
MONrTORING OF REAL-TIME SVSTEMS INFORMATICA 1/91 

Keywords: Real-time programming, Real-time monitoring, 
Debugging, Analysis 

Viktorija Kobold, Železarna Ravne, 
Ravne na Koroškem 

Marjan Špegel, 
Institut Jožef Štefan, Ljubljana 

A B S T R A C T Standard approaches to software performance analysis are not directly applicable to real-
time systems owing to their time criticality. Therefore a tool which can monitor or verify if the system 
meets timing requirements is very useful. A real-time monitor enables us to observe the behavior of a 
real-time process in its execution. An emphasis have to be done on real-time programming constructs 
and programming languages for real-time systems. Some important research issues of a programming 
methodology are presented. Monitoring a process means determining the values of certain parameters 
associated with a time sequence of events and modifying them. Some possibilities of the implementation of 
real-time monitoring are presented. 

P O V Z E T E K V sistemih,z odzivom v realnem času ne moremo neposredno uporabiti standardnih metod 
za analizo zmogljivosti sistema zaradi njihove časovne kritičnosti. Prav zaradi tega je orodje, ki zna ugo­
toviti, ali so bile vse časovne zahteve izpolnjene, zelo uporabno. Pri razvoju je potrebno uporabiti pravi 
način programiranja in izbrati programski jezik, ki bo ustrezal zahtevam glede časovne kritičnosti. Opazo­
vanje procesa med njegovim izvajanjem pomeni določanje vrednosti nekaterih parametrov, ki so povezani 
s časovnim potekom dogodkov. Sama implementacija orodja za opazovanje zavisi od okolja, v katerem ga 
bomo uporabili. 

1 Introduction 

In resent years, there has been rapidly increasing 
use of computers as passive (monitoring) and ac-
tive (controlling) components of real-time systems 
(e.g-, air traffic control, aerospace, aircraft, indus-
trial plants, hospital patient monitoring systems) 
[LS87]. For real-time applications, the problems of 
safety and reliability are particularly important be-
cause a failure may cause a disaster (e.g., destruc-
t ionof human life and property). 

According to a definition, a real-time system is 
a system which responds to events quickly enough 
to affect itš environment in required response times. 
Such a system consists of multiple cooperating tasks, 
vvhich implies detailed consideration of intertask 
communication and concurrency problems in the 
program and system design. 

Real-time systems are divided into two types: 

'soft' and 'hard'. In soft real-time systems, tasks 
are performed by the system as fast as possible, 
but they are not constrained to finish by specific 
times [CSR87]. On the other hand, hard real-time 
systems are defined as those in which the correct-
ness of the system depends not only on the log-
ical results of computation, but also on the time 
at vvhich the results are produced [SR87]. In the 
rest of this paper we concentrate on hard real-time 
systems denoted as real-time systems. 

Real-time systems are further divided into cen-
tralized systems and distributed systems. A cen-
tralized system is one in which the processors are 
ločated at a single point in the system (e.g., mul-
tiprocessor system). In contrast, in a distributed 
system the processors are distributed at different 
points in the system [CSR87]. An example of such 
system is a local area computer network. Such sys-
tem consists of a collection of communicating and 
cooperating processors or computers (nodes) that 



work toward a common goal. 

Due to a growing number of real-time applica-
tions, there is also a grovving need for real-time 
software to control them and software tools such 
as timing tools, schedulability analyzers, real-time 
monitors and real-time debuggers. Timing tools 
are used to estimate or measure the timing char-
acteristics of execution the given softwaxe module 
or a given function such as the worst-case response 
tirne of the system to a particular type of event. A 
schedulability analyzer.can analyze the schedulabil-
ity of a given real-time task set under the specific 
scheduling policy. A real-time monitor can monitor 
and verify if the system meets timing requirements 
at runtime. Finally, a real-time debugger should 
be able to capture unseen timing bugs at runtime 
with the minimum system interference. 

It is known that is difRcult to design and analyze 
the software systems for the real-time applications 
owing to their time criticality [SR87]. Standard 
approaches to software performance analysis are 
therefore not directly applicable to real-time sys-
tems. Particularly 'timing bugs' are very difficult 
to capture and eliminate from real-time systems. 

