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Abstract. One purpose of this proceedings-contribution is to show that at least for free
massless particles it is possible to construct an explicit boson theory which is exactly
equivalent in terms of momenta and energy to a fermion theory. The fermions come as
2d/2−1 families and the to this whole system of fermions corresponding bosons come as a
whole series of the Kalb-Ramond fields, one set of components for each number of indexes
on the tensor fields.

Since Kalb-Ramond fields naturally (only) couple to the extended objects or branes, we
suspect that inclusion of interaction into such for a bosonization prepared system - except
for the lowest dimensions - without including branes or something like that is not likely to
be possible.

The need for the families is easily seen just by using the theorem long ago put forward
by Aratyn and one of us (H.B.F.N.), which says that to have the statistical mechanics
of the fermion system and the boson system to match one needs to have the number
of the field components in the ratio 2d−1−1

2d−1 = #bosons
#fermions , enforcing that the number of

fermion components must be a multiple of 2d−1, where d is the space-time dimension. This
”explanation” of the number of dimension is potentially useful for the explanation for the
number of dimension put forward by one of us (S.N.M.B.) since long in the Spin-Charge-
Family theory, and leads like the latter to typically (a multiple of) 4 families.

And this is the second purpose for our work on the fermionization in an arbitrary
number of dimensions - namely to learn how ”natural” is the inclusion of the families in
the way the Spin-Charge-Family theory does.

Povzetek. Eden od namenov tega prispevka je pokazati, da je za brezmasne bozone mogoče
postaviti teorijo, ki je glede na energijo in gibalno količino lahko tudi teorija brezmasnih
fermionov v poljubno razsežnih prostorih. Bozoni so v tej teoriji opisani z 2d−1 − 1 realnimi
polji Kalb-Ramond-ove vrste, za ekvivalentna fermionska polja, ki so kompleksi Weylovi
spinorji, pa Aratyn-Nielsen-ov teorem zahteva, da se pojavijo v sodo razsežnih prostor-čas-
ih d v 2d/2−1 družinah, ker mora biti po tem teoremu razmerje bozonskih in fermionskih
polj enako 2d−1−1

2d−1 = #bozonov
#fermionov .

Pojav sodega števila družin, ki ga zahteva ta teorija fermionizacije bozonov (ali ekvi-
valentno bozonizacije fermionov), pritrjuje teoriji spinov-nabojev-družin, ki jo je postavila
soavtorica tega prispevka, in ki napoveduje, da je število družin cel mnogokratnik števila 4.
Ta prispevek pritrdi teoriji spinov-nabojev-družin, da je pojav družin fermionov v naravi
osnovnega pomena.
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10.1 Introduction

This is the first draft to the paper, prepared so far only to appear in the Proceedings
as the talk of one of the authors (H.B.F.N.). Although many things are not yet
strictly proven, the fermionization/bosonization seems, hopefully, to work in any
dimensional space-time and also, hopefully, in the presence of a weak background
field. We hope, that the fermionization/bosonization procedure might help to
better understand why nature has made of choice of spins, charges and families of
fermions and of the corresponding gauge and scalar fields, observed in the low
energy regime and why the Spin-Charge-Family theory [7,6] might be the right
explanations for all the assumptions of the Standard Model.

This talk demonstrates that:

• Bosonization/fermionization is possible in an arbitrary number of dimensions
(although the fermions theories are non-local due to the anticommuting nature
of fermions, while bosons commute).

• The number of degrees of freedom for fermions versus bosons obeys in our
procedure in any d the Aratyn-Nielsen theorem [1].
• The number of families in four dimensional space-time is (a multiple of) four

families.

To prove for massless fermions and bosons that the bosonization/fermionization
is possible in an arbitrary number of dimensions we use the Jacoby’s triple product
formula, presented by Leonhard Euler in 1748 [3] and is a special case of Glaisher’s
theorem [5]

1

2

∏
n=0,1,2,...

(1+ xn) =
∏

m=1,3,5,...

1

1− xm
. (10.1)

Let the reader notices that the product on the left hand side runs over 0 and all
positive integers, while on the right hand side it runs only over odd positive
integers. One can recognize also that for all positive numbers the number of
partitions with odd parts equals the number of partitions with distinct parts. Let
us demonstrate this in a special case:

Among the 22 partitions of the number 8 there are 6 that contain only odd
parts, namely

(7 + 1, 5 + 3, 5 + 1 + 1 + 1, 3 + 3 + 1 + 1, 3 + 1 + 1 + 1 + 1 + 1,
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1).
If we count partitions of 8, in which no number occurs more than once, that is

with distinct parts, we obtain again 6 such partitions, namely
(8, 7 + 1, 6 + 2, 5 + 3, 5 + 2 + 1, 4 + 3 + 1).
For every type of restricted partition there is a corresponding function for

the number of partitions satisfying the given restriction. An important example is
q(n), the number of partitions of n into distinct parts [4]. The generating function
for q(n), partitions into distinct parts, is given by

∞∑
n=0

q(n)xn =

∞∏
k=1

(1+ xk) =

∞∏
k=1

1

1− x2k−1
. (10.2)
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10 Fermionization in an Arbitrary Number of Dimensions 113

The first few values of q(n) are (starting with q(0)=1):
(1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10,
The pentagonal number theorem can be applied giving a recurrence for q [4]:

q(k) = ak+q(k−1)+q(k−2)−q(k−5)−q(k−7)+q(k−12)+q(k−15)−q(k−22)−...

