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The present study introduces a novel approach to analyse the surface roughness of metal parts made by 3D selective laser melting (SLM). 
This technology, known for its ability to efficiently produce functional prototypes and limited-run series, is particularly effective when surface 
conditions directly meet usage requir ements. Thus, the suitability of surfaces is a critical factor, emphasizing the importance of new methods 
for predicting their quality. Here fractal geometry and network theory are integrated to delve into the complexities of SLM-produced surfaces, 
while machine learning and pattern recognition concepts are employed to evaluate the surface roughness. Specifically, genetic programming, 
artificial neural networks, support vector machine, random forest, k-nearest neighbors are compared in terms of accuracy demonstrating 
that only the first method provided valid estimation due to the presence of very little training data. Experimental work with EOS Maraging 
Steel MS1 and an EOS M 290 3D printer validates the method’s practicality and effectiveness. Then, the research offers a fresh perspective 
in surface analysis and has significant implications for quality control in additive manufacturing, potentially enhancing the precision and 
efficiency of 3D metal printing.
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Highlights
•	 Introduces a novel method combining fractal geometry and network theory to analyse surface roughness.
•	 Employs techniques like machine learning and pattern recognition for accurate surface characterization.
•	 Offers a direct comparison of predictions made by genetic programming and other predictive algorithms.
•	 Demonstrates practical applications of these methods to the case of Metal Laser Melting.
•	 Details experimental work using EOS Maraging Steel MS1 and an EOS M 290 3D printer.
•	 Presents a comprehensive analysis, proving the efficiency of the proposed method.
•	 Offers significant implications for improving quality control and precision in 3D metal printing industries.

0  INTRODUCTION

Additive manufacturing (AM) [1], also known as 
three-dimensional (3D) printing, is a production 
technology able to create three-dimensional objects by 
adding successive layers of material, unlike traditional 
manufacturing techniques, such as milling or turning, 
which remove material. This process relies on digital 
models to guide the deposition of material, enabling 
the creation of complex geometries that are difficult 
or impossible to achieve with conventional methods. 
Moreover, it allows for an effective solution of 
production especially in the case prototypes and small 
series. 

At the same time, AM convenience and wider 
adoption as definitive process technology are 
currently limited by aspects such as the surface quality 
of the final products [2]. This quality represents a 
crucial aspect in the case of industrial goods due to its 
significant impact on their key characteristics. Surface 
roughness, in fact, directly affects aesthetic appeal, 

mechanical performance, and operational efficiency 
of products, as it influences essential characteristics 
such as wear, fatigue, and corrosion resistances. It 
also plays a vital role in determining the conditions of 
interfacing, which can be critical in many applications.

Achieving a comprehensive understanding of 
surface roughness is challenging due to the multitude 
of processing factors involved such as: 
• the complexity of surface textures requires 

sophisticated metrics and analysis techniques to 
be fully considered, especially on a microscale. 

• different materials and manufacturing processes 
produce a wide variety of surface characteristics, 
making standardization of measurement methods 
difficult. 

• environmental and operational factors can alter 
surface conditions over time, necessitating 
continuous or repeated analysis. 

The integration of this sort of knowledge 
into practical procedures and methods needs 
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interdisciplinary expertise, combining material 
science, engineering, and data analysis.

Then, there is a growing attention for more 
effective and powerful tools, able to analyse and 
predict surface characteristics, also involving concepts 
of artificial intelligence (AI). This is the exact baseline 
for the present study that merges fractal geometry 
and network theory to recognize surface distinctive 
patterns and machine learning (ML) methods for their 
investigation [3].

Beginning with the fundamental definition of the 
most relevant aspects of the current study:
• ML [4] refers to a large variety of mathematical, 

statistical, and computational methods able to 
solve a problem not directly, but by searching 
for patterns inside input data. The solution is 
calculated not according to a clear formula but 
exploiting dependences. The more data such 
a model processes and the longer it is used, the 
more accurate the results become.

• Pattern recognition [5] is a discipline whose goal 
is to classify ‘objects’ into categories or classes, 
based on the analysis and interpretation of their 
images, utilizing techniques from fields such as 
ML, statistics, and data analysis.

