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Abstract

We present a new class of totally positive Toeplitz matrices composed of recently in-
troduced hyperfibonacci numbers of the r-th generation. As a consequence, we obtain that
all sequences F (r)

n of hyperfibonacci numbers of r-th generation are log-concave for r ≥ 1
and large enough n.

Keywords: Total positivity, totally positive matrix, Toeplitz matrix, Hankel matrix, hyperfibonacci
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1 Introduction and preliminary results
A matrixM is totally positive if all its minors are positive real numbers. When it is allowed
that minors are zero, then M is said to be totally non-negative. Such matrices appears in
many areas having numerous applications including, among other topics, graph theory,
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Pólya frequency sequences, oscillatory motion, symmetric functions and quantum groups
among these areas [1, 2, 12, 13, 18]. The notion of total positivity is closely related with
log-concavity and more on this one can find in a paper by Stanley [21]. A classical result by
Whitney, Loewer and Cryer [8] says that any totally non-negative matrixM can be factored
as a product of totally non-negative matrices M = L1 · · ·LmDU1 · · ·Um, where D is a
diagonal matrix with non-negative elements, Li is a matrix of the form I + cEj+1,j , Ui is
a matrix of the form I + cEj,j+1 and Ek,l is the matrix which has a 1 on the k, l position
and zeros elsewhere. There is also a connection between totally non-negative matrices and
planar networks proved by Karlin and McGregor [15], and Lindström [16]. The famous
Lindström lemma gives combinatorial interpretation of a minor through the weights of
collections of vertex-disjoint paths in a planar network.

An important notion when testing a matrix on total positivity is initial minor. We let
I, J denote column set and row set, respectively. A minor ∆I,J where both I and J consist
of several consecutive indices and where I ∪ J contain 1, is called initial. Thus, each
matrix entry is the lower-right corner of exactly one initial minor. In this work we use
Theorem 1.1, which is proved by Gasca and Pen̈a [14].

Theorem 1.1. A square matrix is totally positive if and only if all its initial minors are
positive.

The notion of total positivity can be refined as follows. A matrix M is said to be totally
positive of order p (or TPp, in short) if all its minors of all orders ≤ p are positive.

The concept of total positivity extends in a straightforward manner also to (semi)infinite
matrices. It turns out that many such triangular matrices appearing in combinatorics are
indeed TP [3]. Recently, Wang and Wang proved total positivity of Catalan triangle via
Aissen-Schonberg-Whitney theorem [22]. Further general results on triangular matrices
and Riordan array have been obtained by Chen, Liang and Wang [5, 6] as well as Zhao and
Yan [23], while Pan and Zeng give combinatorial interpretation of results on total positivity
of Catalan-Stieltjes matrices [20].

A Toeplitz matrix T = [ti,j ] is a (finite or infinite) matrix whose entries satisfy ti,j =
ti+1,j+1. In finite case,

T =


t0 t−1 · · · t−n+1

t1 t0 · · · t−n+2

...
...

. . .
...

tn−1 tn−2 · · · t0

 .

In words, elements of a Toeplitz matrix are constant along diagonals descending from left
to right. If the elements of a matrix are constant along diagonals ascending from left to
right, the matrix is called a Hankel matrix. An example is given here,

H =


t0 t1 · · · tn−1
t1 t2 · · · tn−2
...

...
. . .

...
tn−1 tn−2 · · · t2n−2

 .

Obviously, each Toeplitz (or Hankel) matrix of order n gives rise to a unique sequence (of
length 2n− 1 in the finite case) of its elements. The connection also works the other way:
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Given an (infinite) sequence (an) and given integers n0 and m, we can construct a Toeplitz
(or a Hankel) matrix of order m having an0

in the upper left corner. In what follows we
present a class of totally positive Toeplitz matrices whose entries are hyperfibonacci num-
bers [4, 17, 24]. These sequences of numbers were recently introduced by Dil and Mező in
a study of a symmetric algorithm for hyperharmonic and some other integer sequences [9].

Definition 1.2. The hyperfibonacci sequence of the r-th generation (F
(r)
n )n≥0 is a se-

quence arising from the recurrence relation

F (r)
n =

n∑
k=0

F
(r−1)
k , F (0)

n = Fn, F
(r)
0 = 0, F

(r)
1 = 1, (1.1)

where r ∈ N and Fn is the n-th term of the Fibonacci sequence, Fn = Fn−1 + Fn−2,
F0 = 0, F1 = 1.