(10.3)
where ak is (1)m, if k = (3m2 −m) for some integer m, and is 0 otherwise.

Fig. 10.1. Bosonization Illustrating Formula: the dspace space dimensional version (for only
a “quadrant”) is presented.

1

2

∏
(m1,m2,...,mdspace)∈N

dspace
0

(1+ xm11 xm22 · · · xmdspacedspace
) =

=
∏

(n1,n2,...,ndspace)∈N
dspace
0

but not all ni’s even

1

1− xn11 x
n2
2 · · · x

ndspace
dspace

(10.4)

1

2

∏
(m1,m2,...,mdspace)∈Zdspace

(1+ xm11 xm22 · · · xmdspacedspace
z

√
m2
1
+m2

2
+...+m2

dspace ) =

=
∏

(n1,n2,...,ndspace)∈Zdspace

but not all ni’s even

1

1− xn11 x
n2
2 · · · x

ndspace
dspace

z

√
n2
1
+n2

2
+...+n2

dspace

. (10.5)

The Idea for the Procedure for a Proof of the Multidimensional Bosonization
Formula
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• 1. Divide the whole system of all the discretized momentum vectors into
”classes” of proportional vector (meaning in practice vectors deviating by a
rational factor only), or rays (we might call them the rays of the module).

• 2. For each “class” the proof is given by the 1+1 dimensional case which
means by just using the formula by Euler and extending it to both positive
and negative integers.

Thinking of the Formulas of Bosonization as Products over Rays/Classes

∏
c∈rays

∏
m∈Z,m6=0

(1+ x
m1(c)∗m
1 x

m2(c)∗m
2 · · · xmdspace(c)∗mdspace

z

√
m2
1
(c)+m2

2
(c)+...+m2

dspace
(c) ∗|m|

) =

=
∏

c∈rays

∏
n odd

1

1− x
n1(c)∗n
1 x

n2(c)∗n
2 · · · xndspace(c)∗ndspace

z

√
n2
1
(c)+n2

2
(c)+...+n2

dspace
(c) ∗|n|

.

where c runs over the set rays of the dspace-tuples of non-negative integers, that
cannot be written as such a tuple multiplied by an over all integer factor.

Fig. 10.2. Splitting the Fock space into Cartesian Product Factors from Each Ray c.

Denoting the Fock space for the theory - it be a boson or a fermion one - asH
for the dspace-dimensional theory, and byHc the Fock space for the - essentially 1
+ 1 dimensional theory associated with the ray/or class c describing the particles
with momenta being an integer (though not 0) times the representative for c,
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10 Fermionization in an Arbitrary Number of Dimensions 115

namely (m1(c),m2(c), ...,mdspace(c)) - it is suggested that we write the full Fock
space as the product

H = ⊗c∈RAYSHc. (10.6)

Introduction of Creation and Annihilation Operators

We shall introduce for a boson interpretation of the Hilbert space the Fock
spaceH:

a(n1, n2, ..., ndspace) annihilates a boson with momentum (n1, n2, ..., ndspace) ,

a†(n1, n2, ..., ndspace) creates a boson with momentum (n1, n2, ..., ndspace) ,

where the integers can be any, except that they must not all dspace ones be even.
Similarly for fermions:

f(n1, n2, ..., ndspace) annihilates a fermion with momentum (n1, n2, ..., ndspace) ,

f†(n1, n2, ..., ndspace) creates a fermion with momentum (n1, n2, ..., ndspace) ,

where now the ni numbers can be any integers.

Boson Operators Dividable into rays or classes c, also Fermions Except for one
Type

We can write any ”not all even” (discretized) momentum (n1, n2, ..., ndspace)

as an odd integer n times a representative for a class/ray c

a(n1, n2, ..., ndspace) = a(n1(c) ∗ n,n2(c) ∗ n, ..., ndspace(c) ∗ n) ,
a†(n1, n2, ..., ndspace) = a

†(n1(c) ∗ n,n2(c) ∗ n, ..., ndspace(c) ∗ n)

The boson momentum with a given even/odd combination for its momentum
components (say oe...o) goes to a ray/class c with the same combination of even/odd-
ness.

Similarly one can proceed also for fermions with not all momentum compo-
nents even; but the fermion momenta that have all components even get divided
into rays/classes with different even/odd combinations. There are no rays with the even
combination ee...e, of course, because a tuple of only even numbers could be
divided by 2.

10.2 Thoughts on Construction of Fermion Operators

We have made an important step arriving at a model suggesting how it could
be possible to match momenta and energies for a system with either fermions
or bosons. To completely show the existence of fermionization (or looking the
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opposite way, bosonization) we should, however, write down the formula for
how the fermion (boson) creation and annihilation operators are constructed in
terms of the boson (fermion) operators, so that it can become clear (be proven)
that the phase conventions and identification of the specific states with a given
total momentum and energy for fermions can be identified with specific states for
the boson system.

