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Some Notes on the Probability Space of 
Statistical Surveys 

 

George Petrakos1
 

Abstract 

This paper introduces a formal presentation of sampling process using 
principles and concepts from Probability Algebra and Information Theory. 
Under this model, any sampling scheme defines uniquely a probability 
measure, illustrated in various examples along with some applications in 
survey design and management. 

 

1 Introduction – basic definitions 

Let P be the target population of a statistical survey and R = {rν, ν =1,2, … N} a 
relevant register in hand, consists of N individual statistical units. Regardless of 
the parameters of the selection process, all the possible outcomes concerning the 
elements of R comprise the set ΩR = {r1

+, r1
-, r2

+, r2
-, ... rΝ+, rΝ-}, where rν+ denotes 

the presence of the νth unit while rν- denotes its absence (Kullback, 1997).  By ℬ = 
{E ⊆ ΩR} we determine the set of all subsets E of ΩR, called samples. Any 

selection process in ΩR defines uniquely a probability measure p and furthermore 
any sample E can either have chances to appear ( p(E) > 0)  or not ( p(E) = 0).   Let 

us now consider a mapping on ℬ  ( φ : ℬ → ℰ  ) such that,  

 
 

   φ (E) =  =∅
>

0 p(E)  ,

0   p(E)  E,
                                                            (1.1) 
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Thus we construct  a non-empty set ℰ ⊆ ℬ which, with the basic Boolean 

operations and a probability measure p which is strictly positive, normed and 

additive, form  a probability algebra (ℰ, p)   (Kappos, 1969). Therefore for any 

elements E in ℰ 

(i) p(E) > 0  and  p(E) = 0  iff E= ∅ 

(ii)  p(e) = 1, where e is the unit in ℰ 

(iii)   p(E1 ∪ E2) = p(E1) + p(E2)  if  E1 ∩ E2   = ∅ 

 

Any element in ℰ different than ∅ and e is called possible sample. We also 

consider N+1 classes Ｓ(n)⊆ ℬ,  n =0,1,2,…N such that 

Ｓ(n) = { (r1
k, r2

k, … rN
k),   nrI

N
k =∑

=

)(
1ν

ν }, where k = {+, -}  and     +=
−=

=
k

k
rI k

i ,1

,0
)(  

which contains all subsets of ℬ, where n appearances of statistical units occur.  
∀ n, 1 ≤ n ≤ N, the class Ｓ(n) contains  n

N  subsets Ｓi
(n) ,  i∈In ={1, 2, …  n

N }  

By applying φ on Ｓ(n) ⊆ ℬ,  we construct a non empty set Ｓn  

 

φ :  Ｓ(n) →Ｓn  ∴φ (Ｓi
(n)) =   =∅

>
0 )p(S  ,

0   )p(S  ,S   
(n)
i

(n)
i

(n)
i  ,   i∈In                  (1.2) 

 

Under the probability algebra (ℰ, p) defined by a chosen sampling process, the 

class Ｓn has the following properties (inherited by ℰ) 

(i) p(Ｓi
n ) > 0,  i ∈ In(s) 

(ii)  p (∪Ｓi
n) = 1,  i ∈ In(s) 

(iii)  p(Ｓi
n ∪Ｓj

n) =  p(Ｓi
n ) + p(Ｓj

n),  ∀ (i, j) ∈ In(s) x In(s) with i≠j 

where, In(s) ⊆ In the subset of indices for which p(Ｓi
(n)) > 0 and e = ∪Ｓi

n i∈ 

In(s), the unit, with p(e) = 1.  
 
This basic set of notions and definitions introduces a more algebraic approach 

to measurable sample designs than the analytical ones (Särndal et all, 2003) which 
are focusing on the estimation of various parameters. This algebraic approach 
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seems to handle multiple sampling procedures, like multiple recapture designs, 
more efficiently. 

