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Some Notes on the Probability Space of
Statistical Surveys

George Petrakds

Abstract

This paper introduces a formal presentation of damgpprocess using
principles and concepts from Probability Algebraddnformation Theory.
Under this model, any sampling scheme defines waligw probability
measure, illustrated in various examples along vgtime applications in
survey design and management.

1 Introduction — basic definitions

Let P be the target population of a statisticaveyrand R = {f, v =1,2, ... N} a
relevant register in hand, consists of N individs#dtistical units. Regardless of
the parameters of the selection process, all thssipte outcomes concerning the
elements of R comprise the @t = {r1", 11", ", 1o, ... k', W'}, where " denotes

the presence of thé" unit while r,” denotes its absence (Kullback, 1997). By=

{E O Qgr} we determine the set of all subsets E @ called samples. Any

selection process if©2r defines uniquely a probability measure p and furtiere
any sample E can either have chances to appear) ¢pQk or not ( p(E) = 0). Let

us now consider a mapping &® ( @: # - & ) such that,

_[E p® >0
E)= .
pE = {500 @)
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Thus we construct a non-empty s€tll] % which, with the basic Boolean
operations and a probability measure p which isc8yripositive, normed and
additive, form a probability algebrag( p) (Kappos, 1969). Therefore for any

elements E ir¢
(i) p(E)>0 and p(E) =0 iff EE
(i) p(e) =1, where e is the unit

(III) p(El ] E2) = p(El) + p(Ez) if El N E2 =0

Any element iné€ different thand and e is called possible sample. We also

consider N+1 classeS (n)d &, n =0,1,2,..N such that

N
SM ={(r, 2, ... ), D I(rf)=n}, where k = {+, -} and
v=1
0,k =-
L(r)y =19 "
(r*) { LK+
which contains all subsets &8, where n appearances of statistical units occur

On, 1< n<N, the classS (™ contains (NJ subsetsS;™ | i0l, ={1, 2, ... (Nj}
n n

By applyinggon S(n) 0 %, we construct a non empty s&tn

s”, p(s”) >0

7. p(s™) =0 idl, (1.2)

p: SMW5S" (S = {
Under the probability algebras( p) defined by a chosen sampling process, the
class S n has the following properties (inherited 8y
() p(Si")>0, i0In(s)
(i) p@OsSin)=1,i0lx(s)
(i) p(SinOS") = p(Sin) +p(SiM, O (i, j) Olx(s) x h(s) with #j

where, }(s) O I, the subset of indices for which ${(™) >0 and e S " iJ
In(s), the unitwith p(e) = 1.

This basic set of notions and definitions introdsi@emore algebraic approach
to measurable sample designs than the analytica (®&ndal et all, 2003) which
are focusing on the estimation of various paransetdiis algebraic approach
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seems to handle multiple sampling procedures, hkdtiple recapture designs,
more efficiently.

2 Application to various sampling schemes

In a single sample process it can be shown &atn S;» = 0O, O (i, ]) O Ix(S) X
In(s) with #j. The probability that two different samples whi¢ drawn in a single
sampling process is zero, therefore&Spf) n S;(M) = 0 and the only event iné, p)
with probability O is the empty seff]. There are sampling schemes whepés)IO]
I (strictly), i.e. in stratified random sampling wheoely the S(Ms that satisfy the
proportional to strata restriction meet with prape(i), while for the rest it holds
that p(SiM) = 0, il, — Ix(s). On the other hand, in a simple random samplirg

In(s), since allS;m, id I, satisfy property (i). The above concepts can also b

applied to multiple sampling procedures. In thisetygf sampling, both,f and
are present in the sample, in different stagesoofrse. We will examine the form

of the event spac&gr and the classSn, for sampling with replacement and

multiple recapture sampling.

Sampling with replacement. Sampling from N statistical units by choosing one
unit each of the n(sample size) times and put dkbia the population before the
next trial is a process that corresponds to an tesaceQQr such that:

N
Qr = {r,* (N} with v=1,2,...,N k={+,-}and n=1,2,... wherd I[rf(M]=1,0n

v=1

and a probability algebra#( p) is defined based on"$ S' x S'x...x S'= X S,

where $ is the basis for an SRS of size 1.