Such a construction is well known for 1+1 dimensions, where it looks like

ψe(x) + iψo(x) = exp(iφR(x)) (10.7)

in the ”position” representation, meaning that

ψe(x) =
∑

m even
exp(imx) be(m) (10.8)

ψo(x) =
∑

m odd
exp(imx) be(m) (10.9)

φo(x) =
∑

m odd
exp(imx) ae(m) . (10.10)

Let us think of the case of making the field operators in position space

φe(x), φo(x), ψo(x)

Hermitean by assumming

ao(m) = a†o(−m); for allm odd, (10.11)

bo(m) = b†o(−m); for allm odd, (10.12)

be(m) = b†e(−m); for allm even . (10.13)

10.2.1 Problem of Extending to Higher Dimensions Even if we Have
Bosonization Ray for Ray

At first one might naively think that - since each of our rays (or classes) c functions
as the 1+1 dimensional system and we can write the whole fermion, as well as
the whole boson, space according to (10.6) - it would be trivial to obtain the
bosonization for the whole system and thereby have achieved the bosonization in
the arbitrary dimension, which is the major goal of this article.

However, one should notice that constructing in a simple way a system
composed from several independent subsystems such it is the whole system H,
composed from the subsystems Hc (for c ∈ rays), one obtains commutation be-
tween operators acting solely inside one subsystem c, say, and operators acting
solely inside another subsystem c ′, say. But we want for the fermions the anticom-
mutation relations rather than the commutation ones, and thus some (little ?) trick
is needed to achieve this anticommutation.

First we shall show how this anticommutation can be achieved by means of
an ordering of all the rays c ∈ rays by some ordering inequality being chosen
between these rays: >. But this is a very ugly procedure and we shall develop
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10 Fermionization in an Arbitrary Number of Dimensions 117

a slightly more general attempt in which we construct a phase δ(c, c ′) for each
pair of rays c and c ′. Then we shall go on seeking to make the choice of this
phase δ(c, c ′) in a continuous and more elegant way. Since that shall turn out to
be non-trivial, we shall develop the ideas by first seeking for such a construction
of the phase for the odd dimensional space of d = 3, meaning dspace = 2, to learn
the idea, although we are most keen on even space-time dimensions, such it is the
experimentally observed number of space-time dimensions, d = 4.

10.2.2 The > Ordered Rays Construction

Let us suppose that we have a formal way of constructing the fermion creation and
annihilation operators in terms of the boson operators. We do indeed have such
a construction, since we can Fourier transform back and forth the construction
in the position representation (10.7) and the 1+1 dimensional bosonization is so
well understood. Since for the present problem the details of this 1+1 dimensional
bosonization relations are not so important, we shall just assume that we are able
to deduce for each ray or class c a series of fermion creation - b†naive o(m, c) and
b†naive e(m, c) - and annihilation - bnaive o(m, c) and bnaive e(m, c) - operators,
that function well as fermion operators inside the ray c, so to speak. o and e denotes
odd and even respectively. The only important thing is that these operators can be
expressed in terms of the bosons annihilation and creation operators belonging to the same
ray c:

b†naive o(m, c) = b
†
naive o(m, c;ao(n, c) , for n odd), (10.14)

bnaive o(m, c) = bnaive o(m, c;ao(n, c) , for n odd), (10.15)

b†naive e(m, c) = b
†
naive e(m, c;ao(n, c) , for n odd), (10.16)

bnaive e(m, c) = bnaive e(m, c;ao(n, c) , for n odd) . (10.17)

For these operators we know form the 1+1 dimensional bosonization that we can
take them to obey the usual anticommutation rules provided we keep to only one ray
c:

{b†naive o(m, c;ao(n, c) , for n odd), b†naive o(p, c;ao(n, c) , for n odd)}−
= δn,−p , form,p both odd ,

{bnaive o(m, c;ao(n, c) , for n odd), b†naive o(p, c;ao(n, c) , for n odd)}−
= δn,p , form,p both odd ,

{bnaive o(m, c;ao(n, c) , for n odd), bnaive o(p, c;ao(n, c) , for n odd)}−
= δn,−p , form,p both odd .

We have similar anticommutation rules for annihilation and creation operators if
exchanging the index o (meaning odd) by the index e (meaning even), but now
we should take into account that the fermion operators with zero momentum, i.e.
m,p = 0, are not constructed from a single ray c. Rather there are - referring to our
little problem with the explicit factor 1

2
in the state counting formulae - not enough

degrees of freedom in the 1+1 dimensional boson system to deliver a fermion
operator with a zero momentum.
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We should therefore imagine that we do not have these zero momentum
fermion operators attached to our rays either. This is actually good for our hopes
of bosonizing in higher dimensions because the zero momentum fermion operators
would have had to be common for the infinitely many rays and we would have
had too many candidates for the zero momentum fermion mode. Now instead
we totally miss the zero momentum creation and annihilation fermion operators
for the many dimensional system. That is, however, not at all so bad as it would
have been to get an infinity of them, because we fundamentally can not expect
to produce all fermion operators from boson ones because we cannot possibly
build up a sector with an odd number of fermions from boson operators acting on
say some vacuum with an even number. Therefore one fermion operator must be
missing. This becomes the zero momentum one and that is o.k..

