S}(y_{k(r+u+1)}),$$

a circle with centre $\frac{1}{2}(y_{k(r+u)} + y_{k(r+u+1)})$. It is now clear that

- (i) for each $p_1 < p_0 < q$, there is $0 < \lambda_0 < \lambda_1$ such that $y_{0r} \in C_{kr}$. In fact, $y_{0r} \in \alpha_{kr}$, the shorter arc of C_{kr} with end points y_{00} and y_{1r} . We note also that $V(Q_{0m}) \cap V(P_{km}) = \emptyset$ for each such p_0 . Let $V = V(P_{km})$, $B(y) = [\mathbb{S}(y)]$ and $B(V) = \bigcap_{y \in V} B(y)$. Since $\operatorname{diam}(P_{km}) = 1$, it follows that
- (ii) $\alpha_{kr} \subset \operatorname{bd}(B(V))$ for $r = 1, \dots m$. Since P_{km} is involutary self-dual with no fixed points, it follows from Theorem 3.2 of [13] that B(V) is polytopal and the face polyhedral structure of B(V) is a lattice

isomorphic to $\mathcal{L}(P_{km})$. Accordingly, B(V) is similarly self-dual and from Theorem 4.1 of [13], any surface $\Phi \subset \mathbb{R}^3$ obtained from $\mathrm{bd}(B(V))$ (by performing their surgery on one edge-arc of each pair of dual edge-arcs of $\mathrm{bd}(B(V))$) is the boundary of a body of constant width. In this case, $V \subset \Phi$ and $\mathrm{diam}(V) = 1$ yield Φ is of constant width 1.

We note that dual edge-arcs of $\operatorname{bd}(B(V))$ correspond to dual edges of $\mathcal{L}(P_{km})$. Thus, the duality $[y_{00}, y_{1r}] \longleftrightarrow Y_{00} \cap Y_{1r} = \tilde{y}_{kr}$ yields that α_{kr} is dual to the shorter edge-arc in $\mathbb{S}(y_{00}) \cap \mathbb{S}(y_{1r})$ with end point

yields that α_{kr} is dual to the shorter edge-arc in $\mathbb{S}(y_{00}) \cap \mathbb{S}(y_{1r})$ with end point $y_{k(r+u)}$ and $y_{k(r+u+1)}$. We consider those Φ that contain each of $\alpha_{k1}, \alpha_{k2}, \ldots, \alpha_{km}$. Then the symmetry of P_{km} about the x_3 -axis and i) yield that

- (iii) $V' = V \cup V(Q_{0m}) \subset \Phi$ and $\operatorname{diam}(V') = 1$,
- (iv) $\mathbb{S}(y_{00}) \cap V' = V(Q_{km})$ and the spherical region $\mathbb{S}(y_{00}) \cap \Phi$ is not empty and bounded in $H_3(0)$ by the circumcircle of Q_{km} , and
- (v) $y'_{00} = (0,0,q-1) \in \mathbb{S}(y_{00}) \cap \Phi$. From diam(V) = 1, |V| = km+1, M(3,km+1) = 2km and Theorem 2.1, we have that $M_3(V) = 2km+1$. From diam(V') = 1, |V'| = lm+1 and i), we have that $M_3(V') \geq M_3(V) + 2m = 2lm$. Thus, $M_3(V') = 2lm$ and
- (vi) $\|y_{0r} y\| < 1$ for $y_{0r} \in V(Q_{0m})$ and $y \in V \setminus \{y_{k(r+u)}, y_{k(r+u+1)}\}$. Let $V'' = V' \cup \{y'_{00}\}$. Then $\operatorname{diam}(V'') = 1$, |V''| = lm + 2, $\|y_{00} - y'_{00}\| = 1$ and $2|V''| - 2 = 2lm + 2 \ge M_3(V'') \ge 2lm + 1$. From the rotational symmetry of V'' and $\mathbb{S}(y'_{00})$ about the x_3 -axis, it follows that
- (vii) $||y'_{00} y|| < 1$ for $y \in V' \setminus \{y_0\}$, and
- (viii) $\|y_{\epsilon} y\| < 1$ for $y \in V' \setminus \{y_0\}$ for sufficiently small $\epsilon > 0$ and $y_{\epsilon} = (0, 0, q 1 \epsilon)$. Let $p_0 = q \epsilon$ and μ be the radius of the circle $H_3(p_0) \cap \mathbb{S}(y'_{00})$. Then $\{(0, 0, p_0)\} = H_3(p_0) \cap \mathbb{S}(y_{\epsilon}) \subset Q_{0m} \subset [H_3(p_0) \cap \mathbb{S}(y'_{00})]$ and with λ_0 chosen so that $0 < \lambda_0 < \lambda_1$ and $y_{0r} \in \alpha_{kr}$, we have that $0 < \lambda_0 t \leq \mu$. Accordingly, there is a point $z_{00} \in [y'_{00}, y_{\epsilon}]$ such that $\lambda_0 t$ is the radius of $H_3(p_0) \cap \mathbb{S}(z_{00})$; that is,
 - (ix) $\|z_{00}-y_{0r}\|=1$ for $r=1,2,\ldots,m$. Finally, let $z_{jr}=y_{(l-j)r},\tilde{z}_{jr}=\tilde{y}_{(l-j)r}$ and $Q'_{jm}=Q_{(l-j)m}$ for $j=1,2,\ldots,l$ and $r=1,2,\ldots,m$. In addition, let $Z_{00}=Q'_{lm}=Q_{0m},$ $Z_{lr}=[z_{00},\tilde{z}_{1r}]=[z_{00},\tilde{y}_{kr}]$ and $Z_{jr}=[\tilde{z}_{(l-j)r},\tilde{z}_{(l-j+1)r}]=[\tilde{y}_{jr},\tilde{y}_{(j-1)r}]$. From the preceding, we have that $P_{lm}=[z_{00},Q'_{1m},\ldots,Q'_{lm}]$ is involutary self-dual via $z_{jr}\to Z_{jr}$, stratified and configured with diameter 1.