Proposition 1.3 gives some basic identities for hyperfibonacci sequences [7].

Proposition 1.3. For hyperfibonacci sequence (F
(r)
n )n≥0 we have

(i)
F (r)
n = F

(r)
n−1 + F (r−1)

n (1.2)

(ii)

F (1)
n

2
− F (1)

n−1F
(1)
n+1 = F

(1)
n−3 + 1 + (−1)n+1

(iii)
F (1)
n F

(1)
n+1 − F

(1)
n−1F

(1)
n+2 = F

(1)
n−2 + 1− (−1)n+1

(iv)

F (r)
n = Fn+2r −

r−1∑
k=0

(
n+ r + k

r − 1− k

)
. (1.3)

Explicit formula for determinant of the Hankel matrix of hyperfibonacci sequence of
r-th generation

Ar,n =


F

(r)
n F

(r)
n+1 · · · F

(r)
n+r+1

F
(r)
n+1 F

(r)
n+2 · · · F

(r)
n+r+2

...
...

. . .
...

F
(r)
n+r+1 F

(r)
n+r+2 · · · F

(r)
n+2r+2


has been obtained in [19] and here we state it in Theorem 1.4. We will find it useful in
establishing our main result, the total positivity of the Toeplitz matrix of the same sequence
with odd-indexed hyperfibonacci number in the upper left corner.

Theorem 1.4. For the sequence (F
(r)
k )k≥0, r ∈ N and n ∈ N a determinant of a matrix

Ar,n takes values ±1,

det(Ar,n) = (−1)n+
⌊

r+3
2

⌋
.
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The TP2 property of Toeplitz and Hankel matrices is closely related to log-concavity
and log-convexity, respectively, of the associated sequences. Recall that a sequence (an) of
positive numbers is log-concave if a2n ≥ an−1an+1 holds for all n ≥ n0 for some n0 ∈ N.
If the inequality is reversed, the sequence is log-convex. The literature on log-concavity
and log-convexity is vast. Besides already mentioned classical papers by Stanley [21] and
Brenti [3], we refer the reader also to [10, 11, 20, 22] for some recently developed tech-
niques. In particular, the log-concavity of hyperfibonacci numbers of all generations r ≥ 1
has been established in [24] by using recurrence relations. Here we proceed to prove more
general claims that will imply the log-concavity results of reference [24].

2 Positivity of hyperfibonacci determinant

We let B(r)
m,n = [bi,j ] denote the matrix of order m consisting of hyperfibonacci numbers

of the r-th generation,

B(r)
m,n :=


F

(r)
n F

(r)
n−1 · · · F

(r)
n−m+1

F
(r)
n+1 F

(r)
n · · · F

(r)
n−m+2

...
...

. . .
...

F
(r)
n+m−1 F

(r)
n+m−2 · · · F

(r)
n


with the constraint r ≥ m−1. In what follows we will show that there exist q(r) ∈ N such
that det(B

(r)
m,n) is positive for n ≥ q(r).

From the elementary properties of the Fibonacci sequence known as Cassini identity
we immediately have that the matrix

M =

(
F2n+1 F2n+2

F2n+2 F2n+3

)
is positive for n ∈ N0 and the matrix

M ′ =

(
F2n+1 F2n

F2n+2 F2n+1

)
is positive for n ∈ N. In Proposition 2.1 we extend the property of positivity to matrices of
order 2 consisting from first generation of hyperfibonacci numbers while a general result,
involving r-th generation of hyperfibonacci numbers is given in Theorem 3.5.

Proposition 2.1. For n, r ∈ N determinant of the matrix B(1)
2,n is positive,

det(B
(1)
2,n) = det

(
F

(1)
n F

(1)
n−1

F
(1)
n+1 F

(1)
n

)
> 0.

Proof. We apply relations presented in Proposition 1.3 to get F (1)
n −F (1)

n−1 = Fn. Now, by
the properties of determinant (column subtraction and then row subtraction) we obtain

det

(
F

(1)
n F

(1)
n−1

F
(1)
n+1 F

(1)
n

)
= det

(
Fn F

(1)
n−1

Fn+1 F
(1)
n

)
= det

(
Fn F

(1)
n−1

Fn−1 Fn

)
= det

(
Fn Fn+1 − 1
Fn−1 Fn

)
> 0.
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Theorem 2.2. Let m ∈ N. Then there is nm ∈ N such that det
(
B

(m−1)
m,n

)
> 0 for

all n ≥ nm.

