UDK621.3:(53+54+621+66), ISSN0352-9045 Informacije MIDEM 33(20083)3, Ljubljiana

FORMAL VERIFICATION OF DISTRIBUTED
MUTUAL-EXCLUSION CIRCUITS

Robert Meoli¢, Tatjana Kapus, Bogdan Dugonik, Zmago Brezocnik

Faculty of Electrical Engineering and Computer Science, University of Maribor,
Maribor, Slovenia

Key words: Asynchronous circuit, Fundamental mode, Process algebra, Model checking, ACTL

Abstract: Distributed mutual-exclusion (DME) circuits are an interesting example of asynchronous circuits. They are composed of identical DME cells
connected in a ring of arbitrary size. Each DME cell provides a connection point for one user, and all users compete for exclusive access to a shared
resource. This paper reports about formal verification of two weil-known DME circuit implementations. External behaviour of the circuits is described with
a simple process, whereas the required properties are expressed with temporal logic ACTL. We were able to detect hazards and verify correctness of
external behaviour of the circuits under the fundamental mode of operation.

Formalna verifikacija vezij za porazdeljeno medsebojno
izkljuCevanje

Kijuéne besede: asinhrono vezje, fundamentalni nacin, procesna algebra, preverjanje modelov, ACTL

lzvle&ek: Vezja za porazdeljeno medsebojno izklju¢evanje (DME) so zanimiv primer asinhronih vezij. Sestavijena so iz enakih celic DME, povezanih v
obro¢ poljiubne velikosti. Vsaka od celic DME ponuja prikljuéno toéko za enega uporabnika in vsi uporabniki med seboj tekmujejo za izklju¢en dostop do
skupnega vira. V ¢lanku obravnavamo formaino verifikacijo dveh znanih izvedb vezja DME. Obnasanje vezij opisemo s preprostim procesom, zahtevane
lastnosti pa s temporalno logiko ACTL. Na ta na¢in smo lahko odkrili hazarde ter verificirali praviinost obnaganja vezij v fundamentainem nacinu delovanja.

1 Introduction

Asynchronous circuits have been built and used for dec-
ades, and nowadays, large and efficient circuits can be
constructed /5, 7, 17, 19, 20/. Technigues and method-
ologies for designing asynchronous circuits differ from
those used with the synchronous approach. An important
issue in asynchronous design is hazard removal. Because
synchronization is performed without a global clock, un-
wanted signal changes can kill the circuit. Well known tech-
niques for hazard-free synthesis, decomposition and veri-
fication of asynchronous circuits are based on modelling
with flow tables /4/, asynchronous finite state machines
(AFSM), burstmode state machines (BM), signal transition
graphs (STG), state graphs (SG) /17/, and also process
algebrae. Some of algebraic approaches to verification of
asynchronous circuits are Circal agents /2/, CCS-like
burst-mode specification /20/, and DILL specification
based on LOTOS /8/. An overview of the state-of-the-art
in tools for asynchronous design can be found in /1/.

This paper describes an algebraic approach to detecting
hazards and verifying correctness of asynchronous circuits.
Muller's model is used for modelling, and fundamental
mode of operation is assumed. Section 2 gives an over-
view of asynchronous design and introduces Muller's model
and hazards. Section 3 describes a simple process alge-
bra and shows how it can be used for modelling individual
gates. Section 4 describes the procedure for verification
of asynchronous circuits. Section 5 introduces ACTL model

checking. Section 6 presents two well-known implemen-
tations of DME circuits and reports about the results of
their verification. In the conclusion we evaluate our work.

2 Asynchronous design

Circuits are composed of gates and wires. In this paper,
the term gate refers to simple or complex elements for
which only external behaviour is considered, and the term
wire refers to connections between gates carrying binary
signals. Regarding their operation, circuits can be classi-
fied into combinational and sequential. In a combination-
al circuit, output values of all gates are logic functions of
current circuit input values. In a sequential circuit, some
gate outputs depend also on a history of circuit input vai-
ues. The memory effect is achieved with feedback loops.

Fundamental to an asynchronous design are assumptions
about gate and wire delays. If delays are overestimated,
the resulting circuit is likely to be inefficient and expen-
sive. If they are underestimated, the design may not guar-
antee correct circuit operation. Delays can be bounded
or unbounded. For bounded delay the upper bound is giv-
en, while the magnitude of unbounded delay is only known
to be positive and finite. The delays can also be pure or
inertial. In the latter case, short pulses are filtered out.

With regard to assumptions about delays, there are two
widely used models for designing asynchronous circuits.
Huffman’s model supposes that gate and wire delays are

157

Informacije MIDEM 33(2003)3, str. 157-169

R. Meoli¢, T. Kapus, B. Dugonik, Z. Brezoénik:
Formal Verification of Distributed Mutual-exclusion Circuits

bounded and known. Circuits designed with this model
are called Huffman circuits. On the other hand, Muller’s
model supposes that wires have negligible delays in com-
parison to gates, which have inertial unbounded delays.
Muller's model is typically used to design speed-independ-
ent circuits. Because of negligible wire delays, all forks in
Muller's model are isochronic. This means that if a signal
splits, all instances of this signal have equal delays. Thus,
an output signal produced by a gate is equally delayed for
all gates which consume it. By explicitly adding noniso-
chronic FORK elements, Muller's model can be extended
to produce self-timed, delay-insensitive, and quasi-delayin-
sensitive circuits, where wire delays are important. Note
that there are also other design methodologies for asyn-
chronous circuits not based on the mentioned models (e.g.
self-clocked circuits and micropipelines).

A simple Muller's model is presented in Figure 1. It repre-
sents the C-element, a standard building block used in
many asynchronous systems, which was also introduced
by Muller. The C-element changes its output only if both
inputs are changed to O or 1. In the figure, the small boxes
labeled with dy, d2, ds and d4 are delay elements attached
to the gate outputs, which are the only components in the
circuit delaying signals. The figure clearly shows that in
the Muller's model an output signal produced by a gate is
equally delayed for all gates which consume it.