Our real problem remains that these naive fermion operators taken for two
different rays c and c ′ will commute

{b†naive o(m, c;ao(n, c) , for n odd), b†naive o(p, c
′;ao(n, c

′) , for n odd)}−
= 0 form,p both odd

etc. . (10.18)

We could define an (−1)F-operator, where F is the fermion number operator.
It sounds at first very easy just to write

Fc =
∑
m

b†naive o(m, c) bnaive o(m, c) +
∑
m

b†naive e(m, c) bnaive e(m, c),

(10.19)
where the sums run over respectively the odd and the even positive values form
for the o and the e components. But now this fermion number operator- as taken
as a function of the naive operators - ends necessarily up being an expression in
purely boson operators (from the ray c), and thus it looks at first as being valid
except when the expression (−1)Fc , which we are interested in, is equal to 1 on
all states that can truly be constructed from boson operators. If it were indeed
so, our idea of using (−1)Fc to construct the multidimensional fermion operators,
would not be so good. However, there is a little detail that we did not have enough
bosonic degrees of freedom to construct the zero momentum fermion operator
in 1+1 dimensions. Therefore we can not really include in the definition of the
”fermion number operator for the ray c”, Fc, the term coming from m = 0. This
term would formally have been b†naive e(m = 0, c) bnaive e(m = 0, c), but we
decided to leave it out. This then means that the fermion number operator, for
which we decide to use Fc as the number of fermions operator in the ray c is not
the full fermion number operator for the corresponding 1+1 dimensional theory, but rather
only for those fermions, that avoid the zero momentum state. To require this avoidance
of the zero momentum is actually very attractive for defining a fermion number
operator for the ray c as far as the momentum states included in such a ray really
must exclude the zero momentum state in a similar way as a ray in a vector space
is determined from the set of vectors in the ray not being zero.

But this precise definition avoiding the zero-momentum fermion operator
contribution to the fermion number operator Fc leads to the avoidance of the just
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10 Fermionization in an Arbitrary Number of Dimensions 119

mentioned problem that this fermion number Fc looked as always having to be
even when constructed in terms of boson operators.

Now there should namely be enough boson degrees of freedom that one
should be able to construct by boson operators all the different possible combi-
nations for fermion states being filled or unfilled (still not the zero momentum
included). Thus one does by pure bosons construct both - the even Fc and the odd
Fc - states and thus the Fc with the zero momentum fermion state not counted can
indeed be a function of the boson operators and can take on both even and odd values
for momentum, depending on the boson system state. So, we can have - using this
leaving out the zero momentum fermion state in the rays - an operator

Fc = Fnaive c(ae(n) , for n odd) (10.20)

The operator (−1)Fc for each ray c counts if the number of fermions in the 1+1
dimensional system is even, then (−1)Fc = 1, or odd, then (−1)Fc = −1. We
construct the following improved fermion operator (annihilation or creation),

be(m, c) = bnaive e(m, c)
∏
c ′<c

(−1)Fc ′ . (10.21)

The inclusion of this extra operator factor helps to convert the commutation
relations between the fermion annihilation and creation operators for different
rays into anticommutation relations, as it can easily be seen

be (m, c) be (p, c
′) =

bnaive e (m, c) ·
∏
c ′′<c

(−1)Fc ′′ bnaive e (p, c
′) ·

∏
c ′′′<c ′

(−1)Fc ′′′ =

bnaive e (m, c) ·
∏

c ′≤c ′′<c
(−1)Fc ′′ bnaive e (p, c

′) =

−bnaive e (m, c) bnaive e (p, c
′) ·

∏
c ′<c ′′<c

(−1)Fc ′′ =

−bnaive e (p, c
′) bnaive e (m, c) ·

∏
c ′<c ′′<c

(−1)Fc ′′ =

−bnaive e (p, c
′) ·

∏
c ′′′<c ′

(−1)Fc ′′′ bnaive e (m, c) ·
∏
c ′′<c

(−1)Fc ′′

= −be(p, c
′) be(m, c) , still for c > c ′ . (10.22)

Thus we deduced, for c > c ′ in our in fact at first just chosen ordering of <,
that the fermion operators do anticommute. It is not difficult to show similarly
also in the case c ′ > c, that the fermion operators anticommute. The crux of
the matter is that when e.g. c ′ > c there is the factor (−1)Fc contained in the
product

∏
c ′′<c ′(−1)

Fc ′′ , which is attached to bnaive o (m, c ′) in order to correct
it into bo (m, c ′), while there is no analogous factor (−1)Fc ′ contained in the factor∏
c ′′<c(−1)

fc ′′ attached at bnaive o (m, c) in order to bring it into bo (m, c). In this
way one gets just the one extra minus sign in the product of the fermion operators
that makes them anticommute.
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10.2.3 Slight Generalization to have a Phase Factor

It is not difficult to see that the idea of using such an ordering < could be slightly
generalized to have instead of the factors only minus or plus phase factors of the
form exp(δ(c, c ′))

b†e (m, c) = b
†
naive e (m, c)

∏
c ′ 6=c, but c ′∈rays

e(iδ(c,c
′)Fc ′) . (10.23)

It is also not difficult to see that, in order to obtain the anticommutation relations
instead of the commutation ones (which we have for b†naive e (m, c)), the phases
must obey the rule

δ(c, c ′) − δ(c ′, c) = π(mod 2π) . (10.24)

We may in fact seek to evaluate the product of two fermion creation operators
with the ansatz (10.23)

b†e (m, c) b
†
e (m

′, c ′) =

= b†naive e (m, c)
∏
c ′′ 6=c,

but
c ′′∈rays

eiδ(c,c
′′) Fc ′′ b†naive e (m

′, c ′)
∏

c ′′′ 6=c ′,
but

c ′′′∈rays

eiδ(c
′,c ′′′)Fc ′′′

+b†naive e (m, c) e
iδ(c,c ′)

