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Abstract

Let G = (V,E) be a graph and Γ an Abelian group, both of order n. A group distance
magic labeling of G is a bijection ` : V → Γ for which there exists µ ∈ Γ such that∑
x∈N(v) `(x) = µ for all v ∈ V , where N(v) is the neighborhood of v. In this paper we

consider group distance magic labelings of direct product of graphs. We show that if G is
an r-regular graph of order n and m = 4 or m = 8 and r is even, then the direct product
Cm × G is Γ-distance magic for every Abelian group of order mn. We also prove that
Cm × Cn is Zmn-distance magic if and only if m ∈ {4, 8} or n ∈ {4, 8} or m,n ≡ 0
(mod 4). It is also shown that if m,n 6≡ 0 (mod 4) then Cm × Cn is not Γ -distance
magic for any Abelian group Γ of order mn.
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1 Introduction and preliminaries
All graphs considered in this paper are simple finite graphs. We use V (G) for the vertex
set and E(G) for the edge set of a graph G. The neighborhood N(x) or more precisely
NG(x), when needed, of a vertex x is the set of vertices adjacent to x, and the degree d(x)
of x is |N(x)|, the size of the neighborhood of x. By Cn we denote a cycle on n vertices.

We recall two out of four standard graph products (see [8]). LetG andH be two graphs.
Both, the Cartesian product G�H and the direct product G×H are graphs with the vertex
set V (G)× V (H). Two vertices (g, h) and (g′, h′) are adjacent in:

• G�H if g = g′ and h is adjacent to h′ in H , or h = h′ and g is adjacent to g′ in G;

• G×H if g is adjacent to g′ in G and h is adjacent to h′ in H .

Distance magic labeling (also called sigma labeling) of a graph G = (V (G), E(G)) of
order n is a bijection ` : V → {1, . . . , n} with the property that there is a positive integer k
(called magic constant) such that w(x) =

∑
y∈NG(x) `(y) = k for every x ∈ V (G), where

w(x) is the weight of vertex x. If a graph G admits a distance magic labeling, then we say
that G is a distance magic graph. See [2] (and also [7]) for the survey on distance magic
graphs.

The idea of distance magic labeling of graphs has been motivated by the constructions
of magic squares. However, finding an r-regular distance magic graph is equivalent to
finding equalized incomplete tournament EIT(n, r) [6]. In an equalized incomplete tour-
nament EIT(n, r) of n teams with r rounds, every team plays exactly r other teams and
the total strength of the opponents that team i plays is k.

Some graphs which are distance magic among (some) products can be seen in [1, 3, 4,
5, 9, 10]. Recently a subclass of distance magic graphs was introduced in [1] that behave
nicely among products. A distance magic graph G is called balanced if there exists a
bijection ` : V (G)→ {1, . . . , |V (G)|} such that for every w ∈ V (G) the following holds:
if u ∈ N(w) with `(u) = i, then there exists v ∈ N(w), v 6= u, with `(v) = |V (G)|+1−i.
We say that u is the twin vertex of v (and vice versa) and ` is called a balanced distance
magic labeling. It is easy to see that a balanced distance magic graph has an even number
of vertices and that it is an r-regular graph for an even r. Simple examples are empty graph
on an even number of vertices, cycle C4, and K2n −M , for a perfect matching M . The
following theorem was proved in [1] and will be used in the second section.

Theorem 1.1 ([1]). The direct product G × H is a balanced distance magic graph if and
only if one of the graphs is balanced distance magic and the other one is regular.

Group distance magic labeling of graphs was recently introduced by Froncek in [5] as
in some sense a generalization of distance magic labeling. Let Γ be a finite Abelian group
of order n. A Γ-distance magic labeling of a graph G with |V (G)| = n is an injection
from V to Γ such that the weight of every vertex x ∈ V is equal to the same element
µ ∈ Γ, called the magic constant. If there exists a Γ-distance magic labeling of G, we say
that G is a Γ-distance magic graph. A graph G is called a group distance magic graph if
there exists a Γ-distance magic labeling for every Abelian group Γ of order |V (G)|. The
connection between distance magic graphs and Γ-distance magic graphs is as follows. Let
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G be a distance magic graph of order n. If we replace n in {1, . . . , n} by 0, we obtain a Zn-
distance magic labeling. Hence every distance magic graph is a Zn-distance magic graph.
The question remains what happens when we replace Zn by some other Abelian group,
and which graphs are Γ-distance magic but not distance magic. The following theorem
was proved in [5]:

Theorem 1.2 ([5]). The Cartesian product Cm�Ck, m, k ≥ 3, is a Zmk-distance magic
graph if and only if km is even.

Froncek also showed that the graph C2k�C2k has a (Z2)2k-distance magic labeling for
k ≥ 2 and µ = (0, 0, . . . , 0) ([5]).

It seems that the direct product is the natural choice among (standard) products to deal
with Γ-distance magic graphs and group distance magic graphs in general. The reason for
this is that the direct product is suitable product if we observe graphs as categories. Hence it
should perform well with the product of (Abelian) groups. The confirmation of this will be
illustrated in the first theorem of each forthcoming section. This fact also makes the direct
product the most natural among graph products, but on the other hand the most difficult
to handle. Namely, G ×H does not need to be connected, even if both factors are. More
precisely, G × H is connected if and only if both G and H are connected and at least
one of them is non-bipartite [11]. The direct product is commutative, associative, and has
attracted a lot of attention in the research community in last 50 years. Probably the biggest
challenge (among all products) is the famous Hedetniemi’s conjecture:

χ(G×H) = min{χ(G), χ(H)}.