B e
l_i'—ﬁ d2 ac

ds
@ hc

A gate-level implementation of the
C-element

Figure 1:

An important concept related to delays is circuit's mode of
operation, which characterizes the interaction between a
circuit and its environment. Fundamental mode of opera-
tion assumes that the environment will change the value of
only one input signal at once and then wait until the circuit
becomes stable. An asynchronous circuit is stable if no
internal or output signal value can be changed without
changing some input signal value. The opposite of funda-
mental mode is input/output mode of operation. In this
mode, the environment can change values of input signals
at any time. A third type of circuit's mode of operation is
generalized fundamental mode or burst mode. There,
signal changes are segregated in time forming input bursts
(intervals where input signal values change) and output
bursts (intervals where output signal values change). An
output burst can be empty, whereas an input burst must
contain at least one signal. Input and output bursts must
alternate. Within a burst, the ordering of signal changes is
not determined.

158

There are some anomalous types of asynchronous circuit
behaviour, which the designers try to avoid. An example of
an usually unwanted behaviour is a possibility that the cir-
cuit enters a closed loop of transitions without becoming
stable. This can result in the circuit with oscilating outputs.
A simple example of such a circuit and its simulation run
are presented in Figure 2.

XWiD_T_@f
0<}~

Figure 2: A circuit with oscilating output

If due to internal delays, a circuit can make an unwanted
pulse called a glitch or can become stable with an un-
wanted combination of values on internal or output lines,
we have a hazard. Hazards reflecting in glitches are clas-
sified with regard to their shape into static and dynamic
hazards. Static hazard occurs when the signal is momen-
tarily changed although it should remain the same. Dynamic
hazard occurs if the signal oscillates before changing its
value. A circuit which operates without hazards in the fun-
damental mode is called a fundamental-mode circuit.

Foreach hazard, there is areason for its existence. In com-
binational circuits, three types of hazards are distinguished.
Logic hazards are a property of particular implementa-
tion. A logic hazard exists in the circuit because for the
same signal, two or more parallel paths through the circuit
exist, which then reconverge. Functional hazards are a
property of the logic functions which do not change mo-
notonically during a sequence of particular input changes.
The hazard arises when such inputs change simultaneously.
Logic and functional hazards can both be either static or
dynamic. A much different type of hazard is delay hazard.
It occurs because a new input signal is applied before the
circuit becomes stable. Logic hazards can always be avoid-
ed by redesigning the circuit. Functional and delay haz-
ards can be removed only by engineering delays. Under
fundamental and burst mode of operation, functional and
delay hazards do not have an impact. In combinational cir-
cuits, hazardous behaviour is a transitory phenomenon,
and if no new inputs are applied until the circuit stabilizes,
then the correct outputs will be produced.

In sequential circuits, additional sequential hazards can
exist as a consequence of the order in which input signals
and feedback signals are considered. Sequential hazard
which results in a glitch is transient hazard. On the other
hand, if due to delays the circuit can become stable with
incorrect values of internal or even output signals, we have
steady-state hazard. Both types of sequential hazards are

R. Meoli¢, T. Kapus, B. Dugonik, Z. Brezoénik:
Formal Verification of Distributed Mutual-exclusion Circuits

Informacije MIDEM 33(2003)3, str. 157-169

(==

b T
£
fd] il
(@
| ?——@Yl
—
1 [L
® I
¥l
yld I
e [
yad f
(a]
Figure 3:

state hazard.

an inherent property of sequential functions and not of the
particular circuit implementation. Sequential hazards ap-
pear despite of fundamental and burst mode constraints.

Figure 3 shows circuits containing different types of haz-
ards and their simulation runs. Signals f, y1, and y2 repre-
sent the behaviour of output signals without delays in the
circuit, while signals fd, y1d, and y2d represent their be-
haviour after introducing significant delays. Figures 3(a) and
3(b) show logic hazards. The static hazard in Figure 3(a) is
obtained by using delayed inverters. The dynamic hazard
in Figure 3(b) appears when the left AND gate is delayed
and the top inventer is even more delayed. Figure 3(c) rep-
resents a transient hazard which appears if the AND gate
gets the new value from the feedback line earlier than the
new input value. The circuit in Figure 3(d) has steady-state
hazard because after changing input x, the circuit without
delays produces outputs y1 = 0, y2 = 1, whereas using a
delayed inverter, it produces outputs y1d = 1, y2d = 1.

3 Representing circuits with
processes

Process algebrae are widely used formalisms for model-
ling and verification of concurrent systems, e.g. communi-

[-3

o= D

pas
vld J
ve o T

yad

(d)

Simple circuits containing (a) static hazard, (b) dynamic hazard, (¢} transient hazard, and (d) steady-

cation protocols. In a process algebra, a system is de-
scribed as a set of communicating processes. Among oth-
ers, well known process algebrae are CCS (Calculus of
Communicating Systems) introduced by R. Milnerin 1980
and CSP (Communicating Sequential Processes) intro-
duced by C. A. R. Hoare in 1985, We will use an algebraic
approach which is similar to CCS and has some notation
from CSP.

In our approach, processes are labelled directed graphs.
Graph nodes are called states. An edge from state p to
state g labelled with action o is called an o-transition or
shortly a transition from state p to state g. If there exists an
w-transition from a given state, we say that in this state the
process can perform c-transition or that it can perform
action o The set of all actions which a process can per-
form is called the alphabet of the process. A sequence of
transitions in the process is called a path. The alphabet of
a process always includes a special action T, which is used
1o model internal communications, not visible to an exter-
nal observer. A transition with action tis called silent tran-
sition. All actions others than T are called visible actions.
Visible actions are divided into input and output actions.
The name of an output action always terminates by '’ e.g.
al, b!... The name of an input action always terminates by
' e.g.a?, b?,... Two actions whose names differ only in

159

Informacije MIDEM 33(2003)3, str. 157-169

R. Meoli¢, T. Kapus, B. Dugonik, Z. Brezoénik:
Formal Verification of Distributed Mutual-exclusion Circuits

the last sign, e. g. a? and al, are called complementary
actions. An action complementary to the given action ais
denoted by ¢. A sequence of visible actions is called a
trace. Two states p and g have equivalent traces if from
them the same traces can be performed. Processes are
trace-equivalent if their initial states have equivalent trac-
es. A state without outgoing transitions is a dead/ock state.
If there exists a sequence of transitions from the initial state
of a process to a state p, then state p is reachable in this
process. Otherwise, the state is unreachable in this proc-
ess. Other important concepts in process algebrae are
strong equivalence, observational equivalence, and deter-
minacy of processes /16/.