∏
c ′′ 6=c

nor c ′,but c ′′∈rays

ei(δ(c,c
′′)+δ(c ′,c ′′))Fc ′′ b†naive e (m

′, c ′)

= b†naive e (m, c) e
iδ(c,c ′)Fc ′ b†naive e (m

′, c ′) eiδ(c
′,c)Fc

·
∏
c ′′ 6=c

nor c ′, but c ′′∈rays

ei(δ(c,c
′′)+δ(c ′,c ′′))Fc ′′

= ei(δ(c,c
′)−δ(c ′,c)) b†naive e (m

′, c ′) eiδ(c
′,c)Fc b†naive e (m, c) e

iδ(c,c ′)Fc ′

·
∏
c ′′ 6=c
nor c ′,

but c ′′∈rays

ei(δ(c,c
′′)+δ(c ′,c ′′)Fc ′′) = e

i(δ(c,c ′)−δ(c ′,c)) b†e (m
′, c ′) b†e (m, c) =

= −b†e(m
′, c ′) b†e(m, c) , (10.25)

where in the last step we used (10.24). Thus we see that in this way we can get -
really in infinitely many ways - some algebraicly defined fermion operators that
do indeed anticommute as they should. But it should be had in mind that both
these procedure, by choosing δ(c, c ′) and the forgoing proposal with the ordering
<, are a priori discontinuous and arbitrary.

We expect, however, that the latter method with δ(c, c ′) can be lead to a
smooth and attractive scheme in the case of dspace = 2 or equivalently d = 3.

10.2.4 Exercise with Next to Simplest Case dspace = 2

In the case of dspace = 2 we can say that the set of our rays rays form a kind
of a set of ”rational angles” in the sense that each ray specifies modulo π (rather
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than modulo 2π as for an oriented arrow it would specify) an angle, but that one
only obtains those angles which rationalize tangenses. But the fact that they are
after all implemented as angles - although only modulo π, means that they are at
least locally ordered as numbers along a real or rather rational axis. So apart from
troubles at the end and beginning we have an ordering and we could attempt to
use it even for the implementation of the ordered set of rays method by proposing
a ”nice”< ordering. However, we think we get a better chance by using the δ(c, c ′)
method in this d = 3 and thus dspace = 2 case.

We have to think about what topological properties we shall and can achieve
for the function δ(c, c ′) depending on a pair of rays c and c ′.

Since the classes or rays are ”a kind of rational” directions, though without
orientation, the topological space of the rays is like the sphere Sdspace−1 with
opposite points identified. This topological space obtained by the identification of
the opposite point on the Sdspace−1 sphere is actually topologically identical to
the projective space of dspace− 1 dimensions. For the case d = 3 or dspace = 2 the
topological space rays thus becomes simply the projective line (using real num-
bers), but that is topologically just the S1 circle. Had this topological space been
naturally orderable we could have used the ordering as the < above. However,
it is a circle S1 and not a simple line with plus and minus infinity; the infinities
have so to speak been identified to only one point in the projective line. This
means that using the method to define the fermion fields/operators by means
of <-method would be very non-elegant, and would probably violate almost
everything wanted.

Let us now think about a slight generalization by using the δ(c, c ′). We need
to make a choice of a function δ(·, ·) defined on the cross product of two projective
spaces of dimension dspace − 1 each. Since it shall obey the condition (10.24), it
cannot at all be a smooth or continuous function at the points where c = c ′. Let us,
for a while, take care that this method works well for d = 3 only.

In this d = 3 case the cross product of the two projective lines becomes
topologically simply a two-dimensional torus. So we face topologically to define
δ(c, c ′) on a two-dimensional torus. However, we are forced to give up having
continuity along the ”diagonal” - meaning the set of points on this torus with
c = c ′ - and it is thus rather a δ(c, c ′) defined as a continuous function on the torus
minus its ”diagonal”, which we must choose/find.

This two dimensional torus minus its ”diagonal” is rather like a belt. I.e., it is
topologically like the outer surface of a finite piece of a tube. It has two separate
edges, each being topologically an S1 circle, namely two images of the ”diagonal”
seen from the two sides. In between there is then the two-dimensional bulk area
of the topological shape of the surface of the finite piece of a tube. It is inside this
bulk region that we shall attempt to construct δ(c, c ′) to be smooth and ”nice”.
Choosing

δ(c, c ′) = 2“clock average angle”(c, c ′) (10.26)

might be a good choice. directions c and c ′ forms with some coordinate axis (in
momentum space). The precise way of defining this ”clock average angle”(c, c ′)
is illustrated on the figure 10.3 and consists in the following (let us remind the
reader that we are still in the d = 3;dspace = 2 case):
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Fig. 10.3. Examples of clock average directions.

• a. We introduce a ”clockwise rotation orientation” in the spatial momentum
plane.
• b. We draw a circle arrow from one of the two ”ends” (half lines) of which the

line c (the ray c is basically just a line) in this clockwise direction, and note the
angle between this end of c and the first ”end” (=half line) of c ′ (met in the
following the circular arrow), which measures less than 1800.

• c. We draw a line, that divide this under b. noted angular region into halves.
This line through the (momentum space) origo is denoted ”clock average” (as
marked on the figure).