Multiple recapture. In a multiple recapture experiment run in a popola of
size N (usually unknown), the sample space is expdraver the discrete time of
trials (t=1,2,...T). If the population is closed ftris time period, the sample space
is:

Qgr(T) = {rvk(t)} with v = 1,2,...,N, k={+,-} and t = 1,2,...,T. When the
population size changes in the different pointstiofie (open population), the
sample space is:

Qr(T) = {r,*(®)} with v =1,2,...N(t), k={+,-} and t = 1,2,...,T. The basic
class isS" = S*xS*x..xS* :)t(SX‘, whereX; O {0,1,...,N(t)} a discrete random

variable with elementsS' =S xS **x.xS " with I, =1, 2, ... (Nj St =
X

t

1,2,...,T.
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3 The probability space

Under a pr. algebraé&( p) a classS" is uniquely defined and contains all the
possible samples and only them. This clessns a basis for the construction of all
events iné&. Any event El & can be constructed by using one or more basic

samplesSi" and expressed as a union of theésg, based on the fact that any
possible event related to the sampling process lwanrealized by unions of
samplesS;n, I,(s).

It can be easily shown thdtis closed under the basic set operation. For that,

let us consider E E; 0 & as unions of som& ", such that:

E.0&=E;= US(n), E,0&=Ey= US(”), for some i, jO 1n(s),. Then
i I
e ()
E0E =|Js OJs
. a

= US(n) 0 & where dis such th&¢™ belongs
j d d

either toUS(n) or US(n) andB n E, = US(”) O & where g is such thaqM
i i j i g

J g

belongs both td JS™ and | JS". If there is no g such th&(™ belongsto both
i I
of the unions above, theny & E; = [ and the two events are mutually exclusive.
These properties can be easily extended for antefget of events EMoreover,
the above defined possible eventdéntains another possible event, noted as E
O E2 when

US(n) O US(n) , i0I, dOD, or equivalently @D.

i i d d
Let us now illustrate the above with a couple ohmyples:

Example 1Let N =4 and n = 3. The® 3 is a class of four basic sets, namely ,

SP={r LY SP={rn L s LY S R, '), S8 =
ri*, 12", 13%, r;}. The event of the presence of the first two iridivals which can be
noted by &, = {ri", r,'} can be expressed as a union of basic sets~E® O

84(3) . In other words, the eventifoccurs when at least one of the basic events in
which the first two individuals are present occurs.

Remark Someone can argue that in the example above that B® n S,®),
which in terms of point set theory seems correietges { r,*, r.", 13, 14’} n {rq",
r.', 3%, 1} = {r{", ro'}. However, in our treatment under the given samgli
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scheme, {t", "} = {r.", ", 5, 1}, k=+,- which explains why B = $® O
S4(3)

Example 2 Let N = 3 so R = {1, rp, r3}. If they are placed in an orthogonal
space in 3-D taking values of O and 1 for non-appeee and appearance
respectively, we have the following transformation:

[S©]: (0,0,0)= (11, 12, 13)
[SY]: (1,0,0)~ (11", 12, 13), (0,1,0)~ (11, 12", 13), (0,0,1) - (11, 12, 15")
[SP]: (1,1,0)~ (', 2", 13), (1,0,1) ~ (11", 12, 13), (0,1,1) » (11, 12", 13")
[S®]: (1,1,1)~ (', 2", 15")

which produce all possible samples. For n=2, weeh&wrthogonal vectors; %9,
S, 5 which are a basis for some sampling schemes wheoeit of 3 are
selected.

Figure 1: 3-D orthogonal space.

Any measure ifapplied to r can associate a measurable functigh =( f)
i=1,2,...n to a classS" and therefore a value™ (Si") to each basic sample.

Considering the probability measure p $1m mathematical expectation
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Ee™) = 2. p(Sin) o™ (Sn) (3.1)
whereo™ = { f1(r1), fa(r2),... fo(rn)} and p(Sin), Z p(Sin) =1, is located at the

barycenter of the polytope formed &" (Petrakos, 2000) and expresses a mean

value of ¢! before the sample is drawn. An interesting appiica of this
approach is the determination and application afoat function & = {c.(ry),
Co(r2),... cy(rn)}, where ¢'s variation is due to corresponding’sr costly

characteristics (access, distant location, etcenlthe cost of a samplé& i is G

= c™ 1(S")’, where I(Si") is a n-dim vector with ones for the correspondifig r

‘s and zeros for the;r's. Finally the expected cost of the sampling msx
estimated in the design phase will be

E(E) =3 p(sim cVi(siny (3.2)

4 Conclusions

A probability algebra model has been introducedorder to describe the data
collection process in a statistical survey. Itsfigigncy, efficiency and simplicity
was tested and proved over different sampling s&serRuture research can adapt
this model to more complicated and realistic samgpkchemes, incorporating cost
and non-response to the design of a statisticalesurFrom a theoretical point of
view, this model can be viewed and further studasdan application of group
theory. In both cases, this paper aspires to pesammne basic ideas for substantial
research.
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