Processes are used to represent external behaviour of cir-
cuits. Each transition in the process represents a change
of a signal value and we do not distinguish whether the
value changes from O to 1 or vice versa. A transition with
an input action represents change of an input signal value,
caused by the environment. A transition with an output
action represents change of an output signal value, caused
by the circuit. We will use interleaving semantics, i.e. a
simultaneous occurence of two or more signal changes
will be modeled by including multiple sequences of transi-
tions, one for each permutation of changing signals.

The process represents an external behaviour of the cir-
cuit if each of its traces starting in the initial state of the
process corresponds to a possible sequence of changes
of input and output signal values during the operation of
the circuit in the given environment considering given ini-
tial values of all input and output signals. We are not inter-
ested in exact timing when the value of signals changes. If
two circuits have the same possible sequences of chang-
es, they have the same external behaviour, although one
of them is much faster than other. Therefore, two process-
es represent equal external behaviour if they are trace-
equivalent. However, delays are important because differ-
ent sequences of changes can be possible in the same
asynchronous circuit if the delay of gates changes. Some
traces in the process may correspond to sequences of
changes possible only with particular arrangements of gate
delays and not all of them. Note that we do not require
fixed delays. Gate delays can change during the operation
of the circuit. Because each action represents just a change
of signal value, we cannot uniformly associate a circuit to
the given process without knowing the initial value of all
input and output signals. Namely, to determine whether
performing a particular transition represents a rising or fall-
ing edge, one must know the initial value of that signal and
follow its changes.

With regard to the level of abstraction, the process can
represent more or less details on the circuit's internal be-
haviour and its connections with the enviroment. For the
purpose of finding hazards and verification of asynchio-
nous circuits under the fundamental mode of operation,
we introduce a special form of processes called circuit
models. A circuit model is determinate process without
unreachable states and without silent transitions. All cir-

160

cuit models representing external behaviour of the same
circuit in the same environment and with the same initial
values of input and output signals are strongly equivalent.
Among them, the one with minimal number of states will
be identified and used for verification.

Circuit models in Figure 4 represent external behaviour of
an AND gate, the C element, and the FORK element, re-
spectively. Further, they will be used to build DME cells.
The AND gate and the C element have two input signals
(actions a? and b?) and one output signal (action ¢!). The
FORK element is a frequently used gate in asynchronous
circuits. It has one input signal (action a?) and two output
signals (actions b! and ¢!). The value of both outputs chang-
es simultaneously after the change of the input value. Si-
multaneous change of two outputs is modelled by the abil-
ity of performing corresponding output actions in both or-
ders. The presented circuit models describe external be-
haviour of gates under the fundamental mode of operation
with all input and output signals initially set to O.

(a)

(@

Circuit model of (a} two-input AND gate,
(b) the C-element, and (c) the FORK
element

Figure 4:

R. Meoli¢, T. Kapus, B. Dugonik, Z. Brezocnik:
Formal Verification of Distributed Mutual-exclusion Circuits

Informacije MIDEM 33(2003)3, str. 157-169

Figure 5:

DME circuits contain some more complex gates, too. The
circuit model in Figure 5(a) describes external behaviour
of RS flip-flop with two inputs denoted by s (set) and r (re-
set) and two outputs denoted by g and gn, where gn is
inverted q. Initially s, r, and g are equal to 0. When input
signal sis set to 1, output g becomes 1. When input signal
ris setto 1, then output g becomes 0. Inputs r and s must
never be set to 1 at the same time. The circuit model con-
tains a deadlock state, which is not reached if the RS flip-
flop is properly driven by its environment.

Mutual exclusion (ME) element is a non-deterministic ele-
ment used in asynchronous circuits as an arbiter. Two dif-
ferent versions of ME elements appear in DME circuits. In
the first one, the ME element has two inputs denoted by r1
and r2 and two outputs denoted by g1 and g2. If input
signal r1 is set to 1 and output g2 is not set to 1, then
output g1 becomes 1. When input signal r2 is set to 1
and output g1 is not set to 1, then output g2 becomes 1.
If inputs r1 and r2 are simultaneously set to 1, then the
ME element non-deterministically chooses one output and
sets it to 1. In another version, the ME element has an

P -

T,g/

I o)

Circuit model of (a) RS flip-flop, (b) ME element, and (c) ME element with inhibit signal.

additional input z intended for an inhibit signal, which pre-
vents the grantto new requests until the request that caused
the previous grant is removed. The circuit models we used
to describe external behaviour of the ME element without
and with inhibit signal, where all input and output signals
are initially equal to 0, are presented in Figures 5(b) and
5(c), respectively.

4 Verification of asynchronous
circuits

The verification of an asynchronous circuit starts by repre-
senting all necessary gates with circuit models. Then, they
are composed together using parallel composition with
muilti-way synchronisation /8, 20/. The compound proc-
ess represents external behaviour of the circuit. The be-
haviour of gates in the circuit is asynchronous, but they are
not completely independent. Complementary actions in
different circuit models must be performed simultaneous-
ly as the value of a signal cannot change only in one part of
a wire. Simultaneous performance of complementary ac-

161

Informacije MIDEM 33(2003)3, str. 167-169

R. Mecli¢, T. Kapus, B. Dugonik, Z. Brezocnik:
Formal Verification of Distributed Mutual-exclusion Circuits

tions is called synchronisation between circuit models.
During the composition, two types of transitions with visi-
ble actions are distinguished. The transitions used for syn-
chronisation with the system’s environment are external
transitions, whereas the transitions serving for synchroni-
sation between processes in the system are internal tran-
sitions.