• d. Such an unoriented line as the ”clock average” defines relative to a coordi-
nate system in spatial momentum space an angle-value modulo π. We call this
angle-value “clock average angle”(c, c ′) and it is as just said defined modulo
π (but only modulo π, because the line “clock average” is unoriented).

• e. Multiplying this angle - “clock average angle”(c, c ′) - by 2 its ambiguity to
be only defined modulo π becomes instead an ambiguity modulo 2π. Thus
our proposed expression (10.26) for δ(c, c ′) is defined modulo 2π, and that is
what we need, since in our construction we exponentiate δ(c, c ′) after multi-
plication by i and an operator Fc ′ that has only integer eigenvalues. Thus the
expression, which we use, exp(iδ(c, c ′)Fc ′) becomes well defined even though
2”clock average angle” (c, c ′) makes sense only modulo 2π.

Let us see whether this proposal is indeed is a good one. To see that our
proposal (10.26) is a good one we must first of all check that it obeys (10.24).
That is we must see what happens to the expression when we permute the two
independent variables c and c ′. Since by definition the circular arrow constructed
in step b. goes out from the c-line, the first of the two arguments in δ(c, c ′), we
must draw this circle-arrow after the permutation from c ′ instead. Therefore the
half-angle noted under point b. above will after the permutation differ from the one
before the permutation. This means that the line (through the origo) ”clock average”
gets after the permutation perpendicular to its direction before the permutation of
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c and c ′. Ttherefore ”clock average angle”(c ′, c) = “clock average angle”(c, c ′) +
π/2(mod π), which means that this angle gets shifted modulo π with π/2. After
the multiplication by 2 (point e.) it means that δ(c ′, c) = δ(c, c ′) + π(mod 2π),
which is just (10.24). Thus we got indeed by proposal (10.26) the condition (10.24)
fulfilled.

We can now remark that quite obviously our proposal (10.26) is continuous
as function of the directions c and c ′ except where c and c ′ just coincide - what means
that it is zero (mod π) angle between them.

Let us note that had we not chosen the clock-wise rule, but instead taken, say,
the smallest angle between c and c ′ and just found the halfening line between those
”ends”, we would have got a discontinuity when c and c ′ were perpendicular
to each other. But by our precise choice we avoided that singularity. (For a point
close to the diagonal the two arguments, c and c ′, are approximately the same ray.
Permuting them will for a continuous function δ(c, c ′) make almost no difference,
and thus it cannot possibly change by π, while crossing the ”diagonal” the function
δwould ask to jump by π.)

10.3 A Guess for Arbitrary Dimension

We propose the generalization of Eq. (10.7) to an arbitrary dimension, due to our
experience with the Clifford objects (apart from some modifications due to whether
we choose Weyl or Majorana fermions for family or for geometrical components),
by using the relation

(ψ+ψµγ
µ +ψµνγ

µγν + ...+ψ1235...d Γ
(d−1) =

eφµγ
µ+φµνγ

µγν+...+φ1235...d Γ
(d−1)

. (10.27)

10.4 Outlook on Supporting the Spin-Charge-Family
theory [7,6]

We started with massless noninteracting bosons or fermions. But we like to work
with the interacting fields. There are many Kalb-Ramond fields appearing in our
type of fermionizable boson model in higher dimensions and correspondingly it
is not easy to see how to make an interacting theory.

There are many ways to come from noninteracting bosonisable (fermionizable)
fermion (boson) fields, which might lead to the fermion fields interacting with the
boson fields as it is in the spin-charge-family theory.

But on the level of our fermionizable (bosonizable) boson (fermion) model
with many Kalb-Ramond fields we must keep in mind that the conserved charges
in the Kalb-Ramond theories are vectorial and thus one gets very many vectorial
conserved quantities. This makes scattering processes (unless all the scattering
particles are without these vectorial charges) very non-trivial.

One chance would be to let either fermion or boson fields to interact with
gravity. Crudely speaking gravity couples to energy and momentum, and since
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in the free bosonization procedure we have at least sought to get the total d-
momentum be the same in the corresponding states of fermions and bosons there
might be a chance that we fermionize a theory with both - the bosons of the Kalb-
Ramond type and gravity through the vierbein formulation - and correspondingly
obtain a theory with both fermions and bosons, the later would be the gravity
degrees of freedom. This might lead to exactly the theory [6,7] that one of us
(N.S.M.B.) has postulated as the true model for Nature beyond the standard model
(the spin-charge-family theory).

Since our scheme a priori looks to require the Majorana fermions to have real
fields like the bosons - at least in the simplest version - we only expect to get chiral
fermions in those dimensions wherein Majorana fermions can simultaneously
be Weyl (=chiral)as in d=2,6,10,14,... It is therefore even a slight support for the
spin-charge-family theory that its phenomenologically favoured dimension is just
13+1 =14.

One should for appreciating this idea of adding gravity without fermionizing
it have in mind that one does not have to bosonize all degrees of freedom, but rather
can - if one wishes - decide to fermionize some degrees of freedom but not all.
Especially, if the motivation were to make all fermions from bosons because one
claims that fermions are not properly local and should not be allowed to exist, then
of course it is enough that we start with a purely boson theory as the fundamental
one - and then we better only fermionize a part of bosons unless we could identify
a purely fermionic theory with nature. But of course there seemingly are bosons in
nature and we thus must end phenomenologically with a theory with both bosons
and fermions.

Starting from fundamental bosons only that is only achievable by only a
partial fermionization.