In the rest of this paper, we will concentrate 
on monitoring systems, vvhich can support perfor­
mance evaluation, testing and debugging of real-
time systems. In section 2 we give a description 
of real-time programming and real-time program-
ming event monitor. In section 3 a definition of a 
real-time monitor is given and monitoring process 
is presented. In section 4 some principles of im-
plementation of monitoring system are described. 
Finally, a schedulability analyzer is introduced. It 
can analyze whether or not a given real-time task 
set can meet its timing constraints under a specific 
scheduling policy. 

2 Real-Time Programming 

Real-time programming involves the design of mul-
tiple program modules concurrently executing and 
interacting vv îth one another through the sharing of 
resources and interprogram communication of data 
and events [PS85]. The multiple program mod­
ules or processes may be part of one program (with 
subtasks created by the program) or separate pro-
grams (to be run concurrently by a real-time op-

erating svstem). These proccssc? execute concur-
rently at different priority lovci? and must use roal-
time programming constructs. Real-time program­
ming constructs are used te control interaction aiid 
are often called upon through use of system services 
of a real-time operating system. For examp!2, they 
can be used to control concurrent acccss of dala, 
enforce mutual exclu9ion of critical sections, por-
form safe interprocess communication, synchronizo 
scheduling of one another 

Real-time programs can not be tested siniplv by 
running them with data sources because their ex-
ecution depends upon asynchronously occurring e-
vents. Hence, testing and verification of some crit­
ical aspect of the design often requires forcing of 
time sequences of events. The real-time monitor 
software permits the addition of 'action' routines 
vvhich are triggered by event reporting routines. 
Each action routine must be designed for the spe­
cific tests being carried out. Hovvever, it does not 
permit flexible forcing of concurrent tasks to syn-
chronize in such a way that conditions for a partic­
ular test are set up and results documented in the 
ensuing trace report. 

The important research issues of a programming 

methodology for real-time systems include [Sta88]: 

• Support for the management of time. 

1. Language constructs should support the 

expression of timing constraints. 

2. The programming environment should pro-
vide the programmer with the primitives 
to control and to keep track of the re-
source utilization of software modules. 

3. Language constructs should support the 

use of scheduling algorithms. 

• Schedulability check. 

• Reusable real-time software modules. They re-
duces the software development cost and en-
hances the quality of resulting software. They 
have the added difficulty of meeting different 
timing requirements for different applications. 

• Support for distributed programs and fault tol­

erance. 

In conclusion, programming languages should have 
explicit constructs to express the time realted be-



havior of modules and the semantics must be un-
ambiguous. In the rest of this section the features 
of monitoring language is introduced and an event 
monitor is described. 

Moni tor ing languages . A monitoring language 
is a notation in which a user can specify predicates 
and actions. It should allow predicates which can 
access any state variable. In order to enable the 
user to meet the requirement of completness the 
monitoring language must depart from the variable 
accessing mechanisms built into programming lan­
guage. According to [PN81], the monitoring lan­
guages can be classified into: 

1. typiccil high-level programmLng languages (they 
were not designed for monitoring) 

2. embedded monitoring languages (monitoring 
statements may be interspersed between pro­
gramming language statements) 

3. separate monitoring languages (predicate and 
action specifications may range over the entire 
state space). 

Which language a programmer will use depends 
on why he monitors the program in execution and 
what he hopes to achieve by doing so. 

2.1 Rea l - t ime programming event m o n ­
itor 

In order to study and learn real-time programming, 
it is useful to have the real-time programming event 
monitor which is described by [Sch88]. The event 
monitor produces a complete time-stamped event 
history sequence. This sequence is aissociated with 
an execution of the real-time programs with each 
event identified by a type and triggering program 
module. For example, events which are monitored 
include aH calls to system services, entrance and 
exit of routines, the entering and exiting of a crit-
ical section, the filling or emptying of a queue, the 
detection of a value for a variable in an alarm range, 
etc. [Sch89]. 

Event records are stored in sequence of occurence 
and contain a time s tamp, Identification of the event 
itself, Identification of the routine making the sys-
tem call or signaling the significant event, and a 
small amount of additional information related to 
the particular event. 

Standard reports include three difFerent kinds of 
reports. First of them is a report of aH events con-
taining each event, the triggering routine, and a 
time of occurence in time sequence. The included 
events are calls of operating system service and 
user-defined events such as entering and leaving 
routines, critical sections, etc. The second is the 
report as the first one. but it is restricted to events 
associated with a single routine or a set of routines. 
The last report includes special events such as de-
lays of scheduled tasks, response time, peak queue 
sizes and the like. 