The parallel composition of circuit models will not return a
meaningful result if:

- signals do not have unique names,

- the outputs of two or more gates are connected to-
gether,

- there exists a gate directly driving itself,

- an output signal observable by the environment is used
as a feedback signal into the circuit.

The first two situations are straighforward. A gate is not
allowed to drive itself because it is expected that at least
two different circuit models cooperate in synchronisation.
An output signal observable from the environment is not
allowed to be a feedback signal into the circuit because
the same visible action cannot be used in internal and ex-
ternal transitions. The last two requirements have an im-
pact on the preciseness of the verification. For example,
circuits in Fig. 3(c) and Fig. 3(d) cannot be verified in their
original form without adding FORK elements after the OR
gates which produce signals y1 and y2.

The next verification step is a transformation of the obtained
compound process into a circuit model which represents
the external behaviour of the assembled circuit under the
fundamental mode of operation. This transformation con-
sists of two steps, removal of redundant traces and deter-
minization of the process. We call the first operation fun-
damental-mode reduction and it removes:

- all transitions with an input action from states where a
silent transition can be performed,

- all transitions with an input action from states where a
transition with an output action can be performed.

- all silent transitions from states where a transition with
an output action can be performed.

An example of the circuit model obtained by composing
circuit models of individual gates is presented in Figure 6.
It is a circuit model which represents the external behav-
iour of the circuit with oscilating output under the funda-
mental mode of operation. In the initial state, it can per-
form input action x?. After changing input x, output f be-
gins to oscilate. Afterwards, the circuit cannot change the
value of input signal again because it never becomes sta-
ble.

One of the goals of our approach was hazard detection. It
can be done by finding particular patterns in the circuit
models which represent unwanted external behaviour. This
patterns are simpler for the circuits containing only one
output signal. Therefore, in the case of a circuit with many

162

outputs we made the verification separately for each out-
put. A hazard resulting in a glitch is present in the circuit if
in its circuit model, after performing an output action, the
same output action can be performed again before any
input action is performed. Hence, most hazards can be
easily detected by looking for such sequences of transi-
tions, although in this way they cannot be classified into
logic, functional and transient hazards. However, static and
dynamic hazards can be distinguished, as a static hazard
results in an output action successively repeated an even
number of times, whereas in the case of a dynamic haz-
ard, the output action is repeated an odd number of times.

O "

Circuit model of the circuit with oscilat.
output

Figure 6:

It is more complicated to detect steady-state hazards. A
steady-state hazard is present in the circuit if after a partic-
ular sequence of input signals with some arrangements of
delays an output signal appears, but with other arrange-
ments of delays it does not. This always results in a state in
the circuit model where both input and output actions can
be performed. However, not all such states are a conse-
quence of steady-state hazards:

- it can also indicate a glitch which appears with some
arrangements of delays, but not with all of them,

- if some actions representing output signals have been
abstracted from the model, then it can also indicate a
non-deterministic behaviour of the circuit, which in par-
ticular situations produces the retained output signal
and sometimes the abstracted one.

Glitches which appear only with some arrangements of
delays and not with all of them are avoidable by engineer-
ing delays. We will call them avoidable hazards. Not all
hazards are avoidable (i.e. they are unavoidable) because
delays can be set only to gates and not to wires. An exam-
ple of avoidable and unavoidable static logic hazard is
shown in Figure 7. An example of a circuit with non-deter-
ministic behaviour is the ME element with inhibit signal in
Figure 5(c).

Circuit models in Figure 8 represent the external behav-
iour of circuits with hazards. They were obtained by com-
posing circuits in Figure 3. The circuit model in Figure 8(a)
shows that in the circuit in Figure 3(a), if the value of a and
b is initially assumed to be O, after changing any of them,
output f may change two times consecutively. This repre-
sents a static hazard. Afterwards, if the same input is
changed again, another static hazard may appear. All haz-
ards in this circuit are avoidable. The circuit model in Fig-
ure 8(b) shows that in the circuit in Figure 3(b), ifa and b
have initial value O and the value of a changes, no hazards
will occur. However, the situation is quite different after b

R. Meolig, T. Kapus, B. Dugonik, Z. Brezocnik:
Formal Verification of Distributed Mutual-exclusion Circuits Informacije MIDEM 33(2003)3, str. 157-169

is changed to 1. Then, each change of a may be followed
by three consecutive changes of output f, which is a dy-
namic hazard. This hazard is avoidable, too. The circuit
model in Figure 8(c) indicates a transient hazard in the cir-
cuit in Figure 3(c). If x is initially assumed to be O and then
changes to 1, a static hazard may appear on ouputyl. The
hazard is avoidable and it is possible only after the first
change of x. The circuit models in Figure 8(d), 8(e), and
8(f) represent the behaviour of the circuit in Figure 3(d).
The initial value of all signals is assumed to be 0. After x
changes to 1, the value of y1 with some arrangements of
delays changes and with some arrangements it does not.
In both cases, further changes of x do not affect y1 any-
more. There are no hazards on line y2. Figure 8(d) shows
the circuit model containing both output signals, while in
the other two circuit models one output signal is abstract-
ed away.

Figure 7: A circuit with (a) avoidable and (b)
unavoidable static logic hazard

5 ACTL model checking "
|

In Section 4 we detected hazards in asynchronous circuits @Qf\ x?
by looking for particular patterns in the circuit models. This </

step of verification can be effectively done by mode! check-

ing, which is a powerful technique for checking properties (f)
of processes. It is also used for verification of liveness and
safety properties of asynchronous circuits. Figure 8: External behaviour of the circuits in Figure 3

163

Informacije MIDEM 33(2003)3, str. 157-169

R. Meoli¢, T. Kapus, B. Dugonik, Z. Brezocnik:
Formal Verification of Distributed Mutual-exclusion Circuits

We will specify circuit properties with action computation
tree logic (ACTL), which is a propaositional branching time
temporal logic /6, 14/. The syntax of ACTL formulae in-
cludes constants true and false, standard Boolean opera-
tors NOT, AND, OR, path quantifiers E (“there exists a
path”) and A (“for all paths”}), and temporal operators U
("until”), W(“unless”), X (“for the next transition”), F (“for
some transition in the future”), and G (“for all transitions in
the future”).