This conjecture suggests that the chromatic number of the direct product depends only on
the properties of one factor and not both. This is not so rare and also in this work we show
that it is enough for one factor to be a balanced distance magic graph and then the direct
product with any regular graph will result in a group distance magic graph. For more about
the direct product and products in general we recommend the book [8].

For V (G) = {x0, x1, . . . , x|V (G)|−1} and V (H) = {y0, y1, . . . , y|V (H)|−1} we use

V (G×H) = {vi,j : i ∈ {0, 1, . . . , |V (G)| − 1}, j ∈ {0, 1, . . . , |V (H)| − 1}}.

The fundamental theorem of finite Abelian groups states that the finite Abelian group
Γ of order n can be expressed as the direct sum of cyclic subgroups of prime-power order.
This implies that Γ ∼= Zpα1

1
× . . .×Zpαmm , where n =

∏m
i=1 p

αi
i and pi for i ∈ {1, . . . ,m}

are not necessarily distinct primes. In particular, if n ≡ 0 (mod 4), then we have the
following possibilities: Γ ∼= Z2 × Z2 × Zpα1

1
× . . . × Zpαmm and n = 4

∏m
i=1 p

αi
i or

Γ ∼= Z4 × Zpα1
1
× . . . × Zpαmm and n = 4

∏m
i=1 p

αi
i or Γ ∼= Z2α0 × Zpα1

1
× . . . × Zpαmm

and n = 2α0
∏m
i=1 p

αi
i , α0 ≥ 3. This fact will be used often in what follows. Recall that

any group element g ∈ Γ of order 2 (i.e., g 6= 0, 2g = 0) is called an involution, and that
a non-trivial finite group has elements of order 2 if and only if the order of the group is
even. Moreover every cyclic group of even order has exactly one involution. We will use
the notation a0 for the identity element of an Abelian group A.

In the next section we present some general results about group distance magic label-
ings on the direct products. In the last section we concentrate on direct product of cycles.
We will prove also that a graph Cm ×Cn is Zmn-distance magic if and only if m ∈ {4, 8}
or n ∈ {4, 8} or m,n ≡ 0 (mod 4). Moreover, we will show that if m,n 6≡ 0 (mod 4)
then Cm × Cn is not Γ-distance magic for any Abelian group Γ of order mn.
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2 General results
We start with the following general theorem for direct product of graphs:

Observation 2.1. If an r1-regular graph G1 is Γ1-distance magic and an r2 -regular graph
G2 is Γ2-distance magic, then the direct product G1 ×G2 is Γ1 × Γ2-distance magic.

Proof. Let `i : V (Gi) → Γi be a Γi-distance magic labeling, and µi the magic constant
for the graph Gi, i ∈ {1, 2}. Define the labeling ` : V (G1×G2)→ Γ1×Γ2 for G1×G2,
as:

`((x, y)) = (`1(x), `2(y)).

Obviously, ` is a bijection and moreover, for any (u,w) ∈ V (G1 ×G2):

w(u,w) =
∑

(x,y)∈NG1×G2
(u,w)

`(x, y) =

r2 ∑
x∈NG1

(u)

`1(x), r1
∑

y∈NG2
(w)

`2(y)

 ,

w(u,w) = (r2µ1, r1µ2) = µ,

which settles the proof.

Theorem 2.2. If G is a balanced distance magic graph, then G is a group distance magic
graph.

Proof. Let G be a balanced distance magic graph of order n. Recall that n is an even
number andG is an r-regular graph for an even r. For any Abelian group Γ of order n holds
Γ ∼= Z2t×A for some natural number t > 0 and some Abelian groupA of order n

2t . If g ∈
Γ, then we can write g = (j, ai) where j ∈ Z2t and ai ∈ A for i ∈ {0, 1, . . . , n2t − 1}. Let
V (G) = {u1, u2, . . . , un2 , u

′
1, u
′
2, . . . , u

′
n
2
}. For i ∈ {1, . . . , n2 } we define the following

labeling ` for a vertex ui and its twin vertex u′i:

`(ui) =
(

(i− 1)(mod t), ab i−1
t c

)
and `(u′i) = (2t− 1, a0)− `(ui).

Since `(ui) + `(u′i) = (2t− 1, a0) for every i ∈ {1, . . . , n2 }, we get

w(v) =
∑

u∈N(v)

`(u) =
∑

ui∈N(v)

(`(ui) + `(u′i)) =

=
∑

ui∈N(v)

(2t− 1, a0) =
r

2
(2t− 1, a0),

where r
2 is an integer since r is even. Moreover, every element of Γ is used exactly once

and so G is Γ-distance magic.

Since for any graph G of order m, the graph Kn ×G is isomorphic to Knm, by Theo-
rems 1.1 and 2.2 the next result immediately follows.

Theorem 2.3. IfG is a balanced distance magic graph andH an r-regular graph for r ≥ 1,
then G×H is a group distance magic graph.
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Notice that by the above Theorem 2.3, ifG is an r-regular graph (r ≥ 1), then the graph
C4 × G is a group distance magic graph. We cannot generalize this result to other cycles
than C4. Namely, Cn ×K2 is isomorphic to 2Cn (i.e., the union of two cycles Cn) when
n is even and to C2n when n is odd. It is easy to see that both 2Cn for n 6= 4 and C2n for
n 6= 2 are not Γ- distance magic for any Abelian group Γ of order 2n (for n ≥ 5, in both
cases under the assumption that there is some group distance magic labeling `, we obtain
`(vi) = `(vi+4) for all the vertices vi, and we easily derive a contradiction also for n = 3).
Nevertheless, for many regular graphs the result still holds. For C8 as we will see next.

Theorem 2.4. If G is an r-regular graph of order n for some even r, then direct product
C8 ×G is a group distance magic graph.