Proof. Employing elementary transformation on matrices and using relation (1.2) we get

det
(
B(m−1)

m,n

)
= det


Fn F

(1)
n−1 F

(2)
n−2 · · · F

(m−1)
n−m+1

Fn+1 F
(1)
n F

(2)
n−1 · · · F

(m−1)
n−m+2

...
...

...
...

Fn+m−1 F
(1)
n+m−2 F

(2)
n+m−3 · · · F

(m−1)
n



= det


Fn F

(1)
n−1 F

(2)
n−2 · · · F

(m−1)
n−m+1

Fn−1 Fn F
(1)
n−1 · · · F

(m−2)
n−m+2

...
...

...
...

Fn−m+2 Fn−m+3 Fn−m+4 · · · F
(1)
n−1

Fn−m+1 Fn−m+2 Fn−m+3 · · · Fn

 . (2.1)

Having in mind relation (1.3) we immediately obtain

F
(r)
n−r = Fn+r −

r−1∑
k=0

(
n+ k

r − 1− k

)

and furthermore

F
(r)
n−r = Fn+r − Sr, (2.2)

where

Sr :=

r−1∑
k=0

(
n+ k

r − 1− k

)
.

Thus, S1 = 1, S2 = n + 1, S3 = n(n−1)
2 + n + 2, S4 = n3+5n

6 + n + 3, etc. Now, we
substitute entries in (2.1) according to (2.2) to get

det
(
B(m−1)

m,n

)
= det


Fn Fn+1 − S1 Fn+2 − S2 · · · Fn+m−1 − Sm−1
Fn−1 Fn Fn+1 − S1 · · · Fn+m−2 − Sm−2

...
...

...
...

Fn−m+1 Fn−m+2 Fn−m+3 · · · Fn

 . (2.3)

In the following steps of this proof we let ∆1, ∆2, ∆3 denote matrices we deal with.
We will show that determinants of these matrices are equal to each other. In order to make
the proof more readable, the elements of the last two columns of ∆1, ∆2, ∆3 are denoted
by ci,j , c′i,j , c′′i,j , respectively. On the other hand, the elements of the first m − 2 columns
of these matrices are denoted by bi,j and they do not change their values under performed
transformation.
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When performing elementary transformations on matrix columns of (2.3) we obtain

det
(
B(m−1)

m,n

)
= det



S2 − S1 S3 − S2 − S1 · · · Fn+m−2 − Sm−2 Fn+m−1 − Sm−1
S1 S2 − S1 · · · Fn+m−3 − Sm−3 Fn+m−2 − Sm−2
0 S1 · · · Fn+m−4 − Sm−4 Fn+m−3 − Sm−3
...

...
...

...
0 0 · · · Fn Fn+1 − S1

0 0 · · · Fn−1 Fn


= det(∆1)

where we get ∆1 = [bi,j ] by similar transformation on rows,

∆1 =



S2 − 2S1 S3 − 2S2 − S1 · · · −Sm−1 + Sm−2 + Sm−3
S1 S2 − 2S1 · · · −Sm−2 + Sm−3 + Sm−4
0 S1 · · · −Sm−3 + Sm−4 + Sm−5
...

...
...

0 0 · · · S2 − S1

0 0 · · · Fn+1 − S1

0 0 · · · Fn


,

bi,j = bi+1,j+1, i = 1, . . . ,m− 1, j = 1, . . . ,m− 3,

bi,j = ci,j , i = 1, . . . ,m, j = m− 1,m,

ci,m−1 = ci+1,m, i = 1, . . . ,m− 3

and where entries bi,j get values

b1,1 = S2 − 2S1

b1,2 = S3 − 2S2 − S1

b1,3 = S4 − 2S3 − S2 + 2S1

b1,4 = S5 − 2S4 − S3 + 2S2 + S1

b1,5 = S6 − 2S5 − S4 + 2S3 + S2

...
b1,m−2 = Sm−1 − 2Sm−2 − Sm−3 + 2Sm−4 + Sm−5,

while for entries ci,j we have

c1,m−1 = −Sm−2 + Sm−3 + Sm−4

c2,m−1 = −Sm−3 + Sm−4 + Sm−5

...
cm−3,m−1 = −S2 + S1

cm−2,m−1 = −S1

cm−1,m−1 = Fn

cm,m−1 = Fn+1,
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and

cm−1,m = Fn+1 − S1

cm,m = Fn.