2 Application to various sampling schemes 

In a single sample process it can be shown that Ｓi
n ∩Ｓj

n = ∅, ∀ (i, j) ∈ In(s) x 

In(s) with i≠j.  The probability that two different samples will be drawn in a single 

sampling process is zero, therefore p(Ｓi
(n) ∩Ｓj

(n)) = 0 and the only event in (ℰ, p) 

with probability 0 is the empty set, ∅. There are sampling schemes where  In(s) ⊂ 

In (strictly), i.e. in stratified random sampling where only the Ｓi
(n)s that satisfy the 

proportional to strata restriction meet with property (i), while for the rest it holds 

that p(Ｓi
(n)) = 0, i∈In − In(s). On the other hand, in a simple random sampling In ≡ 

In(s), since all Ｓi
(n), i∈ In satisfy property (i).  The above concepts can also be 

applied to multiple sampling procedures. In this type of sampling, both rν+ and rν- 
are present in the sample, in different stages of course.  We will examine the form 

of the event space ΩR and the class Ｓn, for sampling with replacement and 

multiple recapture sampling. 
Sampling with replacement. Sampling from N statistical units by choosing one 

unit each of the n(sample size) times and put it back in the population before the 
next trial is a process that corresponds to an event space ΩR such that: 

ΩR = {r νk(n)} with  ν = 1,2,…,N  k={+,-} and n = 1,2,… where 1])([
1

=∑
=

N
k nrI

ν
ν , ∀ n 

and a probability algebra (ℰ, p) is defined based on Sn = S1 x S1x…x S1= 1SX
n

, 

where S1 is the basis for an SRS of size 1. 
 
Multiple recapture. In a multiple recapture experiment run in a population of 

size N (usually unknown), the sample space is expanded over the discrete time of 
trials (t=1,2,…T). If the population is closed for this time period, the sample space 
is: 

ΩR(T) = {r νk(t)} with  ν = 1,2,…,N,  k={+,-} and t = 1,2,…,T. When the 
population size changes in the different points of time (open population), the 
sample space is:  

ΩR(T) = {r νk(t)} with  ν = 1,2,…,N(t),  k={+,-} and t = 1,2,…,T. The basic 

class is tT X

t

XXXT SxSxxSSS Χ== ...21 , where Xt ∈ {0,1,…,N(t)} a discrete random 

variable with elements T

T

X
i

X
i

X
i

T
i xSxxSSS ...2

2

1

1
= with It =1, 2, …  tX

N  ,  t = 

1,2,…,T. 
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3 The probability space 

Under a pr. algebra (ℰ, p) a class Ｓn is uniquely defined and contains all the 

possible samples and only them. This class forms a basis for the construction of all 

events in ℰ. Any event E∈ ℰ can be constructed by using one or more basic 

samples Ｓi
n and expressed as a union of these Ｓi

n, based on the fact that any 

possible event related to the sampling process can be realized by unions of 

samples Ｓi
n, In(s). 

It can be easily shown that ℰ is closed under the basic set operation. For that, 

let us consider E1, E2 ∈ ℰ as unions of some Ｓi
n, such that: 

 

E1 ∈ ℰ ⇒ E1 = 
)(n

ii

SU , E2 ∈ ℰ ⇒ E2 = 
)(n

jj

SU , for some i, j ∈ In(s),.  Then   

E1 ∪ E2  = 
)(n

ii

SU  ∪ 
)(n

jj

SU  = 
)(n

dd

SU   ∈ ℰ    where d is such that Sd(n)  belongs 

either to 
)(n

ii

SU   or  
)(n

jj

SU  and E1 ∩ E2   = 
)(n

gg

SU  ∈ ℰ   where g is such that Sg(n)  
belongs both to 

)(n

ii

SU   and  
)(n

jj

SU . If there is no g such that Sg(n)  belongs to both 

of the unions above, then E1 ∩ E2   = ∅ and the two events are mutually exclusive. 
These properties can be easily extended for any finite set of events Ei. Moreover, 
the above defined possible event E2 contains another possible event, noted as  E1  
⊆ E2  when    

  
)(n

ii

SU  ⊆ 
)(n

dd

SU  , i∈I, d∈D, or equivalently  I⊆D.  