Proof. Let V (G) = {x0, x1, . . . , xn−1} be the vertex set of G, let C8 = u0u1 . . . u7u0,
and H = C8 × G. Notice that if xpxq ∈ E(G), then vj,q ∈ NH(vi,p) if and only if
j ∈ {i − 1, i + 1} (where the sum on the first suffix is taken modulo 8). We are going to
consider three cases, depending on the structure of Γ.

Case 1: Γ ∼= Z2×Z2×A for some Abelian group of order 2n.
We can write g ∈ Γ as (j1, j2, ak) for j1, j2 ∈ Z2 and ak ∈ A for k ∈ {0, 1, . . . , 2n−

1}. For j ∈ {0, 1, . . . , n− 1} we set

`(vi,j) =

 (0, 0, a2j+i), if i ∈ {0, 1},
(0, 1, a2j+i−4), if i ∈ {4, 5},
(1, 1, a0)− `(vi−2,j), if i ∈ {2, 3, 6, 7}.

Clearly, ` : V (C8 × G) → Γ is a bijection and `(vi,j) + `(vi+2,j) = (yi, a0), where
yi ∈ {(1, 1), (1, 0)}, and so 2yi = (0, 0). Hence for every i ∈ {0, 1, . . . , 7} and j ∈
{0, 1, . . . , n− 1} we get

w(vi,j) =
∑

xp∈NG(xj)

(`(vi−1,p) + `(vi+1,p)) =
∑

xp∈NG(xj)

(yi−1, a0) =

=
r

2
(0, 0, a0) = (0, 0, a0)

and C8 ×G is Γ-distance magic since r is even.

Case 2: Γ ∼= Z4×A for some Abelian group A of order 2n.
If g ∈ Γ, then we can write g = (j, ak) for j ∈ Z4 and ak ∈ A for k ∈ {0, 1, . . . , 2n−

1}. For j ∈ {0, 1, . . . , n− 1} we define

`(vi,j) =

 (0, a2j+i), if i ∈ {0, 1},
(2, a2j+i−4), if i ∈ {4, 5},
(3, a0)− `(vi−2,j), if i ∈ {2, 3, 6, 7}.

Again ` : V (C8×G)→ Γ is obviously a bijection and `(vi,j)+`(vi+2,j) = (yi, a0), where
yi ∈ {1, 3}, and thus 2yi = 2. Hence for every i ∈ {0, 1, . . . , 7} and j ∈ {0, 1, . . . , n− 1}
we get

w(vi,j) =
∑

xp∈NG(xj)

(`(vi−1,p) + `(vi+1,p)) =
∑

xp∈NG(xj)

(yi−1, a0) =
r

2
(2, a0) = (r, a0)
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and C8 ×G is Γ-distance magic.

Case 3: Γ ∼= Z2α ×A for α > 2 and some Abelian group A of order n
2α−3 .

If g ∈ Γ, we can write g = (p, ak) for p ∈ Z2α and ak ∈ A for k ∈ {0, 1, . . . , n
2α−3 −

1}. For j ∈ {0, 1, . . . , n
2α−3 − 1} define the following labeling `:

`(vi,j) =


(
(2j + i)(mod 2α−2), abj·2−α+3c

)
, if i ∈ {0, 1},(

2α−1, a0) + `(vi−4,j
)
, if i ∈ {4, 5},

(2α − 1, a0)− `(vi−2,j), if i ∈ {2, 3, 6, 7}.

As in previous cases ` : V (C8 ×G) → Γ is a bijection and `(vi,j) + `(vi+2,j) = (yi, a0)
for some yi ∈ {2α−1 − 1, 2α − 1}. Thus 2(`(vi,j) + `(vi+2,j)) = (2yi, a0) = (−2, a0).
For every i ∈ {0, 1, . . . , 7} and j ∈ {0, 1, . . . , n− 1} we get

w(vi,j) =
∑

xp∈NG(xj)

(`(vi−1,p) + `(vi+1,p)) =
∑

xp∈NG(xj)

(yi−1, a0) =

=
r

2
(−2, a0) = (−r, a0)

and C8 ×G is Z2α ×A-distance magic.

The natural question arises whether we can prove similar results for every cycle Cn
where n ≡ 0 (mod 4). The answer to this question is negative as we will see in the next
section. It will also be clear from the following section why we cannot expect similar
results for n 6≡ 0 (mod 4). (For both claims see Theorem 3.5.) However, below we give
some groups Γ such that for G being an r-regular graph of order n for some even r, the
direct product C2p ×G admits a Γ-distance magic labeling.

Proposition 2.5. If G is an r-regular graph of order n for some even r, then the direct
product C2p ×G, p ≥ 2, admits an A× B-distance magic labeling for any Abelian group
B of order n and an Abelian group A such that:

• A ∼= (Z2)p,

• A ∼= Z4×(Z2)p−2,

• A ∼= Z8×(Z2)p−3,

• A ∼= (Z4)2 × (Z2)p−4.

Proof. Let V (G) = {x0, x1, . . . , xn−1} be the vertex set of G, let C2p = u0u1 . . .
u2p−1u0, and H = C2p × G. Notice that if xpxq ∈ E(G), then vj,q ∈ NH(vi,p) if
and only if j ∈ {i−1, i+1} (where the sum on the first suffix is taken modulo 2p). Let the
elements of B be b0, b1, . . . , bn−1. Recall that for any element r ∈ (Z2)p we have 2r = 0.