ACTL formulae are state formulae. A state where ACTL for-
mula ¢ is valid will be called @-state. ACTL. formulae are
constructed from action and path formulae. An action for
which action formula % is valid will be called y-action. A
transition from state p to state g where action formula y is
valid for the action executed during this transition and ACTL
formula ¢ is valid in state g will be called (y, ¢)-transition.
In a process, path formulae are evaluated as follows:

- Pathformula X {3} ¢ is valid on path 1 if the first transi-
tion on this path is a (%, @)-transition.

- Path formula F {)} ¢ is valid on path 7t if there exists a
(%, ¢)-transition on this path.

- Path formula G ¢{)} is valid on path 7 if ACTL formula
¢ is valid in the first state of this path and all transi-
tions on the path are (, @)-transitions.

- Pathformula [p {3 U {}} @] is valid on path 7 if ACTL
formula @ is valid in the first state of this path and the
path begins with a finite sequence of (y, pi-transitions
followed by a (), ¢')-transition.

- Path formula [@ {x} W {)} @] is valid on path 7 if for-
mula [¢ {x} U {x} ¢']is valid on this path or formula G
© {y} is valid on this path.

The given rules are used for finite and infinite paths. In ACTL,
each path formula is always immediately preceded by a
path quantifier. Path quantifier E requires that the property
expressed by the path formula is valid for at least one path
starting in the given state. On the other hand, path quanti-
fier A requires that the property expressed by the path for-
mula is valid for all paths starting in the given state. In a
deadlock state, formulae EG ¢ {x}, AG ¢ {3}, Elp [W
Dol and Ao (X} W {} @1 are valid only if the state is a
¢-state. Formulae EX ()} ¢, AX {x} ¢, EF {x} @, AF {x} ¢, E
o U{x)oland Alp 0 U) @1 are invalid in all dead-
lock states. We will take that an ACTL formula is valid in
process P if it is valid in its initial state.

fn ACTL formulae, the constant true can be omitted in many
cases, for example:

Eltrue(d U (x} @1=E[{Q U {x} ¢]

Al {true} U truel 01 = Ao U @]

There are also two widely accepted abbreviations of ACTL
operators:

>0 =X o

ACTL formula <a>@ is valid in the given state if there exists
a transition with action ¢ from that state to a state where

164

ACTL formula @ is valid. ACTL formula [clg is valid in the
given state if all transitions with action « from that state
lead to a state where ACTL formula @ is valid.

Suppose that the alphabet of the process contains actions
a?, b? and f?. Here are some ACTL formulae which can be
used for checking properties of this process:

- There is no deadlock state: AG AF {true}

- At any moment, ouput action fl will be performed in
the future: AG AF {f!}

- There is no state where output action fI can be per-
formed succesively two times: NOT EF {f!} <fl> true

- There is no state where output action f! and also in-
putactiona? orb? can be performed: NOT EF ((<f!>
true) AND (<a? OR b?>true))

6 Results from verification of DME
circuits

We verified distributed mutual-exclusion (DME) circuits.
They are composed of DME cells connected in aring. DME
cells work by passing a token around the ring. The owner-
ship of the token is determined by output signal q of the
RS flip-flop. The token is exchanged via the request and
acknowledge signals with the left cell (LR and LA) and with
the right cell (RR and RA). The users gain exclusive ac-
cess to the resource via the request and acknowledge sig-
nals UR and UA. The DME circuit was originally proposed
by Martin in 1985 /11/. Martin’s design does not work
correctly under the input/output mode of operation /10/.
In 1988, Burns gave a simpler design of the DME cell /3/.
It was later slightly modified by McMillan and became a
standard benchmark for asynchronous design verification
tools /12, 13, 18/. The DME cells from Martin and McMil-
tan are presented in Figure 9.

In Martin’s design, the token indicates which user has last
accessed the shared resource. If a DME cell receives a
request but does not have the token, it notices this to its
right neighbour via the RR signal. When a DME cell gets a
request, either from the user via the UR signat or from its
left neighbour via the LR signal, the DME cell attempts to
satisfy the demand. If a DME cell has the token and no
granted request is outstanding, then it sends an acknowil-
edgement, either via the UA or LA signal, as appropriate.
When a DME cell establishes it can approve user access,
it immediately sends the UA signal to the user. If this DME
cell does not have the token, then the token is transferred
to it after the user removes the request. In McMilian's de-
sign, a user request is never acknowledged by a DME cell
which does not possess the token. The token is transferred
first, which makes the response to a user request slower.
Moreover, McMillan's design has slower response times
regardless of the token position because there the request
signal has a longer path through the decision logic.

The verification was done with Efficient Symbolic Tools
(EST), our BDD-based tool for symbolic verification of con-

R. Meoli¢, T. Kapus, B. Dugonik, Z. Brezocnik:

Formal Verification of Distributed Mutual-exclusion Circuits

Informacije MIDEM 33(2003)3, str. 157-169

UA 17
= & 5
18
5 R 1
I3 '
{ . EQ QN
Y1
3
(Q QN
—e
UR _ = RR
AN RT ..U T (
INHZME al T
16
LR o G2l Q0
] —< R A
12 L R
R
110 I
LA I@
> RR
=+ RA

Figure 9:

current systems /15/. We started by modelling all neces-
sary gates and composing them in DME cells. Afterwards,
possible hazards in each DME cell were examined. Final-
ly, we composed DME cells into rings of different sizes
and checked correctness of external behaviour of the ob-
tained circuits. To confirm the results of formal verification
we also implemented the circuits on the prototype board
(Figure 10) and tested their behaviour by measurements
with HP 1652B Logic Analyzer. In Figure 10(b), the reader
may notice that some logic for initialisation of the RS flip-
flops was added for testing. The test runs obtained for the
ring composed of two DME cells are given in Figure 11.
Signals UR, UA, Q,RR, LA, Z, §, R, G1, and G2 belong to
the first DME cell, while others belong to the second one.