In conclusion, the event monitor can be a useful 

aid in teaching real-time programming. 

3 Program Monitoring and Anal-
ysis 

The monitoring and analysis of progress of a pro­
gram in execution has traditionally been part of the 
program development cycle. There are two reasons 
why one might want to examine the dynamic as-
pects of a program. First o f t h e m is to evaluate 
the performance of a program, and thus to assess 
its overall behavior. The second is to demonstrate 
the presence of programming errors, to isolate er-
roneous program code and correct it [Pla84] which 
is referred to as the "debugging a program". Actu-
ally, we can say that monitoring is the extraction 
of dynamic information concerning an execution of 
a computational process [Sno88]. 

Monitoring is an essential part of many program 
development tools. Monitoring a process means 
measuring or determining the values of certain pa-
rameters associated with a time sequence of events 
and modifying them. It means also observing its 
trajectory through the program state space, and 
if it is needed modifying this trajectory artificially 
[PN81]. A monitoring system must not afTecf the 
timing constraints of the target process (i.e., moni­
tored process). If the monitor satisfies this require-
ment, it is called a real-time monitor. 

A monitor is a very useful tool because it makes 
possible to observe the behavior of a real-time pro­
cess in its execution, in order to collect genuine data 
for statistics (system and performance analysis), or 
for detection of illegal or unexpected process states 
(identifying erroneous behavior, debugging). This 



is particularly important in an environment where 
sinnulation of the systein behavior is not possible, or 
in cases where software errors only manifest them-
selves when production is run [Pla84]. However, it 
is almost impossible to detect or fix a ' t iming' bug 
for real-time programs [GlaSO]. A timing problem 
further complicates system modification, reconfig-
uration and maintenance [Mok83]. 

In the paist, most researchers have resorted to 'ad 
hoc' monitoring of a program written in a high-level 
language. Eventhough in practice most debuggers 
operate at a level close to tha t of the target ma-
chine in execution. Another, a more fundamental 
problem is that softwate-based debugger which can 
monitor both control-flow and data-space changes, 
may impose a heavy overhead on the execution of 
the target program. Becauseof this, the software 
based monitoring is impractical for most kinds of 
performance analysis, or for debugging in 'live' sit-
uations. Performance overhead is the principal fac-
tor which constrains the development of modern, 
high-level language oriented monitoring tools, and 
their application [CLW90]. 

3.1 The monitoring process 

What is to be monitored is expresed in a monitor­
ing statement which consists of two parts , a predi-
cate and an action. The predicate is a boolean ex-
pression which is defined on the state space of the 
target process. When the predicate becomes true, 
then the action modifies the target process. For 
example, actions may consist of operations which 
are normally associated with performance and data 
analysis (e.g., saving current variable values for later 
processing, incrementing a counter) and with de­
bugging (e.g., halting the monitored process). 

In general, the predicate identifies individual sta-
tes or a set of states in the state space of the tar­
get program. Predicates may be divided into three 
classes: a process predicate, a s tate predicate and a 
real-time predicate. The process predicate assigns 
a t ruth value to a target process. Process pred­
icates arise in program performance analysis (for 
instance, how often are two specific statements ex-
ecuted in sequence) and in system 3ecurity (e.g., 
warn me if any files have been opened but not yet 
closed at log-out time). The next one, the state 
predicate is a boolean function defined on the state 

space of the target program. It divides the state 
space into two regions, a region in which it yields a 
true value and another in which it evaluates to false. 
Finally, the real-time predicate is a state predicate 
which can be evaluated without delaying the target 
process. 

The monitoring functions can be divided into two 

classes [Pta84]: 

1. Tracmg low-level events that change the pro­
cess state and reconstructing a high-level in-
terpretation of the process state. 

2. Executing monitoring statements (i.e. evalu-
ating predicates and executing actions if pred­
icates become true). 

As a mat ter of fact, a monitor process can be 
designed by two policies. The first one is to pro­
cess as little Information as possible, in order to 
achieve a short processing time. The other one is 
to update ali dynamic Information structures in-
crementally, assuming that each increment can be 
executed within a specifiable amount of processing 
time. 