Let us now illustrate the above with a couple of examples: 

Example 1 Let N = 4 and n = 3. Then Ｓ3 is a class of four basic sets, namely , 

S1
3 = {r 1

-, r2
+, r3

+, r4
+},  S2

3 = { r1
+, r2

-, r3
+, r4

+},  S3
3 = { r1

+, r2
+, r3

-, r4
+}, S4

3 = { 
r1

+, r2
+, r3

+, r4}. The event of the presence of the first two individuals which can be 
noted by E12 = {r1

+, r2
+} can be expressed as a union of basic sets, E12 = S3

(3) ∪ 
S4

(3) . In other words, the event E12 occurs when at least one of the basic events in 
which the first two individuals are present occurs.  

 
Remark  Someone can argue that in the example above that B12 = S3

(3) ∩ S4
(3), 

which in terms of point set theory seems correct, since { r1
+, r2

+, r3
-, r4

+}  ∩ { r 1
+, 

r2
+, r3

+, r4
-} = {r 1

+, r2
+}. However, in our treatment under the given sampling 
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scheme, {r1
+, r2

+} ≡ {r 1
+, r2

+, r3
k, r4

k}, k=+,- which explains why  B12 = S3
(3) ∪ 

S4
(3) 

 
Example 2  Let N = 3 so R = {r1, r2, r3}. If they are placed in an orthogonal 

space in 3-D taking values of 0 and 1 for non-appearance and appearance 
respectively, we have the following transformation:  

 
[S(0)] :  (0,0,0) → (r1

-, r2
-, r3

-)   
[S(1)] :  (1,0,0) → (r1

+, r2
-, r3

-), (0,1,0) → (r1
-, r2

+, r3
-), (0,0,1) → (r1

-, r2
-, r3

+) 
[S(2)] :  (1,1,0) → (r1

+, r2
+, r3

-), (1,0,1) → (r1
+, r2

-, r3
+), (0,1,1) → (r1

-, r2
+, r3

+) 
[S(3)] :  (1,1,1) → (r1

+, r2
+, r3

+) 
 

which produce all possible samples. For n=2, we have 3 orthogonal vectors S1
(2), 

S2
(2), S3

(2) which are a basis for some sampling schemes where 2 out of 3 are 
selected.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: 3-D orthogonal space. 

 
Any measure fi applied to ri can associate a measurable function φ(n) =( fi) 

i=1,2,…n to a class Ｓn  and therefore a value φ(n) (Ｓi
n) to each basic sample. 

Considering the probability measure p in Ｓn mathematical expectation  

 

 r1 

 r3 

 r2 

(2)
2S  

(2)
1S  

(2)
3S  
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     E(φ(n)) = ∑
i

p(Ｓi
n) φ(n) (Ｓi

n)                          (3.1) 

where φ(n) = { f 1(r1), f2(r2),… fn(rn)} and p(Ｓi
n), ∑

i

p(Ｓi
n) =1, is located at the 

barycenter of the polytope formed by Ｓn  (Petrakos, 2000) and expresses a mean 

value of φ(n) before the sample is drawn. An interesting application of this 
approach is the determination and application of a cost function C(n) = {c1(r1), 
c2(r2),… cn(rn)}, where ci ’s variation is due to corresponding ri ’s costly 

characteristics (access, distant location, etc). Then the cost of a sample  Ｓi
n is Ci 

= C(n) I(Ｓi
n)΄, where I(Ｓi

n) is a n-dim vector with ones for the corresponding ri
+ 

‘s and zeros for the ri
- ‘s. Finally the expected cost of the sampling process 

estimated in the design phase will be  
 

           E(C(n)) = ∑
i

p(Ｓi
n) C(n) I(Ｓi

n)΄                                   (3.2) 

4 Conclusions 

A probability algebra model has been introduced in order to describe the data 
collection process in a statistical survey. Its sufficiency, efficiency and simplicity 
was tested and proved over different sampling schemes. Future research can adapt 
this model to more complicated and realistic sampling schemes, incorporating cost 
and non-response to the design of a statistical survey. From a theoretical point of 
view, this model can be viewed and further studied as an application of group 
theory. In both cases, this paper aspires to provide some basic ideas for substantial 
research. 
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