• Fractal, as a term, was coined by Benoit 
Mandelbrot [6] to describe an uncommon group 
of mathematical objects that played a significant 
role in the transition from classical to modern 
mathematics. Classical mathematics, rooted in 
Euclidean geometry and Newton’s dynamics, 
gave way to modern mathematics with the 
introduction of new concepts like the Cantor set 
theory and the space-filling Peano curve. These 
new mathematical structures represent the vast 
possibilities within pure mathematics. Among 
other uses, fractals demonstrated to be highly 
valuable in characterizing image complexity 
inside engineering applications.

• Graph theory [7] is a branch of discrete 
mathematics that investigates the properties of 
graphs. In a general sense, a graph is represented 
as a set of vertices (nodes) connected by edges 
and arcs. 

• Network theory [8], inside this broad framework, 
extends the concepts of the graph theory to the 
analysis of real-world networks and systems.
These general concepts, strictly related to the AI 

application to the solution of engineering problems, 
have been here used for assessing the surface quality 
in components fabricated by selective laser melting 
(SLM).

SLM [9] is one of the most common AM 
processes in the case of metals and metallic alloys, 
falling, then, within the broader family of production 
methods for successive stratifications. A laser beam 
selectively melts metal powder particles to create, 
layer by layer, the part. During the procedure, the laser 
beam acts on the surface of the component being built, 
forming a melting pool on it. In the meantime, metal 
powder enters the processing chamber from a nozzle 
which, again due to the effect of the beam, passes into 
a liquid state, thus mixing with the melting bath. After 
cooling, solid connecting structures form between the 
original material and the added one, little different 
from those created by traditional casting processes. 
Then, SLM does not sinter the powders but melts 
them into a homogeneous mass making possible to 
create parts with flexibility, speed, and quality, also 
assuring high and stable material properties. 

Fig. 1 shows the SLM general operating scheme 
and its main systems such as:
• the construction chamber, i.e. the controlled 

environment where sintering takes place.
• the construction bed, i.e. the surface on which the 

object is built.
• the tank with the powder to be sintered.
• the recoater blade which distributes the powder 

evenly over the build bed.
• the laser that melts the powder to form the layers 

of the object.
• the laser beam and recoater blade movement 

control system.

Fig. 1.  Simplified diagram of the SLM process

1  MATERIALS AND METHODS

1.1  Equipment and Technology

The EOS M 290 SLM machine has been used 
[10], Fig. 2. The wide range of usable materials, a 
comprehensive monitoring suite, and easy integration 
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into the production steps make this machine the proper 
choice for flexible series production of metal parts.

Fig. 2.  EOS M290 system used for SLM [10] SIEVA 3D Lab

In the SLM, the surface quality is strictly related to 
the technology. In the working process, a directed laser 
beam acts on the workpiece, forming a melt pool on it. 
Here it turns into a liquid state, providing a connection 
with the source material. After cooling, connecting 
rollers or structures of a certain configuration and 

size, or even completely new parts, are formed on 
the surface. The average thickness of one layer is 0.1 
mm. A jet of protective gas, predominantly argon, is 
also supplied to the processing zone for improving the 
process. The optical unit of the machine, under the 
control of the software package, moves itself along 
the part, drawing edges and lines. The uniform layer 
thickness is ensured by a system of built-in touch 
sensors. 

In terms of physical and mechanical properties, 
products obtained by the SLM method are superior, in 
general, to classical analogues. Since metal powders 
are not sintered, but melted under the influence of 
laser radiation, until a homogeneous mass is formed, 
which, after cooling, retains the specified geometry, 
then the structure is homogeneous, non-porous, which 
has a positive effect on the strength of the finished 
product. The printed products are characterized 
by high dimensional accuracy. Its surface requires 
virtually no finishing treatment (which also saves both 
time and money).

1.2 Digital Procedure

According to the SLM process, three main steps have 
been implemented (Fig. 3): 

Fig. 3.  Procedure for production of parts by SLM [10]
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1. Preparation: once a CAD model is created, it 
is transferred to specialized printer software. 
At the same stage, the material is selected and 
the position of the components relative to each 
other on the construction substrate is specified. 
This integrated approach permits to minimize 
material consumption, reduce the cost of money 
and time for the production process. Based on 
the information received, the machine program 
independently selects exposure vectors and 
process speed, laser beam power, the distance 
between the dashed lines that determine the 
processing step, the layer thickness (since the 
program conditionally breaks the object into 
separate layers). 