Case 1: A ∼= (Z2)p. Let the elements of (Z2)p be r0, . . . , r2p−1. Each element of Γ ∼=
(Z2)p × B can be thus expressed as (ri, bj), where ri ∈ (Z2)p and bj ∈ B. We define the
labeling ` as follows:

`(vi,j) =

{
(ri, bj), if i(mod 4) ∈ {0, 1},
(ri,−bj), if i(mod 4) ∈ {2, 3}.
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It is straightforward to check that ` is bijective and `(vi,j)+`(vi+2,j) = (ri+ri+2, b0).
Hence for every i ∈ {0, 1, . . . , 2p − 1} and j ∈ {0, 1, . . . , n− 1} we get

w(vi,j) =
∑

xd∈NG(xj)

(`(vi−1,d) + `(vi+1,d)) =
∑

xd∈NG(xj)

(ri−1 + ri+1, b0) =

=
r

2
(r0, b0) = (r0, b0)

and C2p ×G is (Z2)p × B-distance magic since r is even.

Case 2: A ∼= Z4×(Z2)p−2. Let the elements of (Z2)p−2 be r0, . . . , r2p−2−1. Each element
of Γ ∼= Z4×(Z2)p−2×B can be thus expressed as (q, ri, bj), where q ∈ Z4, ri ∈ (Z2)p−2,
and bj ∈ B. We define the labeling ` in the following way

`(v4i+q,j) =

{
(q, ri, bj), if q ∈ {0, 1},
(q, ri,−bj), if q ∈ {2, 3}.

Again it is easy to check that ` is bijective and `(vi,j) + `(vi+2,j) = (yi, zi, b0), where
yi ∈ {0, 2} and zi = rbi/4c + rb(i+2)/4c, and so 2(yi, zi) = (0, r0). Hence for every
i ∈ {0, 1, . . . , 2p − 1} and j ∈ {0, 1, . . . , n− 1} we get

w(vi,j) =
∑

xd∈NG(xj)

(`(vi−1,d) + `(vi+1,d)) =
∑

xd∈NG(j)

(yi−1, zi−1, b0) =

=
r

2
(0, r0, b0) = (0, r0, b0)

and C2p ×G is Z4×(Z2)p−2 × B-distance magic since r is even.

Case 3: A ∼= Z8×(Z2)p−3. Let the elements of (Z2)p−3 be r0, . . . , r2p−3−1. Each element
of Γ ∼= Z8×(Z2)p−3 × B can be thus expressed as (σ(q), ri, bj), where q ∈ Z8, ri ∈
(Z2)p−3, bj ∈ B, and the function σ : Z8 → Z8 is defined as σ(2) = 3, σ(3) = 2,
σ(6) = 7, σ(7) = 6, and σ(j) = j for remaining j ∈ Z8. We define the labeling ` in the
following way.

`(v8i+q,j) =

{
(σ(q), ri, bj), if q(mod 4) ∈ {0, 1},
(σ(q), ri,−bj), if q(mod 4) ∈ {2, 3}.

It is easy to see that ` is bijective and `(vi,j) + `(vi+2,j) = (yi, zi, b0), where (yi, zi) ∈
{(3, 2rbi/8c), (7, rbi/8c+rb(i+2)/8c)}, so 2(yi, zi) = (6, r0). Hence for every i ∈ {0, 1, . . . ,
2p − 1} and j ∈ {0, 1, . . . , n− 1} we get

w(vi,j) =
∑

xd∈NG(xj)

(`(vi−1,d) + `(vi+1,d)) =
∑

xd∈NG(xj)

(yi−1, zi−1, b0) =
r

2
(6, r0, b0)

and C2p ×G is Z8×(Z2)p−3 × B-distance magic since r is even.

Case 4: A ∼= (Z4)2× (Z2)p−4. Let the elements of (Z2)p−4 be r0, . . . , r2p−4−1. Each ele-
ment of Γ ∼= (Z4)2 × (Z2)p−4 ×B can be thus expressed as (σ(q), ri, bj), where q ∈ Z16,
ri ∈ (Z2)p−4, bj ∈ B, and the function σ : Z16 → (Z4)2 is defined as
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i 0 1 2 3 4 5 6 7
σ(i) (0,0) (0,3) (1,1) (1,2) (2,2) (2,1) (3,3) (3,0)
i 8 9 10 11 12 13 14 15

σ(i) (0,2) (0,1) (1,3) (1,0) (2,0) (2,3) (3,1) (3,2)

We define the labeling ` in the following way:

`(v16i+q,j) =

{
(σ(q), ri, bj), if q(mod 4) ∈ {0, 1},
(σ(q), ri,−bj), if q(mod 4) ∈ {2, 3}.

It is easy to see that ` is bijective and `(vi,j) + `(vi+2,j) = (yi, zi, b0), where yi ∈
{(1, 1), (1, 3), (3, 1), (3, 3)} and zi = rbi/16c+rb(i+2)/16c, so 2(yi, zi) = (2, 2, r0). Hence
for every i ∈ {0, 1, . . . , 2p − 1} and j ∈ {0, 1, . . . , n− 1} we get

w(vi,j) =
∑

xd∈NG(xj)

(`(vi−1,d)+ `(vi+1,d)) =
∑

xd∈NG(xj)

(yi−1, zi−1, b0) =
r

2
(2, 2, r0, b0)

and C2p ×G is (Z4)2 × (Z2)p−4 × B-distance magic since r is even.

Proposition 2.6. If G is an r-regular graph of order n for some even r and n, then the
direct product C2p ×G, p ≥ 2, admits an A× B-distance magic labeling for any Abelian
group B of order n2 and an Abelian group A such that:

• A ∼= Z8×Z4×(Z2)p−4,

• A ∼= Z16×(Z2)p−3.

Proof. Let V (G) = {x0, x1, . . . , xn−1} be the vertex set of G, let C2p = u0u1 . . .
u2p−1u0, and H = C2p × G. Notice that if xpxq ∈ E(G), then vj,q ∈ NH(vi,p) if
and only if j ∈ {i − 1, i + 1} (where the sum on the first suffix is taken modulo 2p). Let
the elements of B be b0, b1, . . . , bn/2−1.