In the circuit model of DME cell, input signal changes were
represented with actions ur?, Ir?, and ra?, and output sig-
nal changes were represented with actions ual, la!, and

A cell of the DME circuit (a) as proposed by Martin /11/, and (b) as proposed by McMillan /12/

rrl. We created 3 different circuit models for each DME
cell. Each circuit model represents the behaviour of one
output signal, whereas the other two are abstracted away.
This makes the verification simpler. To find hazards, we
used the following ACTL formulae, which are for simplicity
here presented using macros, although EST does not sup-
port them yet:

\define IN (ur? OR Ir? OR ra?)
\define OUT (ual OR lal OR rr!)

Static hazards
NOT EF {IN} <OUT> <OUT> <IN> true

Dynamic hazards
NOT EF {I{N} <OUT> <OUT> <OQUT> <IN> true

Steady-state hazards
NOT EF {IN}
((<IN> true) AND (<OUT> <IN> true))

165

Informacije MIDEM 33(2003)3, str. 157-169

R. Meoli¢, T. Kapus, B. Dugonik, Z. Brezo&nik:
Formal Verification of Distributed Mutual-exclusion Circuits

Figure 10:
testing

For any formula which is invalid for a given model, EST
shows a counterexample, To find all hazards on the partic-
ular output signal effectively, model checker should find all
counterexamples (e.g. tree-like counterexamples /9/}.
Unfortunately, EST is not capable of that, and therefore
we helped us with an iteration method. For each hazard
found, we deleted outgoing transitions from the state where
the hazard began and then checked the same ACTL for-
mula again. We repeated this until the formula became valid.
With the presented formulae only hazards containing two
or three successive changes of an output signal can be
detected, but we also verified that the mode! contains no
other hazards. In Martin's DME cell, which initially does
not possess the token, we found static hazards on output
signals UA (1-4) and RR (5-8) and steady-state hazards on
output signals UA (9), LA (10-11), and RR (12-20):

1. ra?,ur?,ual,ra?,ual,ual

2. ra?ur?,ual,Ir?,ra? ual,ual

3. ra?ur?,ual,ur?,ur? ra?,ual,ual

4. ra?,ur?,ual,ur?,ur? Ir? ra?,ual,ual

166

The ring of two Martin’s DME cells: (a) implementation with gates and wires, (b) LED indicators for

5. ur? ! e? ur?, el rrl

6. Ir?,rrhur? Ir? rel rrl

7. ra? 2, el ur? e, Ie? ra?, el ur?, el el

8. ra?,Ir?,rrl,ur?,Ir?,erl 102, ra?,rr! 2, il rrl

9. ra?Ir?,ur?,Ir?,Ir?,ra? ra?,[ual]

10. ra?,ur?,ur?,ur?,ir?,ra? [la!]

1. ra? Ir? lal,ur?,Ir?,Ir?,ra?,lal ra?,[lal]

12, ra?,ur?,rrlur? rel,ur? Ir?,ra? Ir?,[rel]

13. ra?,lr?,rr!,ur?,lr’?,rr!,lr?,ra?,rr!,ra?,ra?,[rr!]

14, ra?,lr?,rr!,ur?,lf?,rr!,Ir’?,ra?,rr!,ra?uﬂ?,[rr!]

15, ra?,Ie?,rel,ur? 12, 162 ra? el ra?, 1r? [rrl]

16. ra?,ur?,rr!,ur’?,rr!,ur’?,h’?,ra’?,ra?,h’?,lr?,ra?,[rr!]

17. ra?,ur?,rr!,ur’?,rr!,ur’?,lﬂ,ra?,ra?,ut’?,lr’?,ra’?,lr?,[rr!]
18. ra’?,ur?,rr!,ur?,rr!,ur’?,lr’?,ra’?,ra?,ur’?,ur’?,h’?,lr?,ra?,[rr!]
19. ra?,ur’?,rr!,ut’?,rr!,ur’?,h”?,ra?,ra’?,ur’?,h’?,ra?,ra?,u:’?,[rr!]
20. ra?,ur?,rr!,ur’?,rr!,ur’?,h’?,ra?,ra?,ur?,lr’?,ra?,ra?,h’?,[rr!]

R. Meolig, T. Kapus, B. Dugonik, Z. Brezoénik:
Formal Verification of Distributed Mutual-exclusion Circuits

Informacije MIDEM 33(2003)3, str. 157-169

MACHINE_t | - Timing Ksveforms

tlarkers ¥ to Trig 74¢.0 ms Time ¥ te 0 | —740.0 ms

Accumulate Gff] o to Trig | 0 5] At [X Harker] [UR]

Tine/oiv ooy o

9 X
r T T T ¥ v T T
LR all| 1
|} all 1
I al}
[ER s
[CA)
iz 5 T
(21 a1l
[RT___<
AL ol
1 3l
RRT__al} : I
AT anl
S a1l ! 4‘
I all) |
‘ (|

fACHINE.!1 | - Timing Haveforms

Harkers

Accumulate

Time/Div [S00.0 ms Delay 1.340 s Sample peried = 20.00 ms
Y ¥ T T 4 T

| N

r
A___al !
R a1 :
A il :

a
—
LR ;
[UA f H
ILER : i
L
i)
(S 3 1
(G) i
1.1 _ o _ T
(G2_1__al

(b)

Figure 11: Test run of the ring composed of (a) two

Martin's DME cells, (b) two McMillan’s
DME cells

In McMillan's DME cell, which initially does not possess
the token, we found only static hazards on output signal
RR:

ra?,ur?,rrt,rr!
ra?,Ir?,rrl rrl
ur?, el Ie?,ur? et et

>

Ir?,ert,ur? Ie?, ek rrd

Due to the separate verification for each output signal,
counterexamples do not describe the behaviour of all out-
put signals, which can be a drawback. A test run corre-
sponding to the hazard no. 3 in McMillan's DME cell is
given in Figure 12. Initially, all input and ouput signals are
set to 0 and the DME cell does not possess the token.
When the DME cell gets a user request, it immediately
sends signal RR to its right neighbour. Afterwards, if LR
and UR change before other signals, we get static hazard
on signal BR.