Monitoring requires that the entire s tate space 
of a program be accessible, implying two require-
ments for monitoring. The first is the ability to 
use selective and close control over the execution 
of the program. This may be carried down to the 
finest level. The second, refered to as "complet-
ness" of a monitor [PN81], is the ability to define 
monitoring predicates both in terms of the control 
flow of the program and of specific changes in its 
da ta space. This means that aH conditions on the 
state of the target process tha t have interpretations 
at the source language level can be stated and their 
occurrence detected. Moreover, the requirement for 
debugging is the ability to inspect and modify de-
tails of the program state in execution. 
Typical conditions include the following: 

• fraction of CPU time spent in supervisor state; 

• I /O channel activity, disk accesses; 

• addresses generated, paging or cache activity. 

Monitoring of conditions may be defined at three 
levels [CLW90], namely at the primitive level, at 
the abstract level and at the conditional level. 



The primitive level implies the use of machine-level 
instructions. For instance, conditions at the primi­
tive level would include the execution of an instruc-
tion at a particular location, or the accessing of 
data from a particular location. Completness at 
the primitive level is achieved by providing an im-
plementation of three types of primitive monitor-
ing functions: the code breakpoint, the data break­
point and the watchpoint. The code breakpoint de-
fines a point in the execution of the target process. 
The data breakpoint identifies access to a specific 
memory location and the watchpoint recognizes a 
change in value of a specific memory location. 
At the abstract level, the notation and semantics of 
the high-level languages are used. For example, an 
abstract condition could be a change in the value of 
some program variable, or an entry to a particular 
procedure. 

The conditional level of monitoring of conditions 
involves the description of a process state which 
may or may never be achieved. An example of this 
type of condition is reaching of a particular pro­
gram execution path. 

A condition defined at the abstract level or at the 
conditional level can in principle be implemented 
by translating it into one or more primitives. To 
do this, it is necessary for the monitoring system to 
determine absolute addresses of the target process 
at run-time. In certain cases it will be necessary to 
mirror*the stack operation of the target process. Ali 
these problems refered to that kind of monitoring 
imply a need for dynamic software structures for 
monitoring. 

3.2 Moni tor ing of s ingle processpr sys-
t ems 

Execution monitors (such as debugging aids, soft-
ware performance measurement tools) may share 
the processor with the target process. When we 
have two processes it is not easy to sol ve the prob­
lem of synchronization betvveen the target and mon­
itor system. A monitoring system which slows down 
the target process is usually useless for real-time 
applications where the execution monitor must leave 
the timing behaviour of the target process unchan-
ged. 

The problem in implementation of such monitors 
is in switching betvveen the two processes. This 

can be solved in two ways. First, the original tar­
get program is augmented by the code needed for 
monitoring. 
In the second method, the user can enter the mon­
itoring program step-by-step while the target pro­
gram is running or ready to run. The target process 
and monitor have to be implemented as two differ-
ent processes being executed on the same processor. 
The multiplexing of the processor between the two 
processes can be achieved in several ways: 

1. The execution monitor assumes the role of the 
CPU and interprets the target program. In 
fact, the execution of the target process is slo-
wed down too much [PN81] and tha t may be 
unacceptable for many applications. 

2. The CPU supports a trace mode in which it 
generates a t rap after each instruction, and an 
appropriate t rap handler can be used to divide 
the processor betvveen the two processes. Ob-
viously, tracing each instruction considerably 
delays the target process. 

3. Replacing instructions in the target program 
at locations where the execution monitor should 
gain control with calls to the execution moni­
tor ('patching') allows full-speed execution in 
program parts where the execution monitor 
does not have to intervene; There may come 
into existence a problem if the number of pat-
ches becomes larger. 

4. The performance of the monitoring system is 
improved by increeising the degree of paral-
lelism through the use of additional hardware. 

The latter method achieves real-time monitoring 
if we assume that it is possible to construct a hard-
ware breakpoint device which is a true observer of 
the target process's activities. 

3 . 3 M o n i t o r i n g o f r e a l - t i m e d i s t r i b u t e d 
s y s t e n i s 

The monitoring of real-time distributed systems in­
volves the collection and interpretation of informa-
tion (e.g., event tirne stamps, synchronization se-
quences, race conditions, register s ta tus , transac-
tion identifications, interrupt activities). This In­
formation can be used for improving. the perfor-



mance or for testing and debugging of distributed 
systems. 