Case 1: A ∼= Z8×Z4×(Z2)p−4. Each element of Γ ∼= Z8×Z4×(Z2)p−4 × B can
be expressed as (σ(q), ri, bj), where q ∈ Z32, ri ∈ (Z2)p−4, bj ∈ B, and the function
σ : Z32 → Z8×Z4 is defined as:

i 0 1 2 3 4 5 6 7
σ(i) (0,0) (1,0) (3,1) (2,1) (4,2) (5,2) (7,3) (6,3)
i 8 9 10 11 12 13 14 15

σ(i) (0,2) (1,2) (3,3) (2,3) (4,0) (5,0) (7,1) (6,1)
i 16 17 18 19 20 21 22 23

σ(i) (0,3) (1,3) (3,2) (2,2) (4,1) (5,1) (7,0) (6,0)
i 24 25 26 27 28 29 30 31

σ(i) (0,1) (1,1) (3,0) (2,0) (4,3) (5,3) (7,2) (6,2)

For j ≡ 0 (mod 2) we define the labeling ` in the following way:

`(v16i+t,j) =

{
(σ(t), ri, bb j2 c

), if t(mod 4) ∈ {0, 1},
(σ(t), ri,−bb j2 c), if t(mod 4) ∈ {2, 3};
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and for j ≡ 1 (mod 2) we set

`(v16i+t,j) =

{
(σ(16 + t), ri, bb j2 c

), if t(mod 4) ∈ {0, 1},
(σ(16 + t), ri,−bb j2 c), if t(mod 4) ∈ {2, 3}.

It is straightforward to check that ` is bijective and `(vi,j) + `(vi+2,j) = (yi, zi, b0), where
yi ∈ {(3, 1), (7, 3), (7, 1)} and zi = rbi/16c + rb(i+2)/16c+1, so 2(yi, zi) = (6, 2, r0).
Hence for every i ∈ {0, 1, . . . , 2p − 1} and j ∈ {0, 1, . . . , n− 1} we get

w(vi,j) =
∑

xd∈NG(xj)

(`(vi−1,d)+ `(vi+1,d)) =
∑

xd∈NG(xj)

(yi−1, zi−1, b0) =
r

2
(6, 2, r0, b0)

and C2p ×G is Z8×Z4×(Z2)p−4 × B-distance magic since r is even.

Case 2: A ∼= Z16×(Z2)p−3. Each element of Γ ∼= Z16×(Z2)p−3 × B as (σ(q), ri, bj),
where q ∈ Z16, ri ∈ (Z2)p−3, bj ∈ B, and the function σ : Z16 → Z16 is defined as:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ(i) 0 2 1 15 8 10 9 7 4 6 13 11 12 14 5 3

We define the labeling ` for j ≡ 0 (mod 2) as

`(v8i+t,j) =

{
(σ(t), ri, bb j2 c

), if t(mod 4) ∈ {0, 1},
(σ(t), ri,−bb j2 c), if t(mod 4) ∈ {2, 3},

and for j ≡ 1 (mod 2) by

`(v8i+t,j) =

{
(σ(8 + t), ri, bb j2 c

), if t(mod 4) ∈ {0, 1},
(σ(8 + t), ri,−bb j2 c), if t(mod 4) ∈ {2, 3}.

Again it is easy to see that ` is bijective and `(vi,j) + `(vi+2,j) = (yi, zi, b0), where
yi ∈ {1, 9} and zi = rbi/8c + rb(i+2)/8c, so 2(yi, zi) = (2, r0). Hence for every i ∈
{0, 1, . . . , 2p − 1} and j ∈ {0, 1, . . . , n− 1} we get

w(vi,j) =
∑

xd∈NG(xj)

(`(vi−1,d) + `(vi+1,d)) =
∑

xd∈NG(xj)

(yi−1, zi−1, b0) =
r

2
(2, r0, b0)

and C2p ×G is Z16×(Z2)p−3 × B-distance magic since r is even.

3 Γ-distance magic labeling of Cm × Cn

In this section we concentrate on the direct product of two cycles.

Theorem 3.1. If m,n ≡ 0 (mod 4), then the direct product Cm × Cn is A× B-distance
magic for any Abelian groups A and B of order m and n, respectively.

Proof. Let Γ = A×B and let b0 be the identity of B. We consider three cases, depending
on the factorization of Γ.
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Case 1: Γ ∼= Z2×Z2×G × B for some Abelian group G of order m4 .
If g ∈ Γ, then we can write g = (j1, j2, ak, bj) for j1, j2 ∈ Z2, ak ∈ G for k ∈

{0, 1, . . . , m4 −1}, and bj ∈ B for j ∈ {0, 1, . . . , n−1}. For i ∈ {0, 1, . . . ,m−1} we set:

`(vi,j) =

{
(0, i, ab i4 c, bj), if i(mod 4) ∈ {0, 1},
(1, 1, a0, b0)− `(vi−2,j), if i(mod 4) ∈ {2, 3},

for j(mod 4) ∈ {0, 1} and

`(vi,j) =

{
(0, i,−ab i4 c, bj), if i(mod 4) ∈ {0, 1},
(1, 1, a0, b0)− `(vi−2,j), if i(mod 4) ∈ {2, 3},

for j(mod 4) ∈ {2, 3}.
It is easy to see that ` : V (Cm × Cn) → Γ is a bijection and w(vi,j) = `(vi−1,j−1) +

`(vi−1,j+1) + `(vi+1,j−1) + `(vi+1,j+1) = (0, 0, a0, b0).