2. Printing process: the equipment prints the 
product layer by layer, repeating the operations 
cyclically. A thin layer of powder is fed into the 
work area. It is also filled with an inert gas, often 
argon, nitrogen (oxygen content is minimal). Its 
particles, under the influence of laser radiation, 
are soldered to those parts of the surface that 
are included in the computer model. As soon as 
one layer is printed, the working platform will 
automatically lower to its thickness (30 mm to 
50 mm) and the technological process will be 
repeated again. Thus, layer by layer in height, the 
finished part is synthesized. 

3. Post-processing: at this stage, the working 
powder, which was not involved in the 
technological process, is removed from the 
construction chamber by a vacuum block with a 
stream of air. It is sifted and can be reused. Next, 
the specialist manually removes the supporting 
elements that were installed inside the flow 
channel for better fixation of the product. All 
irregularities are sanded down. The final stage is 
finishing turning. 

1.3  Material Preparation

EOS Maraging Steel MS1 has been chosen as 
material. It is a tool steel powder intended for 
processing on EOS DMLSTM systems. This kind of 
steel is characterized by having very good mechanical 
properties and being easily heat-treatable using a 
simple thermal age-hardening process to obtain 
excellent hardness and strength. Parts built in this 
material have a chemical composition following 
US classification 18 % Ni Maraging 300, European 
1.2709 and German X3NiCoMoTi 18-9-5. Moreover, 
the parts are machinable after the manufacturing 
process and can be easily post-hardened to more than 

50 HRC by age-hardening at 490 °C (914 °F) for 6 
hours. In both as-built and age-hardened states these 
parts can be machined, spark-eroded, welded, micro 
shot-peened, polished and coated if required. Due to 
the layerwise building method, the parts have a certain 
anisotropy, which can be reduced or removed by 
appropriate heat treatment – e.g. solution treatment at 
940 °C for 2 hours. 

In the case, twenty cubic specimens, with length 
10 mm, have been made by SLM and investigated in 
terms of surface quality. 

As first, a profilometer has permitted to 
measure roughness surface. Contact profilometry 
is a quantitative technique known to reflect the 
irregularities of the surface profile of metal materials, 
including SLM parts [11]. The most common 
parameter derived by profilometry is the average 
roughness (Ra), for quantifying the surface texture 
and ensuring quality control in manufacturing 
processes. It commonly helps in assessing and 
predicting mechanical performance and evaluating the 
overall aesthetic appearance of the finished products. 
In the case, Ra has been detected along x- and y-axes, 
namely Rax and Ray. 

Then, a microstructural analysis has been 
performed on all specimens. Microstructures are 
shown in Fig. 4, limited to some representative cases 
(i.e., specimens id. 3, 11, 14, 18 and 19).

Physical characteristics including strength, 
toughness, ductility, hardness, corrosion and wear 
resistance, etc., are all significantly influenced by 
a material’s microstructure. These characteristics 
control, in turn, when and how materials can be used 
in industrial applications. At the same time, as also 
evident in Fig. 4, microstructures are quite complex 
to be analysed. The present investigation assumes that 
the fractal geometry, differently respect to the classical 
Euclidean geometry, can help in characterizing such 
complexity.

1.4  Fractals

In fractal geometry two aspects deserve special 
attentions: 
1. Self-similarity / self-affinity 
2. Fractal dimension.

1.4.1  Self-Similarity and Self-Affinity

These concepts can be defined using the mathematical 
notion of iterative function system (IFS) [12], 
proposed by Hutchinson [13]. A self-similar set, E, 
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can be infinite or finite copies of itself (Fig. 6) and 
expressed as

 E f Ei
i

m

=
=

( ),
1



 (1)

where E is the invariant set or attractor of the IFS, fi is 
the transformation function describing the relationship 
between the invariant set and the constituent parts.

Two objects are said to be self-similar if one is a 
union of a (limited) number of smaller similar copies 
of itself. The transformation function fi defines a 
scalar transformation reducing its size and the shifting 
of origin inside E. Here f1 defines the top-left shift and 
f2 defines the bottom-right shift. Difference between 
self-similar and self-affine transformation present in 
Fig. 5.