Nevertheless, monitoring a real-time distributed 
system is much more difficult than monitoring a 
centralized, sequential computing system becaase 
of multiple asynchronou3 processes, critical timing 
constraints and significant communication delays 
[TFC90]. First of aH, asynchronous processes be­
bave nondeterministically and are irreproducible. 
Therefore, it is hard to understand and interpret 
the obtained results. Secondly, the correctness of a 
real-time distributed system is determined by meet-
ing the timing constraints which are imposed by 
the real-world processes. Finally, geographically 
dispersed nodes may introduce a significant com­
munication delay. This can cause improper syn-
chronization among the processors. However, the 
inter-processor communication cost in distributed 
system is not negligible compared to the processor 
execution cost. 

The noninvasive monitoring system presented by 
[TFC90] supports process-level activities (e.g., in-
ternode and intranode communication), function-
level activities (e.g., procedure calls), and finally 
instruction-level activities (e.g., step-by-step instruc-
tion trace). Actually, monitoring process-level ac­
tivities provides a high-level view of the target sys-
tem's behavior. For example, typical events are 
creation and termination of a process, process syn-
chronization, interprocess communication and ex-
ternal signals. 

4 Implementation of Monitoring 
System 

The techniques used to implement an execution 
monitor depend on the environment in which the 
monitor will be used. The earliest execution moni­
toring techniques are: 

• user-controlled breakpoints; 

• tracing, observing and setting values of vari-
ables; 

• local modification of the program (patching). 

Early execution monitors were obviousIy devel-
oped for assembly languages. Then came efforts 

to integT-ate debugging and other monitoring fa-
cilities into a programming language and its com-
piler. The simplest technique for dynamic analysis 
involves the insertion of 'probe' instructions (e.g. 
print statements) into the program text [CLW90]. 
This may be performed by preprocessing the pro­
gram source. But the modifications to the program 
code may introduce unwanted-side efFects. 

The monitoring process can be implemented in 
two difFerent ways fPNSl]: 

• systems that irterleave entities of the monitor­
ing language with the programming language; 

• systems that allovv the specification of the mon­
itoring task as a separate 'monitoring program'. 

The first kind of implementation is not designed 
for monitoring. In the next type monitoring state­
ments may be interspersed between programming 
language statements. Hence data references are 
necessarily relative to the current point of control. 
In the last type, the predicate and action specifica-
tions may have be range over the entire state space. 

A further step towards real-time monitoring is 
done by introducing a second processor which is 
able to execute the monitor concurrently with the 
target process. The implementation of monitor which 
shares the processor with the target process is shown 
in 4.1. Principles of monitoring on distributed sys-
tems are described in the subsection 4.2. 

4.1 Principle of Moni tor ing Implemen­
t a t i o n o n S i n g l e P r o c e s s o r S y s t e m 

An implementation of a real-time monitor on single 
processor system is decribed by [Pla84] and [PN81]. 
The idea is to use a FIFO (first-in first-out) queue 
which is inserted between the target processor and 
the monitor. The FIFO queue is a register vvhich is 
able to store Information from the system bus. The 
execution monitor should be synchronized with the 
output of the FIFO queue. It should have nearly 
the same speed as the target process to prevent 
the FIFO queue from overflowing. In this čase the 
FIFO queue acts as a delay line. The second device, 
called "bus listener" or target processor interface 
is used to listen to the transactions occuring be-
tween the target processor and other parts of the 
system. The da ta are then fed into a FIFO reg­
ister. At the output of the FIFO, the temporarily 



stored data about memory transactions are used to 
manipulate the 'phantom' memory. The phantom 
memory is a dual pori memory, which is accessed 
by the monitor process and the target processor in-
terface. The monitor process may read the content 
of the phantom memory at any tirne. It may also 
lock the output of the FIFO. During that interval 
the data are kept in the FIFO. The monitor process 
may also interpret directly the sequence of memory 
transactions, using the da ta path from the FIFO. 
The last building block, a multiple breakpoint reg­
ister, is added to speed up the monitor process. It 
is connected to the output of the FIFO, reports to 
the monitor any memory transactions referencing 
a location belonging to a previously defined set of 
memory locations. 