Finally, we show that if a set of n points are the vertices of a configured 4-polytope P such as in Theorem 3.2 then $M_4(P) \le 4n$.

Theorem 3.4. Let $P_{km} = [y_{00}, R_{km}] \subset \mathbb{R}^4$ be a configured stratified 4-polytope, with n = km + 1 vertices. Then number of principal diagonals of P_{km} is at most 4n.

Proof. By Theorem 2.2, it is sufficient to prove that $f_1(P) \leq 3n$ for every configured stratified 4-polytope. By construction, $R_{km} = [\mathcal{Q}_{1m}, \mathcal{Q}_{2m}, \dots \mathcal{Q}_{km}]$ where each copy

 Q_{im} is self-dual and contains m vertices, and thus, $f_1(Q_{im}) = 2m - 2$ by Euler's Theorem and self-duality.

Finally, there are m edges through y_{00} and m(k-1) edges connecting the k homothets Q_{im} , and so, $f_1(P_{km}) = k(2m-2) + m(k-1) + m = 3km - 2k \le 3km + 3 = 3n$. \square

ORCID iDs

Tibor Bisztriczky https://orcid.org/0000-0001-7949-4338 Gyivan Lopez-Campos https://orcid.org/0000-0003-2005-8210 Deborah Oliveros https://orcid.org/0000-0002-3330-3230

References

- [1] M. Bayer, The extended *f*-vectors of 4-polytopes, *J. Comb. Theory Ser. A* **44** (1987), 141–151, doi:10.1016/0097-3165(87)90066-5.
- [2] T. Bisztriczky and D. Oliveros, *d*-dimensional self-dual polytopes and Meissner polytopes, in: *Polytopes and discrete geometry*, Amer. Math. Soc., [Providence], RI, volume 764 of *Contemp. Math.*, pp. 21–30, [2021] ©2021, doi:10.1090/conm/764/15357.
- [3] A. Brøndsted, An Introduction to Convex Polytopes, volume 90 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1983, doi:10.1007/978-1-4612-1148-8.
- [4] P. Erdös, On sets of distances of n points, Am. Math. Mon. 53 (1946), 248–250, doi:10.2307/ 2305092.
- [5] B. Grünbaum, A proof of Vazonyi's conjecture, Bull. Res. Council Israel. Sect. A 6 (1956), 77–78.
- [6] B. Grünbaum, Convex Polytopes, volume 221 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2nd edition, 2003, doi:10.1007/978-1-4613-0019-9.
- [7] B. Grünbaum and G. C. Shephard, Is selfduality involutory?, Am. Math. Mon. 95 (1988), 729–733, doi:10.2307/2322253.
- [8] A. Heppes, Beweis einer Vermutung von A. Vázsonyi, *Acta Math. Acad. Sci. Hungar.* 7 (1956), 463–466. doi:10.1007/bf02020540.
- [9] H. Hopf and E. Pannwitz, Aufgabe nr. 167, Jber. Deutsch. Math. 43 (1934).
- [10] S. Jendroł, A non-involutory selfduality, *Discrete Math.* 74 (1989), 325–326, doi:10.1016/0012-365x(89)90144-1.
- [11] Y. S. Kupitz, H. Martini and M. A. Perles, Finite sets in \mathbb{R}^d with many diameters a survey, in: *Proceedings of the International Conference on Mathematics and its Applications, ICMA-MU* 2005, *Bangkok, Thailand, December 15–17, 2005*, Mahidol University, Bangkok, pp. 91–112, 2005.
- [12] H. Martini, L. Montejano and D. Oliveros, *Bodies of Constant Width. An Introduction to Convex Geometry with Applications*, Birkhäuser, Cham, 2019, doi:10.1007/978-3-030-03868-7.
- [13] L. Montejano and E. Roldán-Pensado, Meissner polyhedra, Acta Math. Hungar. 151 (2017), 482–494, doi:10.1007/s10474-017-0697-3.
- [14] C. C. Neaderhouser and G. B. Purdy, On finite sets in E^k in which the diameter is frequently achieved, *Period. Math. Hung.* 13 (1982), 253–257, doi:10.1007/bf01847922.
- [15] B. Servatius and H. Servatius, Self-dual graphs, *Discrete Math.* 149 (1996), 223–232, doi: 10.1016/0012-365x(94)00351-i.

- [16] S. Straszewicz, Sur un probleme géométrique de P. Erdös, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 39–40, IV–V.
- [17] K. J. Swanepoel, Unit distances and diameters in Euclidean spaces, *Discrete Comput. Geom.* **41** (2009), 1–27, doi:10.1007/s00454-008-9082-x.
- [18] G. M. Ziegler, *Lectures on Polytopes*, volume 152 of *Graduate Texts in Mathematics*, Springer-Verlag, New York, 1995, doi:10.1007/978-1-4613-8431-1.