Case 2: Γ ∼= Z4×G × B for some Abelian group G of order m4 .
If g ∈ Γ, then we can write g = (q, ak, bj) for q ∈ Z4, ak ∈ G for k ∈ {0, 1, . . . , m4 −

1}, and bj ∈ B for j ∈ {0, 1, . . . , n− 1}. For i ∈ {0, . . . ,m− 1} we define the following
labeling `:

`(vi,j) =

{
(i, ab i4 c, bj), if i(mod 4) ∈ {0, 1},
(3, a0, b0)− `(vi−2,j), if i(mod 4) ∈ {2, 3},

for j(mod 4) ∈ {0, 1} and

`(vi,j) =

{
(i,−ab i4 c, bj), if i(mod 4) ∈ {0, 1},
(3, a0, b0)− `(vi−2,j), if i(mod 4) ∈ {2, 3},

for j(mod 4) ∈ {2, 3}.
Again ` : V (Cm ×Cn)→ Γ is a bijection and w(vi,j) = `(vi−1,j−1) + `(vi−1,j+1) +

`(vi+1,j−1) + `(vi+1,j+1) = (2, a0, b0).

Case 3: Γ ∼= Z2α ×G × B for α > 2 and some Abelian group G of order m
2α .

Notice that this case is meaningful only when m ≡ 0 (mod 8). If g ∈ Γ, then we can
write that g = (q, ak, bj) for q ∈ Z2α , ak ∈ G for k ∈ {0, 1, . . . , m2α − 1} and bj ∈ B for
j ∈ {0, 1, . . . , n− 1}. For i ∈ {0, . . . ,m− 1} we define the following labeling `:

`(vi,j) =


(
(i(mod 2α))2α−2, abi/2αc, bj

)
, if i(mod 2α) ∈ {0, 1},(

(1− i(mod 2α))2α−2,−abi/2αc,−bj
)
, if i(mod 2α) ∈ {2, 3},

(1, a0, b0) + `(vi−4,j), if i(mod 2α) 6∈ {0, 1, 2, 3},

for j(mod 4) ∈ {0, 1} and

`(vi,j) =


(
−(i(mod 2α))2α−2 − 1,−abi/2αc,−bj

)
, if i(mod 2α) ∈ {0, 1},(

(i(mod 2α − 1))2α−2 − 1, abi/2αc, bj
)
, if i(mod 2α) ∈ {2, 3},

(−1, a0, b0) + `(vi−4,j), if i(mod 2α) 6∈ {0, 1, 2, 3},

for j(mod 4) ∈ {2, 3}.
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It is easy to see that ` : V (Cm × Cn) → Γ is a bijection and moreover, w(vi,j) =
`(vi−1,j−1) + `(vi+1,j−1) + `(vi−1,j+1) + `(vi+1,j+1) = (−2, a0, b0).

One can ask if it is possible to find an A× B -distance magic labeling of Cm × Cn, if
|A| > m. A partial answer is given by the following observation.

Proposition 3.2. If m,n ≡ 0 (mod 4), then the direct product Cm × Cn is Zt×A -
distance magic for m|t and any Abelian group A order mnt .

Proof. Let Γ = Zt×A where m|t and A is an Abelian group of order mnt . If g ∈ Γ, then
we can write that g = (j, ak) for j ∈ Zt and ak ∈ A for k ∈ {0, 1, . . . , mnt − 1}. For
i ∈ {0, 1, . . . ,m− 1} let

`(vi,j) =



(
jm(mod t)

2 , ab jmt c

)
, if i = 0(

jm(mod t)
2 + m

4 , ab jmt c

)
, if i = 1(

− jm(mod t)
2 − m

4 ,−ab jmt c
)
, if i = 2(

− jm(mod t)
2 − m

2 ,−ab jmt c
)
, if i = 3

`(vi−4,j) + (1, a0), if i > 3,

for j(mod 4) ∈ {0, 1} and

`(vi,j) =



(
− jm(mod t)

2 − 1,−ab jmt c
)
, if i = 0(

− jm(mod t)
2 − m

4 − 1,−ab jmt c
)
, if i = 1(

jm(mod t)
2 + m

4 − 1, ab jmt c

)
, if i = 2(

jm(mod t)
2 + m

2 − 1, ab jmt c

)
, if i = 3

`(vi−4,j) + (−1, a0), if i > 3,

for j(mod 4) ∈ {2, 3}.
Notice that we obtain mn/t blocks such that in every block we have all elements from

Zt as the first coordinate. Moreover for i ∈ {0, 1, . . . ,mn/t − 1} in i-th block we have
labels (j, ai), where j ∈ {0, 1, . . . , t/2 − 1}. Therefore ` is bijective and µ = (−2, a0) is
the magic constant.

The above results encourage us to post the following conjecture.

Conjecture 3.3. If m,n ≡ 0 (mod 4), then Cm × Cn is a group distance magic graph.

Now we are going to present some sufficient conditions for a graph G not to be group
distance magic.

Theorem 3.4. Assume that m,n ≥ 3, m,n 6∈ {4, 8}, m = 4b + d and n = 4a + c for
some integers a, b ≥ 0 where c ∈ {0, 1, 2, 3} and d ∈ {1, 2, 3}. If an Abelian group Γ of
order mn has less than max{2, a− 1} involutions, then Cm×Cn is not Γ-distance magic.

Proof. Letm,n, a, b, c, d be as in the statement of the theorem. Thusm 6≡ 0 (mod 4). Let
G = Cm × Cn. Assume that there exists a group Γ of order mn such that G is Γ-distance
magic, i.e., there is a bijection ` : V (G)→ Γ such that for every x ∈ V (G) , w(x) = µ for
some constant µ ∈ Γ. Furthermore, let g0 be the identity of Γ.
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For any integers i, p, and s we have

w(vi+p+1,s+1) = `(vi+p,s) + `(vi+p,s+2) + `(vi+p+2,s) + `(vi+p+2,s+2) = µ,

where the first suffix is taken modulo m, and the second one modulo n. Comparing the
above equality for p = 0 and p = 2, we obtain

`(vi,s) + `(vi,s+2) = `(vi+4,s) + `(vi+4,s+2).