Other functions of the monitoring system are im-
plemented in software, such cis tracing low-level 
events, executing monitoring statements, etc. 
Processes are vvritten in high-level, block structured 
programming language. 

This kind of monitoring system has the following 
disadvantageous: first, it limits the feasibility- of 
real-time monitoring to cases where procedure calls 
and returns do not happen too frequen^tly, and sec-
ond it limits the complexity and number of mon­
itoring statements tha t can be submitted to the 
monitor. 

4.2 Principles of Moni tor ing Implemen-
ta t ion on Dis tr ibuted Sys t en i s 

Much research has been done and many tools for 
monitoring have been developed. Even though, 
they are not yet practical enough for monitoring 
real-time distributed computing systems due to their 
invasive nature. [TFC90] have been developed a 
real-time monitoring system to ensure minimal in-
terference in the execution of a distributed target 
computing system. Their tool is used to support 
the testing and debugging as well as to evaluate the 
performance. This monitoring system extracts In­
formation directly from traffic on the internal buses 
of a target system and is described in the section 
4.2.1. The next example of a real-time monitor 
represents an invasive monitoring system because 
it needs extra kernel support. Finally we introduce 
an approach which alleviates the invasive nature of 
a monitor. 

4 ,2 .1 N o n i n v a s i v e M o n i t o r i n g 

A real-time distributed computing system consists 
of a hardwaxe part and a software part . The hard-
war8 part includes a ccilection of nodes and a com-
munication network. Each node has its own CPU, 
peripherals, m-emory, and communication interface. 
The softvvare part includes the operating system, 
the comrnunicatioh module,' and a collection of ap-
plication processes. It is executed on each node of 
a real-time distributed computing system. 

The main purpose of the noninvasive assump-
tions (e.g., the target system is a distributed/multi-
processor system with a master node and slave nodes, 
Communications among processes via shared vari-
ables, asynchronous input to a target distributed 
system, procedural calls are implemented by sys-
tem calls, recursive calls of a procedure are not al-
lowed) is to ease the Identification of the events of 
interest (such as interprocess communication, in-
terprocess synchronization, creating and terminat-
ing process, input and output operations, procedu­
ral and recursive calls), and hence to simplify the 
trigger conditions and reduce the complexity of the 
postprocessing mechanism. 

The system architecture of the noninvasive mon­
itoring system consists of two major components: 
the interface module and the development mod­
ule. The interface module can be considered as the 
front end of the monitoring system. Its main func-
tion is to latch the internal states of the target sys-
tem based on the predefined conditions set by the 
user. Otherwise, it copies the internal states of the 
target node's processor and s tar ts recording data 
from the buses of the target node onto the mem-
ory bufFer unit. Second, the development module 
is the host computer for the interface module. This 
module is a general-purpose microprocessor-based 
system. It contains ali the supporting softvvare for 
the initialization of the interface module and post­
processing activities. The development module is 
basically independent of the target node processor. 
This is achieved by separating the target-dependent 
functions into the interface module. The develop­
ment module provides an Interactive interface to 
the user. It is responsible for aH the testing and 
debugging activities, including 

initialization of the monitoring system. 



• controlling the interface module to latch the 
target node execution historys and 

• performing postprocessing on recorded execu-

tion history. 

The development module consists of the develop-
ment processor unit and the development memory 
unit. First, the development processor unit sup-
ports functions such as postprocessing, initializa-
tion of the interface module and providing a user-
friendly interface. Second, the development mem-
ory unit consists of two parts: the development 
processor memory and the memory configuration 
unit. The program execution history from the tar­
get node is latched into the memory configuration 
unit. 

Since the noninvasive monitoring system does not 
steal CPU tirne from the target real-time distributed 
computing system, it does not interfere with target 
system execution. The noninvasiveness of monitor­
ing is achieved by extracting Information directly 
from traffic on the internal buses of a target dis­
tributed system. 

4.2.2 A R M 

ARM is the example of the Advanced Real-Time 
Monitor/Debugger which monitors and debugs real-
time tasks [Tok90]. It can also analyze the target 
system's runtime behavior in real-time. Besides it 
can visualize the system's scheduling decisions or 
events, analyze the number of tasks, the number of 
missed and met deadlines, the number of scheduling 
events, totaJ CPU utilization. This tool has been 
developing to be used with the ARTS real-time ker-
nel for distributed real-time application. The mon­
itoring can be done directly on the actual target 
system or it can be run with Scheduler 1-2-3 simu­
lator which will be mentioned in the continuing of 
the paper. 