Self-affinity including self-similar geometry can 
be classified into three groups [14]: exactly self-affine, 
quasi self-affine and statistically self-affine (Fig. 7).

Fig. 5.  Self-similar and self-affine transformation

Fig. 6.  Construction	of	the	invariant	set	E

a)   b)   c) 
Fig. 7.  Types of self-affinity: a) exactly self-affine,  
b) quasi self-affine, and c) statistically self-affine

1.4.2  Fractal Dimension

The fractal dimension (FD) is a common term invoked 
in geometry to provide a rational statistical index of 
complexity detail in a pattern. It quantifies how the 
detail of the pattern changes with the scale at which it 
is measured. It can be particularly useful for analysing 
images, as it provides a way to characterize irregular 

a)   b)   c) 

d)   e) 
Fig. 4.  Representative	microstructures	under	investigation;	a)	Id.	3,	b)		Id.	11,	c)	Id.	14d	and	Id.	18at	50×,	and	e)	;	and	Id.	19	at	100×

https://en.wikipedia.org/wiki/Complexity
https://en.wikipedia.org/wiki/Pattern
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and complex structures, offering insights into patterns 
and textures within the image

1.4.3  Image Processing

The probability density function (PDF) of black/white 
image has been here used as main concept for image 
processing and to establish FD of microstructure [15], 
as represented in Fig. 8.

Fig. 8.  Probability-density	function;	a)	pixel	map	(black	regions),	
showing	a	representative	3×3	sliding	grid	for	which	the	count,	
N(k)	=	4,	b)	frequency	distribution	of	pixel	counts	for	a	3×3	

window, and c) frequency distribution of pixel counts  
for	a	5×5	window

A square grid of size (k × k) is slid over the image 
from left to right, top to bottom by shifting its position 
by one pixel from its previous one. Let N(k) be the 
number of black pixels at a particular position of the 
square grid where N(k) ≤ k2. The first order moment, 
M(k), of the probability density function P(k) of the 
N(k) values for different positions of the square grid 
can be derived by using the following formula.

 M k i P k P k
i

N k

i i
i

N k

( ) ( ) ( ) .
( ) ( )

� � �
� �
� �
1 1

1where  (2)

M(k) is often termed the ‘mass dimension’. 
The relationship between the first order moment 
value M(k) and k may be given by

 M k kD( ) .∝  (3)

1.5  Pattern Recognition

A novel method for pattern recognition (PR) utilizing 
graph theory has been established here, following the 
next rules. The collection of nodes V(u, v) and the 
set of edges E(u, v) constitute the graph G = (V, E). 
First, graphs (networks) have been created using 
microstructures (one graph per each microstructure). 
White island nodes have been generated by detecting 
SLM in photos of 3D printing materials. Then, a 
network has been constructed by connecting the 
neighbors of the closest node. 

Fig. 9 provides a quick representation of the four 
main phases characterizing this new procedure for 
pattern recognition by the network theory. 

It is worth noting that the network of nodes 
represents the microstructure on one hand, while 
on the other hand, it can be described using typical 
parameters from network theory.

Among others, the network density (η) is here 
of special interest. It can be defined as the fraction of 
edges present over all possible edges and represented 
as:

 η = 2 · E / V · (V – 1), (4)

where V is the number of vertexes, and E is the 
number of edges in the network.

1.6  Modelling

With the scope of modelling roughness surface, 
similarly to other past investigations [16] to [19], two 
AI-based approaches have been here used: genetic 
programming (GP) and neural network (NN).

 
            a)                 b)   c) d)

Fig. 9.  A new method for pattern recognition by using network theory
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1.6.1  Genetic Programming

The GP is an automatic procedure to create or modify 
programs using genetic-based algorithms [20]. With it, 
programs are ‘grown’ to increasingly solve the given 
computational problem more effectively, according to 
a certain fitness function for the chromosomes. In GP, 
the individuals in a population represent programs. 
These programs are conveniently represented as 
symbolic trees, where functions are depicted by 
internal nodes, and sub-trees are attached as input 
parameters. The leaves of such a tree represent 
constants, task input parameters, or program directive 
commands (as in Fig. 10):