Furthermore, we form matrix ∆2 = [bi,j ] with bi,j = c′i,j , i = 1, . . . ,m, j = m− 1,m,
by performing row transformations

c′i,m−1 = ci,m−1 +

m−3∑
j=1

bi,j , i = 1, . . . ,m

c′i,m = ci,m +

m−2∑
j=1

bi,j , i = 1, . . . ,m.

As a consequence of these two operations for the last two columns of ∆2 we obtain

−Sm−4 + Sm−6 + Sm−7 + · · ·+ S2 −Sm−3 + Sm−5 + Sm−6 + · · ·+ S2

...
...

−S4 + S2 −S5 + S3 + S2

−S3 −S4 + S2

−S2 −S3

−S1 −S2

0 −S1

0 0
Fn Fn+1

Fn−1 Fn


.

(while the other entries of ∆2 are equal to those of ∆1). Clearly, det(∆1) = det(∆2).
Furthermore, we perform row transformations

c′′i,m−1 = c′i,m−1 + bi,m−5 + 2bi,m−6 + 4bi,m−7 + · · ·+ (Fm−3 − 1)bi,1

c′′i,m = c′i,m−1 + bi,m−4 + 2bi,m−5 + 4bi,m−6 + · · ·+ (Fm−2 − 1)bi,1

to get matrix ∆3 = [bi,j ] where bi,j = c′′i,j , i = 1, . . . ,m, j = m− 1,m. Then, the last
two columns of ∆3 are 

−Fm−2 −Fm−1
0 0
...

...
0 0
Fn Fn+1

Fn−1 Fn


.

Namely, a straighforward but tedious algebraic manipulation give us a nice value for c′′1,m−1,

c′′1,m−1 = (Fm−6 − 1)S1 + (Fm−5 − 1)2S1 − (Fm−4 − 1)S1 − (Fm−3 − 1)2S1

= −Fm−2.
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In the same fashion one can prove that c′′1,m = −Fm−1 and c′′i,j = 0, i = 2, . . . ,m − 2,
j = m− 1,m. Again, determinant is not affected under these transformations, det(∆3) =
det(∆2).

We shall now separately treat the matrix ∆3, for even and odd n. Using the Fibonacci
recurrence relation, for even n we immediately obtain

det
(
B(m−1)

m,n

)
= det



b1,1 b1,2 · · · b1,m−2 −Fm−2 −Fm−1
b2,1 b2,2 · · · b2,m−2 0 0
0 b3,2 · · · b3,m−2 0 0
...

...
...

...
...

0 0 · · · bm−2,m−2 0 0
0 0 · · · Fn−1 0 1
0 0 · · · −Fn−2 1 1



= −det



b1,1 b1,2 · · · b′1,m−2 −Fm−3 −Fm−2
b2,1 b2,2 · · · b2,m−2 0 0
0 b3,2 · · · b3,m−2 0 0
...

...
...

...
...

0 0 · · · bm−2,m−2 0 0
0 0 · · · 0 1 0
0 0 · · · 0 0 1


where b′1,n−2 = b1,m−2 + Fm−3Fn−1 − Fm−2Fn−2. This determinant can be represented
as the sum of the upper triangular determinants. Now we use the fact that there is q ∈ N
such that the Fibonacci number Fq is bigger that the value P (q), Fq > P (q), where P (n)
is a polynomial of any degree. The only element in the matrix above containing Fibonacci
numbers is b′1,m−2. The fact that the term Fn−1Fm−3 has a positive contribution in the
determinant completes the proof for case when n is even.

When n is odd we have

det
(
B(m−1)

m,n

)
= det



b1,1 b1,2 · · · b1,m−2 −Fm−2 −Fm−1
b2,1 b2,2 · · · b2,m−2 0 0
0 b3,2 · · · b3,m−2 0 0
...

...
...

...
...

0 0 · · · bm−2,m−2 0 0
0 0 · · · Fn−2 1 1
0 0 · · · −Fn−1 0 1


.

Now, analogue arguments as when n is even completes the proof.

In particular, when m = 4 we have

det
(
B

(3)
4,n

)
= det


S2 − 2 S3 − 2S2 − 1 −1 −2

1 S2 − 2 0 0
0 1 Fn Fn+1

0 0 Fn−1 Fn

 .
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When n is even then

det
(
B

(3)
4,n

)
= det


S2 − 2 S3 − 2S2 − 1 −1 −2

1 S2 − 2 0 0
0 Fn−1 0 1
0 −Fn−2 1 1



= det


S2 − 2 S3 − 2S2 − 1− Fn−2 + Fn−1 −1 −1

1 S2 − 2 0 0
0 0 0 1
0 0 1 0


= −(S2 − 2)

S2 − 2 0 0
0 1 0
0 0 1


+

S3 − 2S2 − 1− Fn−2 + Fn−1 −1 −1
0 1 0
0 0 1


= −(n− 1)2 +

n(n− 1)

2
− n− 1 + Fn−3.