More generally, if we consider the equality for p = j and p = j + 2 for some integer j, we
obtain that

`(vi+j,s) + `(vi+j,s+2) = `(vi+j+4,s) + `(vi+j+4,s+2)

for every j. In consequence,

`(vi,s) + `(vi,s+2) = `(vi+4j,s) + `(vi+4j,s+2) (3.1)

for every j. As m 6≡ 0 (mod 4), there exists such a j that i+ 4j ≡ i+ 2 (modm). This
way we obtain from (3.1)

`(vi,s) + `(vi,s+2) = `(vi+2,s) + `(vi+2,s+2). (3.2)

Substituting s with s+ 2 in (3.2) we obtain

`(vi,s+2) + `(vi,s+4) = `(vi+2,s+2) + `(vi+2,s+4) (3.3)

and finally by subtracting (3.3) from (3.2)

`(vi,s)− `(vi,s+4) = `(vi+2,s)− `(vi+2,s+4). (3.4)

In a similar way as (3.1) we can prove that for any i, j, and s

`(vi,s) + `(vi+2,s) = `(vi,s+4j) + `(vi+2,s+4j). (3.5)

In particular from (3.5) for j = 1 we get

`(vi,s)− `(vi,s+4) = `(vi+2,s+4)− `(vi+2,s). (3.6)

This leads, if we add together (3.4) and (3.6), to

2(`(vi,s)− `(vi,s+4)) = g0.

By comparing the last equality for s = 4p and s = 4(p + 1), where p is any nonnegative
integer, we can observe that

2(`(vi,0)− `(vi,4p)) = g0

at least for every 1 ≤ p ≤ a− 1. This bound is sharp when c = 0. Let first a ≥ 2. We have
at least

2(`(vi,0)− `(vi,4)) = g0 and 2(`(vi,0)− `(vi,8)) = g0. (3.7)

On the other hand, if a < 2, then c 6= 0, since n /∈ {4, 8}. Hence vi,0, vi,4, and vi,8 are
again different vertices and (3.7) holds as well.
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Fix i = 0. Since ` is bijection, `(v0,0) − `(v0,4p) 6= 0 for every p such that p ∈
{1, . . . , a−1}, therefore `(v0,0)−`(v0,4p) has to be an involution for every p ∈ {1, . . . , a−
1} and we have at least two involutions when n = 3. Moreover, bijectivity of ` implies that

`(v0,0)− `(v0,4p1) 6= `(v0,0)− `(v0,4p2)

for every p1 6= p2 such that p1, p2 ∈ {1, . . . , a − 1}. Thus the set of involutions of Γ has
to consists of at least max{2, a− 1} distinct elements.

Theorem 3.5. Ifm,n 6≡ 0 (mod 4) thenCm×Cn is not Γ-distance magic for any Abelian
group Γ of order mn.

Proof. If m,n are odd, then any group Γ has odd order mn and we are done by Theo-
rem 3.4, as there are no involutions in Γ. If m ≡ 2 (mod 4) and n is odd (or n ≡ 2
(mod 4) and m is odd, resp.), then mn ≡ 2 (mod 4). Thus by the fundamental theorem
of finite Abelian groups Γ ∼= Z2×Zpα1

1
× . . .×Zpαkk where mn = 2

∏k
i=1 p

αi
i and pi > 2

for i ∈ {1, . . . , k} are not necessarily distinct primes. Therefore there exists exactly one
involution i in Γ (i = (1, 0, . . . , 0)) and we are done by Theorem 3.4.

Suppose now that m,n ≡ 2 (mod 4), then m = 2 + 4a, n = 2 + 4b and mn =
4(1 + 2a)(1 + 2b) for some integers a, b. Thus by the fundamental theorem of finite
Abelian groups Γ ∼= Z2 × Z2 × A or Γ ∼= Z4 × A for some Abelian group A of order
(1 + 2a)(1 + 2b). Since (1 + 2a)(1 + 2b) is an odd number, then, if Γ ∼= Z4 × A, there
exists only one involution i = (2, 0) in Γ and Cm × Cn is not Z4 × A-distance magic by
Theorem 3.4.

In the case Γ ∼= Z2 × Z2 × A, there exist exactly three involutions i1 = (1, 0, 0),
i2 = (0, 1, 0) and i3 = (1, 1, 0) in Γ. Let G = Cm × Cn and assume that G is Γ-distance
magic, i.e., there is a bijection ` : V (G) → Γ such that for every x ∈ V (G), w(x) = µ
for some constant µ. Using the same arguments as in the proof of Theorem 3.4, since
m ≡ 2 (mod 4), we obtain that 2(`(v0,0) + `(v0,2)) = 2(`(v0,2) + `(v0,4)) = µ and
2(`(v0,4) + `(v0,6)) = 2(`(v0,6) + `(v0,8)) = µ. On the other hand since n ≡ 2 (mod 4)
we have gcd(2, n) = gcd(4, n) = 2 and there exists α′ such that 4α′ ≡ 2 (modn). By
repeating the above arguments we get 2(`(v0,4) + `(v2,4)) = 2(`(v2,4) + `(v4,4)) = µ and
2(`(v0,4) + `(vm−2,4)) = 2(`(vm−2,4) + `(vm−4,4)) = µ. Therefore:

2(`(v0,0)− `(v0,4)) = 2g1 = 0,
2(`(v0,8)− `(v0,4)) = 2g2 = 0,
2(`(v4,4)− `(v0,4)) = 2g3 = 0

2(`(vm−4,4)− `(v0,4)) = 2g4 = 0.