Their approach is based on monitorability analy-
sis which is used to predict the maximum overhead 
caused by monitoring/debugging activities [TK88]. 
As we have seen, particularly in real-time monitor­
ing, it is very important to predict the maximum 
interference and capability of the monitoring pro-
cess itself. 

As a mat ter of fact, this real-time monitor is an in-
vasive monitoring system in the sence that it needs 

extra kernel support. 

4 .2 .3 R e l a t i o n a l A p p r o a c h t o M o n i t o r i n g 

Traditiona! m.onitoring techniques are inadequite 
when m.onitoring complex systems (e.g., multipro-
cessors or distributed systems). A new approach is 
described. In this approach a historical database 
forms the conceptual basis for the Information pro-
cessed by the monitor [Sno88]. Monitoring is con-
cerned with retrieving Information and presenting 
this Information in a derived form to the user. There-
fore, the monitor is fundamentally an Information 
processing agent, w'ith the Information describing 
time-varying relationships between entities involved 
in the computations. Otherwise, monitoring is an 
information-processing activity. The generated In­
formation is structured in the relational model. The 
attention is focused on the query of a relational 
database model so that the user can specify what 
information is to be collected. This approach also 
Controls the amount of monitoring data collected. 
To summarize, this approach permits advances in 
specifying the low-level da ta collection, specifying 
the analysis of the collected data , performing the 
analysis, and displaying the results. 

5 Scheduling Analysis 

For real-time embedded system analysis, it is nec-
essary to incorporate the timing information into 
analysis. However, there are several problems in 
building real-time development tools. For instance, 
basically correct software actions which are too early 
or too late can lead to unsafe conditions. Further-
more, the predictability of the analyzer depends 
on what scheduling policies the target system ušes 
and what types of real-time tasks it has [TK88]'. 
For this reason, real-time software must be verified 
to adhere to its critical timing constraints before 
it is used. This verification process is denoted as 
schedulability analysis [Sto87]. A schedulability an-
alyzer can analyze or verify whether or not a given 
real-time task set can meet its timing constraints 
under a specific scheduling policy. 

In analyzing the scheduling algorithms, different 
performance metrics can be adopted. In dynamic 
real-time scheduling, it is very important to de-
termine the percentage of tasks which meet their 



deadlines (Weighted Guarantee Ratio) [BS88]. On 
the other hand, real-time systems must be analyzed 
for worst-case schedulability. In this čase we should 
know how many events can occur in the worst čase. 
A well-known solution is done by Leinbaugh (Guar-
anteed response tirne) [LeiSO]. The performance 
analysis is done by simulating the behavior of the 
algorithms. 

More complex analysis can be done by using the 
Scheduler 1-2-3, which heis been developing for the 
Arts distributed real-time kernel [Tok90]. It ušes 
analysis methods to determine whether a feasible 
schedule exists for a given task set and under what 
conditions deadline can not be met. 
The Scheduler 1-2-3 can be used to predict the tim-
ing effects due to software and hardware modifica-
tions and it can be integrated with other test tools 
and the real-time monitor. Therefore, it can be 
used as the close-form analyzer or simulator. For 
example, the schedulability analysis under the rate 
monotonic algorithm [Kor90] is done by means of a 
closed formula analysis, while for other scheduling 
algorithms Scheduler 1-2-3 provides a simulator. 

6 Conclusions 

cesses is essential. Furthermore, a monitoring of 
real-time distributed systems is much more difficult 
because of multiple asynchronous processes, critical 
timing constraints and significant communication 
delays The inter-processor communication cost is 
not negligible compared to the processor execution 
cost. This facior must be explecitsly taken into ac-
count in scheduling. Som.e of the various existing 
implementations of a real-time monitor on a single 
processor and on distributed system was presented. 

References 

[BS88] S. R. Biyabani and J. A. Stankovic. The 
integration of deadline and criticalness in 
hard real-time scheduling. In Proceed-
ings of the Real-Time Sr/stems Sympo-
sium, pages 152-160, December 1988. 