Fig. 10.  Simple tree program in GP

a)  b) 
Fig. 11.  Comparison	between	neural	network	structures:	 

a)	natural	network;	b)	artificial	network

1.6.2  Neural Network

The NN is a methodological procedure derived from 
research into the human brain, then applied to a 
loosely coupled family of models characterized by a 
large parametric space and flexible structure [21]. Most 
new models have been developed for non-biological 
applications, although many associated terms reflect 
their origins. A NN is a massively parallel distributed 
processor that has the natural ability to store empirical 
information and make it available for use. It is like 
the brain in two ways: knowledge is acquired by 
the network through the learning process. To store 
knowledge, interneuron connections of varying 

strengths, called synaptic weights, are used, thus 
creating a parallel between biological and artificial 
structures in the way of processing information (Fig. 
11).

2  RESULTS AND DISCUSION

The present investigation has involved 17 specimens 
made by SLM, each one characterized by a specific 
combination of process parameters, i.e. laser beam 
power (P), from 170 W to 320 W, and speed (v), from 
700 mm/s to 1300 mm/s. Actually, although 20 SLM 
combinations (of laser speed and power) have been 
initially considered, at high power density, i.e. low 
scan speed and high laser power, the surface poor 
quality has been immediately evident, suggesting 
removing these specimens, consequently reduced to 
17. 

From each specimen (S1,  S2, …, S17), a 
micrograph has been detected and then analysed using 
the fractal dimension (FD) and network density (η), 
dimensionless parameters. 

Table 1 in the Appendix A reports results from 
this analysis, also including the average values of 
roughness Rax and Ray (in µm), as measured with the 
contact profilometry. 

About the range assumed by the roughness, it is 
possible to note that the:
• lowest Rax (= 5.06 µm) has been achieved using 

a laser scan with power P = 170 W and speed v = 
1000 mm/s (specimen S15).

• highest Rax (= 7.19 µm) with 270 W and 1150 
mm/s (specimen S6).

• lowest Ray (= 4.90 µm) with 270 W and 1000 
mm/s (specimen S5).

• highest Ray (= 6.96 µm) for 220 W and 1300 
mm/s (specimen S12).
Furthermore, in general: 

• the roughness Ray is very similar for all laser 
parameters, ranging between 5.7µm and 6.2 µm.

• an evident tendency of reducing roughness 
emerges only when the laser power is increased 
to 320 W. 

• when evaluating roughness in the x direction, the 
lowest surface roughness is achieved with the 
lowest laser power of 170 W and at low laser scan 
speeds between 700 mm/s and 1000 mm/s. 

• low surface roughness can be achieved at a high 
laser power of 320 W and with a higher laser scan 
speed of 1300 mm/s, which is beyond the current 
experimental setup.
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reveal strong correlations between the data. The most 
significative correlations trends to each other are, 
e.g., P and FD which show a negative correlation 
in average intensity (ρ = –0.417) or the positive 
correlation of P with Ry, Rx, η (ρ = 0.388, 0.369 and 
0.361, respectively). Other weak correlations are also 
present, such as, i.e., the relation of v with Rax and FD 
(ρ = 0.323, –0.325). 

In general, it is possible to state that already under 
these conditions (few data) the presence of correlations 
between the parameters emerges, but without the 
possibility to take them into account through a linear 
approach. It therefore becomes essential to use more 
advanced tools.

Figs. 12 and 13 can offer a quick overview of 
the available results. In the four representations of 
Fig. 12, e.g., the variation of fractal dimension (FD), 
network density (η) and average roughness (Rax and 
Ray) with power (P) and speed (v) of the laser beam is 
shown. In Fig. 13, the Rax and Ray dependences from 
v at different P are detailed.

First, it can be seen that the measurements 
uniformly cover the entire range of variability of 
the process parameters considered (P and v). At the 
same time, no significant relationship between the 
parameters seems to emerge at first sight.