The results of the verification show that both designs of
DME cell contain hazards even under the fundamental
mode of operation. However, McMillan’s design is much
cleaner. Table 1 gives the number of hazards found. Note
that we distinguish two hazards only if they occur in differ-

- Timing Haveforms
Harker's
Accumulate
Time/D1y Delay Sample peripd = 8.000 ms
e T . T ; ¥ : T ; T
A A |]
E)
6 i)
(S alf
RR a1l) LT
RA___00
A a
(LR)]
i)
|l 0]
B/ 00] f
iC al] [1
o 0]
€ al [|
e S U
Figure 12: Hazard on signal RR in McMillan’s DME cell

ent situation in the circuit. A DME cell can first acquire the
token and then deliver it forward, and afterwards it is found
in the same situation as in the beginning. Moreover, static
hazard in Martin's DME cell described with the sequence
ur?,ra?,ual,ra?,ual,ua! is treated to be the same as the
first one in the given list because the situation in the circuit
is the same regardless of the order in which the value of
input signals ur? and ra? changes.

Table 1: Hazards in DME cells

Martin [11] McMillan [12]

UA { LA | RR | UA | LA | RR

Static hazards 4 0 4 0 0 4

Dynamic hazards | 0 0 0 0 0 0

Steady-state 1 3 9 0 0 0
hazards

In the next step of the verification we checked, whether
the DME circuits of different sizes satisfy safety and live-
ness properties proposed in /13/:

1. An acknowledgement is not given without a request.

2. Anacknowledgement is not removed while a request
persists.

3. Allrequests are eventually acknowledged.
4. No two users are acknowledged simultaneously.

After composing DME cells, only signals UR and UA from
and, respectively, to different users remain in the model.
They were represented with actions ur1?, uat!, ur2?, ua2l,
etc. Because in a circuit model the same action represents
either the change of signal value from O to 1 or vice versa,
the first two properties can be verified with the same ACTL
formulae. On the other hand, the last and the most impor-
tant property cannot be directly expressed with one ACTL
formula. We can only express mutual exclusion after a user
gets the acknowledgement for a given number of times.

167

Informacije MIDEM 33(2003)3, str. 157-169

R. Meoli¢, T. Kapus, B. Dugonik, Z. Brezo&nik:

Formal Verification of Distributed Mutual-exclusion Circuits

Here are the formulae used for verification of the DME cir-
cuit composed of two DME cells:

After an acknowledgement is sent
(removed), it will not be removed
(sent) before the user requests this.

AG [uatl] ANOT uai!} UU {ur1?}]
AG [ua2!] Al{NOT ua2!} UU {ur2?)]

All requests will be acknowledged.

AG [ur1?] AF {uat1l}
AG [ur2?] AF {ua2!l}

After a user gets the acknowledgement

for the first time (second time etc.),

other users will not get an

acknowledgement until his acknowledgement
is removed.

\define UA1 (NOT ua1!} UU {ua1h}
\define UA2 {NOT ua2!} UU {ua2!}

A[UAT A[{NOT ua2!} UU {ua1i}]]
A[UA2 A[{NOT uat!} UU {ua2}]]

A[UAT A[UAT A[UAT A[{NOT ua2!} UU {ua1il]
A[UA2 A[UA2 A[UA2 A[{NOT uat!} UU {ua2iill

All listed formulae were valid for the circuit composed of
two Martin's DME cell and also for the circuit composed of
two McMillan’s DME cell. Afterwards, we verified DME cir-
cuits composed of three and more DME cells, too. To do
this, ACTL formulae must have been adequately adapted.
Because no incorrect behaviour was detected, we may
conclude that both designs of DME cell operate correctly
under the fundamental mode of operation. Evidently, with
the presented approach, we were not able to detect mal-
function of DME circuits composed of Martin's cells be-
cause it is the result of delay hazards.

The size of circuit models used during the verification is
given in Table 2. The most complex task during the verifi-
cation was the composition of processes. Table 3 and Ta-
ble 4 give some statistics about the compiexity of parallel
composition obtained on a system composed of 800 MHz
Athlon processor, 512 MB RAM and Linux OS. The size of
DME cells in Table 2 refers to the circuit model describing
external behaviour of DME cells which initially do not pos-
sess the token. The sizes reported in the last two tables
refer to the circuit model describing external behaviour of
rings where internal behaviour of DME cells is abstracted
away. We were not able to compose more than 4 Martin's
and 5 McMillan’s DME cells although the resulting proc-
ess is supposed not to be enormous. Hence, an “on the
fly” model checker would be of great interest here.

168

Table 2: The size of circuit models

Circuit Inputs / States / BDD
Outputs Transitions nodes
C element 21 4/7 32
RS flip-flop 2/2 1116 75
ME element [11] 3/2 24/51 164
ME element [12] 2/2 11/16 73
DME cell [11] 3/3 72/148 474
DME cell [12] 373 48/104 304

Table 3: Parallel composition of Martin’'s DME cells

N States / BDD Time for
Circuit . ;.
Transitions | nodes | composition
2 DME cells 11716 62 0.1s
3 DME cells 57/117 365 2.4s
4 DME cells 236/632 1752 100.2s

Table 4: Parallel composition of McMillan’s DME cells

L States / BDD Time for
Circuit . i
Transitions | nodes | composition
2 DME cells 1116 66 0.1s
3 DME cells 40/72 251 0.8s
4 DME cells 145/316 974 12.9s
5 DME cells 596/1545 4444 1299.1s

7 Conclusion

Asychronous circuits are an important class of digital cir-
cuits used as autonomous devices or just a part of other-
wise synchronous circuits. They have many nice proper-
ties, but they are also difficult to design and verify, espe-
cially in an ad hoc fashion. Emerging tools for formal verifi-
cation promise a solution for many problems in this area.