If any gi = 0 (for i ∈ {1, 2, 3, 4}), then the labeling ` is not a bijection as m,n 6≡ 0
(mod 4). Thus we can assume that all gi are involutions and by the Pigeonhole Principle
there exist j 6= i such that gi = gj (since there are only three involutions in Γ) what
implies that the labeling ` is not a bijection m,n 6≡ 0 (mod 4) (e.g., if g2 = g3, then
`(v0,8) = `(v0,4)), a contradiction.

The immediate corollary follows.

Corollary 3.6. Assume that m,n ≥ 3 and {m,n} = {4a, 4b+ c} for some integers a ≥ 3
and b ≥ 0, c ∈ {1, 2, 3}. Then Cm × Cn can be Γ-distance magic only in the following
cases:
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• c ∈ {1, 3} and Γ ∼= A × (Z2)p+2 for some Abelian group A of odd order, where
a = 2p,

• c ∈ {1, 3} and Γ ∼= A× Z3×(Z2)p for some Abelian group A of odd order, where
a = 3 · 2p−2,

• c ∈ {1, 3} and Γ ∼= A× (Z2)p × Z4 for some Abelian group A of odd order, where
a = 2p,

• c ∈ {1, 3} and Γ ∼= A × (Z2)p−2 × (Z4)2 for some Abelian group A of odd order,
where a = 2p,

• c ∈ {1, 3} and Γ ∼= A × (Z2)p−1 × Z8 for some Abelian group A of odd order,
where a = 2p,

• c = 2 and Γ ∼= A× (Z2)p+3 for some Abelian group A of odd order, where a = 2p,

• c = 2 and Γ ∼= A × Z3×(Z2)p+1 for some Abelian group A of odd order, where
a = 3 · 2p−2,

• c = 2 and Γ ∼= A × Z3×(Z2)p−1 × Z4 for some Abelian group A of odd order,
where a = 3 · 2p−2,

• c = 2 and Γ ∼= A × Z5×(Z2)p for some Abelian group A of odd order, where
a = 5 · 2p−3,

• c = 2 and Γ ∼= A × Z7×(Z2)p for some Abelian group A of odd order, where
a = 7 · 2p−3,

• c = 2 and Γ ∼= A × (Z2)p+1 × Z4 for some Abelian group A of odd order, where
a = 2p,

• c = 2 and Γ ∼= A× (Z2)p−1× (Z4)2 for some Abelian groupA of odd order, where
a = 2p,

• c = 2 and Γ ∼= A × (Z2)p × Z8 for some Abelian group A of odd order, where
a = 2p,

• c = 2 and Γ ∼= A × (Z2)p−2 × Z4×Z8 for some Abelian group A of odd order,
where a = 2p,

• c = 2 and Γ ∼= A× (Z2)p−1 × Z16 for some Abelian group A of odd order, where
a = 2p.

Proof. Let a = α2p for some odd number α. Observe that the number of involutions is
equal to 2β − 1, where β is the number of the factors Z2k of Γ. By Theorem 3.4 we have
α2p − 1 ≤ 2β − 1 and hence α ≤ 2β−p. It is straightforward to see that if c ∈ {1, 3}, then
the maximum number of such factors is p + 2 and α ≤ 4, while in the case when c = 2
it is p + 3 and α ≤ 8. Moreover Z6

∼= Z3×Z2, Z10
∼= Z5×Z2, Z12

∼= Z4×Z3 and
Z14
∼= Z7×Z2 are the only groups of the respective order, so the listed groups are the only

ones that consist of at least p factors Z2k.

In the previous section in Propositions 2.5 and 2.6 we presented constructions for all
the cases from Corollary 3.6, where m = 2p or n = 2p for some integer p. However we
think that whole Corollary 3.6 gives not only necessary but also sufficient conditions for a
graph to be group distance magic so we post the following conjecture.
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Conjecture 3.7. Assume that m,n ≥ 3 and {m,n} = {4a, 4b + c} for some integers
a ≥ 3 and b ≥ 0, c ∈ {1, 2, 3}. Then Cm ×Cn is Γ-distance magic in the following cases:

• c ∈ {1, 3} and Γ ∼= A× Z3×(Z2)p for some Abelian group A of odd order, where
a = 3 · 2p−2,

• c = 2 and Γ ∼= A × Z3×(Z2)p+1 for some Abelian group A of odd order, where
a = 3 · 2p−2,

• c = 2 and Γ ∼= A × Z3×(Z2)p−1 × Z4 for some Abelian group A of odd order,
where a = 3 · 2p−2,

• c = 2 and Γ ∼= A × Z5×(Z2)p for some Abelian group A of odd order, where
a = 5 · 2p−3,

• c = 2 and Γ ∼= A × Z7×(Z2)p for some Abelian group A of odd order, where
a = 7 · 2p−3,

We finish with the following result.

Theorem 3.8. A graph Cm × Cn is Zmn-distance magic if and only if m ∈ {4, 8} or
n ∈ {4, 8} or m,n ≡ 0 (mod 4).

Proof. If m 6≡ 0 (mod 4) and n 6∈ {4, 8}, or n 6≡ 0 (mod 4) and m 6∈ {4, 8}, then the
group Zmn has at most one involution i (namely i = mn

2 , if mn is even) and so Cm × Cn
is not Zmn-distance magic by Theorem 3.4. If n = 4 or m = 4 then Cm × Cn is Zmn-
distance magic by Theorem 2.3 and if m,n ≡ 0(mod 4), then Cm × Cn is Zmn-distance
magic by Proposition 3.2. If n = 8 or m = 8, then the graph Cm × Cn is Zmn-distance
magic by Theorem 2.4.
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