Even a linear correlation analysis (CA), with 
calculation of the Spearman coefficient (ρ), does not 

a)         b) 

c)         d) 
Fig. 12.  Overview of data variations in terms of: a) fractal dimension (FD), b) network density (η), c) average roughness along X-axis (Rax), 

and (d) Y-axis (Ray) as the power and translation speed of the laser beam vary

a)         b) 
Fig. 13.  Relationship	roughness	(Ra) vs laser speed (v) at different power (P): a) Rax;	b)	Ray
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Then, referring to the same specimens 
(S1,  S2, …, S17), Table 2 in Appendix B presents the 
predicted values of average roughness (Rax and Ray), 
as obtained by GP and NN predictors through a (non-
linear) ML approach. The study has been done by 
the orange data mining (ver. 3.35.0), a data analysis 
platform developed by the University of Ljubljana, 
Slovenia and widely used for scientific applications. 

Specifically, given the limited consistency of 
the data sample, a ‘cross-validation’ approach was 
preferred as learning method. In this system, a single 
item is eliminated from the dataset and used to verify 
the validity of the predictions, while all other items are 
used to train the ML system. This operation is repeated 
for each item in the dataset (extracting a different item 
for each step), and the overall results are obtained by 
combining the partial outcomes.

Measured and predicted values from Tables 1 and 
2, respectively, can then be compared. In particular, 
while Fig. 13 presents a specimen-by-specimen 
comparison of predicted vs. measured Rax and Ray, 
Fig. 14 provides a quick overview of the GP and 
NN accuracy in estimating surface roughness. In the 
figure, this accuracy can be assessed by considering 

the distance of the points from the bisector of the 
axes: the closer a point is, the greater the estimation 
precision. In fact, while the expected (experimental) 
values are reported on the abscissa, those predicted by 
MF methods on the ordinate, where the proximity of 
the points to the dotted bisector indicates the accuracy. 
Fig. 15 present accuracy of GP and NN methods in 
estimating surface roughness for Rax and Ray. 

It immediately emerges that the GP model, as 
detailed in Appendix B, in almost all cases, is able to 
predict the expected values with very high precision, 
rated at 97.6 % for Rax and 98.2 % for Ray in terms 
of as mean squared error (MSE) or .923 and .931 as 
Pearson correlation coefficient. 

In practical terms, these results demonstrate 
that there is at least one ML technique capable of 
mathematically managing the complexity of the 
problem under consideration. They also confirm the 
possibility of predicting the microstructure of an SLM 
process a priori, even in the presence of little data 
on which to base the predictive model. Furthermore, 
although these results have been validated in the 
specific case of surface roughness, there are no 
reasons to believe that it is not possible to extend the 

a)      b) 
Fig. 14.  Roughness	estimation	by	GP	and	NN:	a)	Rax;	b)	Ray

a)      b) 
Fig. 15.  Accuracy of GP and NN methods in estimating surface roughness: a) Rax;	b)	Ray
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method to the study of other properties attributable to 
it.

3  CONCLUSIONS

The present research introduces a new method 
that integrates fractals, network theory and genetic 
programming with the scope of analysing the surface 
roughness of metal additive parts. Specifically, it is 
focused on SLM and uses EOS Maraging Steel MS1 
processed by an EOS M 290 3D printer. Findings 
demonstrate a significant potential in predicting the 
surface roughness when the GP is used. But, much 
more importantly, they demonstrate that the combined 
application of fractal geometry and machine learning 
methods can significantly enhance our understanding 
of the complexities involved in the surface analysis. 

Thus, this study not only contributes to the field 
of additive manufacturing by offering a more efficient 
and precise approach to quality control but also sets 
the stage for future explorations into other materials 
and refining analytical techniques. The potential of the 
proposed method in supporting the 3D metal printing 
practices is substantial, indicating a promising future 
for the industry in terms of both innovation and 
application.

4  NOMENCLATURES

R2  R-Squared, [-]
Ra  Roughness (average), [µm]
Rax, Ray Roughness (average) along x, y, [µm]
η  network density, [-]

5  REFERENCES

[1] Frazier, W.E. (2014). Metal additive manufacturing: A review. 
Journal of Materials Engineering and Performance, vol. 23, p. 
1917-1928, DOI:10.1007/s11665-014-0958-z.

[2] Gockel, J., Sheridan, L., Koerper, B., Whip, B. (2019). The 
influence of additive manufacturing processing parameters 
on surface roughness and fatigue life. International 
Journal	 of	 Fatigue, vol. 124, p. 380-388, DOI:10.1016/j.
ijfatigue.2019.03.025.