[CLW90] C. C. Charlton, P. H. Leng, and D. M. 
VVilkinson. Program monitoring and 
analysis: software structures and ar-
chitectural support. Softrvare-Practice 
and Experience, 20(9):859-867,, Septem­
ber 1990. 

In this paper we introduce monitoring system which 
can support performance evaluation, testing and 
debugging of real-time systems. A real-time moni­
tor can monitor and verify if the system meets tim­
ing requirements at runtime. It must not affect the 
timing constraints of the monitored system. 
We discussed about real-time programming con­
structs which are used to control interaction and 
are often called upon through use of system ser-
vices of a real-time operating system. Furthermore, 
we must take into account the role of program­
ming languages in real-time programming. Pro­
gramming languages should have explicit constructs 
to express the time realted behavior of modules and 
the semantics must be unambiguous. 

The real-time monitoring is presented as observ-
ing a sequence of states of a process (i.e., predi-
cates) and assigning a t ruth value to each of them. 
A positive evaluation of a predicate indicates an ac-
tion, which can be used to record Information about 
the process. A real-time monitor on single proces­
sor system shares a processor with a target process. 
The problem of synchronization between the pro-

[CSR87] S. C. Cheng, J. A. Stankovic, and K. Ra-
mamritham. Scheduling algorithms for 
hard real-time systems - a brief survey. 
July 1987. 

[Gla80] Robert L. Glass. Real-time: ' the lost 
. world' of sofware debugging and testing. 

Communications of the ACM, 23(5):264-
271, May 1980. 

[Kor90] Barbara Koroušič. Real-time execu-
tives for embedded microprocessbr appli-
cations. Informatica, 14(4):58-63, 1990. 

[LeiSO] Dennis W. Leinbaugh. Guaranteed re­
sponse times in a hard-real-time envi-
ronment. IEEE Transactions on Soft-
ware Engineering, SE-6(1):85-91, Jan-
uary 1980. 

[LS87] Nancy G. Leveson and Janice L. Stolzy. 
Safety analysis using petri nets. IEEE 
Transactions on Software Engineering, 
SE-13(3):386-397, March 1987. 



10 

[Mok83] A. K. Mok. Fundamental Design Prob-
lems of Distributed Systems for tke Hard 
Real-Time Environment. PhD thesis, 
Massachusetts Institute of Technology, 
May 1983. 

[Pla84] Bernhard Plattner. Real-time execu-
tion monitoring. IEEE Transactions on 
Software Engineering, SE-10(6):756-764, 
November 1984. 

[PN81] Bernhard Plattner and Jurg Nievergelt. 
Monitoring program execution: a sur-
vey. Computer, 13(ll):76-93, November 
1981. 

[PS85] J. L. Peterson and A. Silberschatz. Op-
erating System Concepts. Reading. MA: 
Addision-Wesley, 1985. 

[Sch88] James D. Schoeffler. A real-time pro-
gramming event monitor. IEEE Trans­
actions on Education, 31(4):245-250, 
November 1988. 

[Sch89] James D. Schoeffler. Real-time program-
ming and its support environment. IEEE 
Transactions on Education, 32(3):377-
381, August 1989. 

[Sno88] Richard Snodgraas. A relational ap-
proach to monitoring complex systems. 
ACM Transactions on Computer Sys-
tems, 6(2):157-196, May 1988. 

[SR87] J. A. Stankovic and K. Ramamritham. 
The design of the spring kernel. In Pro-
ceedings of the Real-Time Systems Sym-
posium, pages 146-157, December 1987. 

[Sta88] John A. Stankovic. Real-time computing 
systems: the next generation. In Tutorial 
Hard Rael-Time Systems, 14-37, 1988. 

[Sto87] Alexander D. Stoyenko. A schedulability 
analyzer for real-time eucklid. In Pro-
ceedings of the Real-Time Systems Sym-
posium, pages 218-227, December 1987. 

[TFC90] J. J. P. Tsai, K. Fang, and H. Chen. 
A noninvEisive architecture to monitor 
real-time distributed systems. Computer, 
23(3):ll-23, March 1990. 

[TK88] H. Tokuda and M. Kotera. A real-time 
tool set for the arts kernel. In Proceedings 
of 9th IEEE Real-Time Systems Sympo-
sium, 1988. 

[Tdk90] Hideyuki Tokuda. Arts real-time sched-
uler analyzer/debugger. May 1990. 