This paper introduces a method for formal verification of
asychronous circuits modelled with Mullers model under

R. Meoli¢, T. Kapus, B. Dugonik, Z. Brezocnik:
Formal Verification of Distributed Mutual-exclusion Circuits

Informacije MIDEM 33(2003)3, str. 157-169

the fundamental mode of operation. It is suitable for de-
tecting hazards in the given circuit and for verification of
safety and liveness properties. The method is based on
the representation of external behaviour of the circuit with
processes. A special form of processes called circuit mod-
els is used to describe gates. A parallel composition with
the ability of multi-way synchronisation and an operation
called fundamental-mode reduction serve for construction
of circuits from single gates. Determinization of processes
assures a canonical form of specifications. The properties
of circuits can be checked by ACTL model checking. The
results obtained by verification and measurements on real
circuits convince us about the correctness of our approach.

We used presented method for the verification of DME cir-
cuits. We were able to verify the external behaviour of DME
circuits composed of up to 5 DME cells. For larger cir-
cuits, BDD-based tool EST exceeded memory limits of 512
MB during the parallel composition of circuit models. May-
be, the impact of state explosion could be moderated by
using “on the fly” model checking. Alternatively, parallel
composition and fundamental-mode reduction could be
united in a more efficient operation.

There are many topics for further research. The ability of
model checking to find tree-like counterexamples was
mentioned in the paper. We are also interested in experi-
ments with input-quasi-receptive circuit models, which
describe the behaviour of the circuit under input/output
mode of operation. They enable checking semi-modulari-
ty. Input-quasireceptive models accept input signals in all
states and this leads to more complex specifications. It is
a challenge how to apply such an approach to larger asyn-
chronous circuits.

References

/1/ ACID-WG. Report on Design, Automation and Test for Asynchronous
Circuits and Systems, January 2002.

/2/ A. Bailey. Automatic Verification of Speed-independent Circuit De-
signs Using the Circal System. In Correct Hardware Design and
Verification Methods (CHARME '93), volume 683 of LNCS,
pages 167-178. Springer-Verlag, May 1993.

/3/°S. M. Burns. Automated Compilation of Concurrent Programs into
Self-timed Circuits. Master’s thesis, California Institute of Tech-
nology, 1988.

/4/ F.-C. Cheng. Exact Essential-Hazard-Free State Minimization of In-
completely Specified Asynchronous Sequential Machines. Tech-
nical report CUCS-033-94.

/5/ A. Davis and S. M. Nowick. An Introduction to Asynchronous Circuit
Design. Technical Report UUCS-97- 013, University of Utah,
September 1997. /6/ A. Fantechi, S. Gnesi, F. Mazzanti, R.

Pugliese, and E. Tronci, A Symbolic Model Checker for ACTL. In
Proceedings of FM-Trends’98, volume 1641 of LNCS, pages
228-242. Springer-Verlag, October 1998.

/7/ S. Hauck. Asynchronous Design Methodologies: An Overview. Pro-
ceedings of the IEEE, 83(1):69-93, January 1985.

/8/ J. He. Formal Specification and Analysis of Digital Hardware Circuits
in LOTOS, August 2000. Technical Report CSM-158. Universi-
ty of Stirling.

/9/ Y. Lu. Automatic Abstraction in Model Checking. PhD thesis, De-
partment of Electrical and Computer Engineering, Carnegie
Mellon University, 2000.

/10/ A. R. Martello. Temporal Analysis for Time-Bounded Causal Dig-
ital Systems. PhD thesis, University of Pittsburgh, April 1993.

/11/ A, J. Martin. The Design of a Self-timed Circuit for Distributed Mutu-
al Exclusion. In Proceedings of the 1985 Chapel Hill Confer-
ence on VLS!, pages 245-260, 1985.

/12/ K. L. McMillan. Symbolic Model Checking. PhD thesis, Carnegie
Mellon University, May 1892. Technical report CMU-CS-92-131.

/13/ K. L. McMillan. The SMV system, November 2000. http://www-
2 cs.cmu.edu/_modelcheck/smv.himl.

/14/ R. Meolic. Checking correctness of concurrent systems behaviour.
Master's thesis, University of Maribor, 1999. In Slovene.

/15/ R. Meolic, T. Kapus, and Z. Brezo cnik. The Efficient Symbolic
Tools Package. In Proceedings of the Soft- COM 2000, vol-
ume |, pages 147-156, Split, Croatia, October 2000. http://
www. el feri.uni-mb si/est/.

/16/ R. Milner. Communication and Concurrency. International Series
in Computer Science. Prentice Hall, 1989.

/17/ C. Myers. Asynchronous Circuit Design. John Wiley & Sons, 2001,

/18/ O. Roig, J. Cortadella, and E. Pastor. Conservative Symbolic Mod-
el-Checking of Petri Nets for Speedindependent Circuit Verifica-
tion, 1994. DAC/UPC Technical Report No. RR-94.

/19/ M. Shams, J. C. Ebergen, and M. 1. Elmasry. Asynchronous Cir-
cuits. JohnWiley's Encyclopedia of Electrical Engineering. /20/
K. S. Stevens. Practical Verification and Synthesis of Low La-
tency Asynchronous Systems. PhD thesis, Dept. of Computer
Science, University of Calgary, Canada, September 1994.

Robert Meoli¢, Tatjana Kapus,
Bogdan Dugonik, Zmago BrezoCnik

Faculty of Electrical Engineering and Computer

Science, University of Maribor, Smetanova ulica 17,
2000 Maribor, Slovenia

Prispelo (Arrived): 26.02.2003 Sprejeto (Accepted): 26.08.2003

169