[3] Rodríguez, G.G., Gonzalez-Cava, J.M., Pérez, J.A.M. (2020). 
An intelligent decision support system for production 
planning based on machine learning. Journal of Intelligent 
Manufacturing, vol. 31, p. 1257--1273, DOI:10.1007/s10845-
019-01510-y.

[4] Lee, J.H., Shin, J., Realff, M.J. (2018). Machine learning: 
Overview of the recent progresses and implications for 
the process systems engineering field. Computers	 &	
Chemical	 Engineering, vol. 114, p. 111-121, DOI:10.1016/j.
compchemeng.2017.10.008.

[5] Anil, K.J., Duin, R..P.W., Jianchang, M.M. (2000). Statistical 
pattern recognition: a review. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 22, no. 1, p. 4-37, 
DOI:10.1109/34.824819.

[6] Mandelbrot, B. (1977). Fractals. Freeman, San Francisco.
[7] Bondy, J.A., Murty, U.S.R. (2008). Graph Theory. Springer, New 

York, DOI:10.1007/978-1-84628-970-5.
[8] Chen, W.-K. (1997). Graph Theory and Its Engineering 

Applications, Vol. 5. World Scientific, DOI:10.1142/2446.
[9] Torres-Carrillo, S., Siller, H.R., Vila, C., López, C., Rodríguez, 

C.A. (2020). Environmental analysis of selective laser melting 
in the manufacturing of aeronautical turbine blades. Journal 
of	 Cleaner	 Production, vol. 246, 119068, DOI:10.1016/j.
jclepro.2019.119068.

[10] EOS (2024). from https://www.eos.info/de, accessed on 
2024-04-01.

[11] ASME B46.1-2009. Surface	 Texture:	 Surface	 Roughness,	
Waviness, and Lay. American Society of Mechanical Engineers, 
Society of Automotive Engineers, New York.

[12] Brasil, J.E., Oliveira, E.R., Souza, R.R. (2023). Thermodynamic 
formalism for general iterated function systems with 
measures. Qualitative Theory of Dynamical Systems, vol. 22, 
19, DOI:10.1007/s12346-022-00722-7.

[13] Hutchinson, J.E. (1981) Fractals and Self-similarity. Indiana 
University Mathematical Journal, vol. 30, no. 5, p. 713-747, 
DOI:10.1512/iumj.1981.30.30055.

[14] Bral, S., Dyga, R. (2021). Self-affinity approach for the 
determination of flow regime in pipelines. Measurement, vol. 
168, 108452, DOI:10.1016/j.measurement.2020.108452.

[15] Joyce, D. (2014). Axioms of Probability. Clark University. 
Worcester.

[16] Babic, M., Calì, M., Nazarenko, I., Fragassa, C., Ekinovic, S., 
Mihaliková, M., Janjić, M., Belič, I. (2018). Surface roughness 
evaluation in hardened materials by pattern recognition using 
network theory. International Journal on Interactive Design 
and Manufacturing, vol. 13, p. 211-219, DOI:10.1007/
s12008-018-0507-3.

[17] Fragassa, C., Babic, M., Pavlovic, A., do Santos E.D. (2020) 
Machine learning approaches to predict the hardness of cast 
iron. Tribology in Industry, vol. 42, no. 1, p. 1-9, DOI:10.24874/ 
ti.2020.42.01.01.

[18] Babic, M., Fragassa, C., Lesiuk, G., Marinkovic, D. (2020) New 
method for complexity determination by using fractals and its 
applications in material surface characteristic. International 
Journal	 for	 Quality	 Research, vol. 14, no. 3, p. 705-716, 
DOI:10.24874/IJQR14.03-04.

[19] Babic, M., Wangyao, P., Ster, B., Marinković D., Fragassa C.. 
(2022). Modelling the surface roughness of steel after laser 
hardening by using 2D visibility network, convolutional neural 
networks and genetic programming. FME	 Transactions, vol. 
50, no. 3, p. 393-402, DOI:10.24874/IJQR14.03-04.

[20] Koza, J.R. (1992). Genetic Programming: On the Programming 
of Computers by Means of Natural Selection, MIT, Press 
Cambridge, Cambridge.