Hope for the Progress

The hope is, which is evidently from we haveproposed in this contribution, that
we shall construct formulas for the higher dimensional cases by generalizing
the formulas we already have for the one dimensional case, generalizing as well
the ”classes” to higher dimensions. In the spirit of seeking to identify the fields
characterized by their ”odd/even” indices with spin components, we hope to
derive from the bosonization formula a scheme formally stating the relation
between the boson and the fermion second quantized fields, 2dspace − 1 boson
field components, while there will be 2dspace fermion components.

10.5 Outlook on the Connection to the Spin-Charge-Family
Theory

Let us try to clarify how the here discussed fermionization procedure is supposed
to be, so to speak, the root for a theory beyond the Spin-Charge-Family theory of
Norma Susana Mankoč Borštnik [7,6] (and her collaborators), The (one of) way
we see as a very promising hope that one could justify this Spin-Charge-Family
theory by the hoped fermionization is as follows:
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We build up a model with only bosons as the fundamental theory in say - 13 +1
dimensions - in the sense that this 13 +1 dimensional purely bosonic theory with a
series of the Kalb-Ramond fields and with usual 13+1 dimensional gravity should be the
fundamental choice of nature (not necessarily starting in d=13+1). Then this theory
should be partly fermionized in the sense that only the series of Kalb Ramond
fields get fermionized, but not the gravity (bosonic) degres of freedom. The latter
remain gravitational degrees of freedom hopefully now functioning as gravity for
the fermions that came out of the fermionization. The Spin-Charge-Family theory
will show up out of the Kalb-Ramond components.

1. The first assumption of our new scheme, which might be the pre-scheme of
the Spin-Charge-Family theory, is that fermions a priori do not obey proper locality.
The accusation towards all the theories with fermions which are fundamental
fermions rather than fermionized bosons is that the axiom of locality in a
quantum field theory is for the fermions

{ψα(x), ψβ(y)}+ = 0 , for the space like separation of y and x, (10.28)

while true physical locality should have been a commutation rule like the one
obeyed by the boson fields

{φ(x), φ(y)}− = 0 , for the space like separation of x and y. (10.29)

True locality means, one would think, that each little region in space is ap-
proximately a completely separate system that only interacts very indirectly
with a far away different little region. If so, the physical operators describing
the situation in one little region should commute with those describing the
situation in a different little region, and not anticommute as the fermion fields
do. One might like to assume that only products of an even number of fermion
fields are considered as proper operators describing the little system region,
what satisfies the requirement of getting commutation relations between the
field variables describing the situation in different regions. But such an as-
sumption must be justified as a physical assumption, discussing seriously also
odd products of fermion fields.
The point of view we suggest here is that we admit that we cannot have
fermions at all in a truly local way! This then means that the fundamental
physics should be a model without fermions so that all fermions come from
bosons that become fermionized.

2. Since it is not easy to find so terribly many systems of bosons that can be
fermionized, and thus if one finds some way of fermionizing, then this way is
presumably already likely to be almost the only one possible.
At least we expect that the fermionization of a boson system of fields can only
be made provided the number of fermions and the number of bosons agree
with the theorem which one of us and Aratyn [1] put forward many years ago.
For massless free fermions on the one side and massless free bosons on the
other side we obtained that the number of components for the bosons and
the fermions counted in the same way with respect to the fields being real or
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complex, should be in the ratio

#fermion components
#boson components

=
2dspace

2dspace − 1
, (10.30)

where the dimension is d = dspace + 1, or the spatial dimension is dspace.
The number of components - at least the number of real counted components
- must of course be positive integer or zero. Thus the minimal number of
fermion components must be 2dspace , while the number of boson components
must be 2dspace − 1 or the numbers must be an integer multiplum of these
numbers.
Alone this theorem of ours [1] makes appreciable restriction for when bosoniza-
tion/fermionization is at all possible.

3. We are suggesting here the starting point with the bosonic degrees of freedom
only, consisting of ”series of the Kalb-Ramond fields, all the chain through,
except for one (pseudo)scalar”. By this we mean that we have as the bosons a
series of separate fields Aµν···ρ with all the values of the number of indexes,
antisymmetric with respect to all their indexes.
There is a simple way in which one could get the number 2dspace − 1 of boson
components, if we arrange to have - by some gauge choice - only spatial values
of the indexes µ, ν,... on the A-fields, removing the A field with zero indexes.
The number of components become equal to the number of subsets of dspace
letters, which is 2dspace . Removing pure scalar, we get this number 2dspace −1,
as we want for the theorem of[1].

4. From the 2dspace − 1 bosons represented by the Kalb-Ramond fields with the
scalar removed, then according to the Aratyn et al. theorem [1] theorem there
must be the 2dspace components of fermion fields. This means for the Weyl
spinor representation of fermion fields in even d = dspace + 1, with 2d/2−1

members that there are 2× 2d/2−1 real fermion fields. To get 2dspace real Weyl
spinor representation fermion fields there must be 2dspace

2(dspace+1)/2
= 2d/2−1 =

2dspace/2−1/2 families.
5. From the bosonization requirement we obviously get out that there must exist

an even number of families as it also comes out from the Spin-Charge-Family
theory of one of us [7,6].

6. But now there is correction due to the components of the KalbRamond fields
with time indices, the 0. This gives very interesting corrections as we may
postpone till later.