[21] Hardesty, L. (2017). Explained: Neural networks. MIT News 
Office, from https://news.mit.edu/2017/explained-neural-
networks-deep-learning-0414, accessed on 2022-06-02.

https://doi.org/10.1007/s11665-014-0958-z
https://doi.org/10.1016/j.ijfatigue.2019.03.025
https://doi.org/10.1016/j.ijfatigue.2019.03.025
https://doi.org/10.1007/s10845-019-01510-y
https://doi.org/10.1007/s10845-019-01510-y
https://doi.org/10.1016/j.compchemeng.2017.10.008
https://doi.org/10.1016/j.compchemeng.2017.10.008
https://doi.org/10.1109/34.824819
https://doi.org/10.1007/978-1-84628-970-5
https://doi.org/10.1142/2446
https://doi.org/10.1016/j.jclepro.2019.119068
https://doi.org/10.1016/j.jclepro.2019.119068
https://doi.org/10.1007/s12346-022-00722-7
https://doi.org/10.1512/iumj.1981.30.30055
https://doi.org/10.1016/j.measurement.2020.108452
https://doi.org/10.1007/s12008-018-0507-3
https://doi.org/10.1007/s12008-018-0507-3
https://doi.org/10.24874/ti.2020.42.01.01
https://doi.org/10.24874/ti.2020.42.01.01
https://doi.org/10.24874/IJQR14.03-04
https://doi.org/10.24874/IJQR14.03-04


Strojniški vestnik - Journal of Mechanical Engineering 70(2024)7-8, 313-324

323Selective	Laser	Melting:	A	Novel	Method	for	Surface	Roughness	Analysis		

6  APPENDIX A

Table 1.  Data from SLM specimens

Speci- 
men

Laser Beam Microstructure Roughness

P
[W]

v
[mm/s]

FD
[-]

η
[-]

Rax 
[µm]

Ray 
[µm]

S1 320 1000 1.62 0.74 6.84 6.23
S2 320 1150 1.49 0.68 6.51 5.89
S3 320 1300 1.65 0.89 5.89 5.01
S4 270 850 1.78 0.52 6.29 5.68
S5 270 1000 1.55 0.61 7.31 4.90
S6 270 1150 1.67 0.65 7.19 5.90
S7 270 1300 1.47 0.42 6.69 5.86
S8 220 700 1.83 0.78 7.14 5.63
S9 220 850 1.74 0.42 5.64 5.57

S10 220 1000 1.66 0.35 6.50 5.83
S11 220 1150 1.86 0.74 7.15 5.48
S12 220 1300 1.59 0.32 6.81 6.96
S13 170 700 1.68 0.73 5.50 5.29
S14 170 850 1.51  0.65 5.60 5.34
S15 170 1000 1.72 0.43 5.06 5.53

S16 170 1150 1.83 0.29 6.48 5.23
S17 170 1300 1.69 0.59 6.99 5.29

GP para-
meters

X1 X2 X3 X4 Y1 Y2

Table 2.  Prediction roughness Rax and Ray by GP and NN

Specimen GP Rax GP Ray NN Rax NN Ray
S1 6.81 6.23 7.31 4.90
S2 6.49 5.92 6.84 5.01
S3 5.88 5.43 6.51 5.89
S4 6.44 5.68 5.50 5.63

S5 7.25 4.89 7.19 5.86

S6 6.36 5.91 5.89 5.01
S7 6.36 5.68 7.19 5.34
S8 7.23 5.57 5.50 5.29
S9 5.59 5.74 5.60 5.30

S10 6.50 5.86 5.64 5.23
S11 7.49 5.42 6.81 6.71
S12 6.50 6.96 6.99 5.81
S13 5.67 5.30 5.60 5.35

S14 5.85 5.32 5.50 5.41
S15 4.99 5.51 6.99 5.62
S16 6.48 5.78 7.01 5.29
S17 6.91 5.34 6.48 5.23

7  APPENDIX B

Genetic Programming (GP) model for roughness estimation

Rax = 

 (3)
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Ray = 

 (4)

where X1 = P [W], X2 = v [mm/s], X3 = FD, and X4 = η.