10.5.1 A Hope for that the Gravity Interaction Can Be Added

There is an interesting hope for that actually our at first free bosons being fermion-
ized to free fermions could be generalized to have an universal coupling to a
gravitational field - the bosonic field, which we do not fermionize, keeping it as
gravitation, interactiing with the fermions - so that we finally arrive at a theory
with several families of fermions and gravity.

Above we wrote down a formula for counting the number of states for
the fermion and the boson systems having the same number of Fock states
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with given momentum and energy for the free massless case of our bosoniza-
tion/fermionization.

We used in reality an infrared cut off that meant that we in fact considered a
torus world with for different components different periodicity conditions: Some
components of fields had antiperiodicity while the others had periodicity property
along various coordinate directions.

We shall note now that we could consider these momentum eigenstates for
the single particles with given periodicity restriction as topologically specified in
the following sense:

The wave functions for the momentum eigenstates are as is well known all
along taking on only pure phase factor values, i.e. they obey |φ(x)| = 1 all along.
The number of turns around zero, which they perform when one goes around the
torus along the different coordinates, is an integer (or a half integer depending on
the boundary condition). We can consider this number of turns going around the
torus in different ways (along different coordinates) a topological quantity in the
sense that it as an integer cannot change under a small deformation.

Our main idea is at this point that we in this way can introduce at least a
not too strong gravitational field and still have single particle solutions to the
equations of motion characterized by the same system of (topological) quantum
numbers.

That should suggest that we have the same set up for making the in this
work studied bosonization in a not too strong gravitational field as in the free case.
We namely should be able to classify the single particle states as functions of the
space-time variables x on the by gravitational fields deformed torus (torus due to
infra red cut off) according to a topological classification in terms of the number
of times the wave function encircles the value zero in the complex plane when
the one follows a closed curve, following, say, the coordinates of the deformed
torus. For the massless theory we have scale-invariance for the matter fields -
the series of the Kalb-Ramond fields or the fermions - so, as long as we consider
the gravitational field as a background field, i.e. we ignore the dynamics of the
gravitational field itsef - we can scale up the momenta of the single particles by just
letting the phase of an eigen-solution be scaled up by a factor. Only the periodicity
conditions will enforce such scalings to be by integer factors, just as they must be
also in the free flat case.

So we argue that with a background gravitational field, that is with a not too
strong field, we have a possible description in terms of a discretized enumeration
quite in the correspondence with the one for the flat case.

Remembering that we obtained the bosonization w.r.t. state counting in fact
class c for class, meaning that the momentum eigenstates in the classes correspond-
ing to rays went separately from boson to fermion or oppositely, we may have
given arguments at least suggesting that a corresponding bosonization correspon-
dence as the one in the free flat case also applies to the case with some (may be
not too large though) gravitational field as a background field.

This may require further study but we take it that there is at least a hope for
that the bosonization/fermionization procedure can also be performed in a background
gravitational field.



i
i

“proc15” — 2015/12/9 — 10:51 — page 128 — #144 i
i

i
i

i
i
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Since we now with our expansions in power series seek to guarantee that
we shall make the bosonization or fermionizations just in such a way that the
d-momentum will be the same for the fermion configuration and the boson config-
uration corresponding to each other, we might hope that we could formulate the
exact correspondence and the interpretations in terms of fields with spin indexes
so that indeed the momentum densities would be the same for the fermions and for
the corresponding bosons. If we succeed in that then the action on the gravitational
fields which only feel the matter via the energy momentum tensor Tµν would be
the same for the bosons and the fermions in the corresponding states. In that case
the development of the gravitational fields would be the same for the correspond-
ing fermion and boson configurations. Thus the bosonization/fermionization
procedure would truly have been made also in the with gravity interacting models.
Just the gravity field itself should not be fermionized.

References

1. Aratyn, H.B. Nielsen, ”Constraints On Bosonization In Higher Dimensions”, NBI-HE-
83-36, Conference: C83-10-10.2 (Ahrenshoop Sympos.1983:0260), p.0260 Proceedings.

2. Jacobi, C. G. J. , Fundamenta nova theoriae functionum ellipticarum (in Latin), Königsberg:
Borntraeger (1829), ISBN 978-1-108-05200-9, Reprinted by Cambridge University Press
2012

3. Euler, L.: Demonstratio theorematis circa ordinem in summis divisorum observatum, Novi
Commentarii Academiae scientiarum Imperialis Petropolitanae 5, 75 (1760), Trans-
lated as Bell, J., A demonstration of a theorem on the order observed in the sums of divisors
[arXiv:math/0507201]; Euler, L. Evolutio producti infiniti (1 − x)(1 − xx)(1 − x3)(1 −
x4)(1−x5) etc. in seriem simplicem, Acta Academiae Scientarum Imperialis Petropolitinae
1780, pp. 47-55, 1783. Opera Omnia, Series Prima, Vol. 3. pp. 472-479, Translated as Bell,
J. The Expansion of the Infinite Product (1− x)(1− xx)(1− x3)(1− x4)(1− x5)(1− x6) etc.
into a Single Series [arXiv:math.HO/0411454].

4. Abramowitz, Milton; Stegun, Irene A., Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Applied Mathematics Series 55 (10 ed.), New York,
USA: United States Department of Commerce, National Bureau of Standards; Dover
Publications, page 825.

5. Glaisher, J.W.L., Messenger of Mathematics, 12, 158 (1883).
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