The inequality

Fn−3 > (n− 1)2 − n(n− 1)

2
+ n+ 1

holds true for n ≥ 15 and consequently det
(
B

(3)
4,n

)
> 0 for n ≥ 15 when n is even.

Similarly, when n is odd

det
(
B

(3)
4,n

)
= (S2 − 2)

S2 − 2 0 0
0 1 0
0 0 1

−
S3 − 2S2 − 1− Fn−3 −1 −1

0 1 0
0 0 1


= (n− 1)2 − n(n− 1)

2
+ n+ 1 + Fn−3.

Thus, it follows from these two cases that det
(
B

(3)
4,n

)
> 0 for n ≥ 15.

Note that the proof of Theorem 2.2 can be used to efficient calculation of determinants
of matrices B(m−1)

m,n . We will illustrate this on the example for m = 4 and n = 5. In that
case, when applying the proof of Theorem 2.2 we have

det
(
B

(3)
4,5

)
= det


51 25 11 4
97 51 25 11
176 97 51 25
309 176 97 51

 = det


6 11 −1 −1
1 4 0 0
0 0 1 0
0 0 0 1


= 24− 11 = 13.

Corollary 2.3. Let m,n, r ∈ N and r ≥ m− 1. Then there is q ∈ N such that determinant
of the matrix B(r)

m,n is positive for all n ≥ q,

det
(
B(r)

m,n

)
> 0.
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Proof. We proceed by induction on r. The base case, r = m − 1, is provided by Theo-
rem 2.2. Let us now assume that the claim is true for m − 1 ≤ p ≤ r − 1. Our task is to
show that the determinant

det(B(r)
m,n) = det


F

(r)
n F

(r)
n−1 · · · F

(r)
n−m+1

F
(r)
n+1 F

(r)
n · · · F

(r)
n−m+2

...
...

. . .
...

F
(r)
n+m−1 F

(r)
n+m−2 · · · F

(r)
n


is also positive. We first recall (1.2) and then start subtracting rows of B(r)

m,n. We subtract
(m−1)-st row fromm-th, then (m−2)-nd from (m−1)-st, and continue all the way down
till we subtract the first row from the second. Since the determinant remains unchanged,
we obtain

det(B(r)
m,n) = det


F

(r)
n F

(r)
n−1 · · · F

(r)
n−m+1

F
(r−1)
n+1 F

(r−1)
n · · · F

(r−1)
n−m+2

...
...

. . .
...

F
(r−1)
n+m−1 F

(r−1)
n+m−2 · · · F

(r−1)
n

 .

We expand the determinant on the right hand side over the elements of the first row.

det(B(r)
m,n) = F (r)

n ∆1 + · · ·+ F
(r)
n−m+1∆m

=
F

(r)
n

F
(r−1)
n

F (r−1)
n ∆1 + · · ·+

F
(r)
n−m+1

F
(r−1)
n−m+1

F
(r−1)
n−m+1∆m,

where ∆i denotes the determinant obtained from det(B
(r)
m,n) by omitting the first row and

i-th column for 1 ≤ i ≤ m. Let us denote xi =
F

(r)
n−i+1

F
(r−1)
n−i+1

and define a function f : Rm → R
by

f(x1, . . . , xm) =

m∑
i=0

xi+1F
(r−1)
n−i ∆i.

Obviously, f(1, . . . , 1) = det(B
(r−1)
m,n ) > 0, and hence f(c, . . . , c) = c · det(B

(r−1)
m,n ) > 0,

for any positive constant c. In particular, f(φ2, . . . , φ2) > 0, where φ2 = 3+
√
5

2 .
Since f is continuous, there must exist a neighborhood

W = (φ2 − δ1, φ2 + δ1)× · · · × (φ2 − δm, φ2 + δm)

such that f is positive on W . Now we use the explicit expression

F (r)
n = Fn+2r −

r−1∑
k=0

(
n+ r + k

r − 1− k

)
from Proposition 1.3. By dividing it through by analogous expression for F (r−1)

n and
passing to limit when n→∞, one readily obtains

lim
n→∞

F
(r)
n

F
(r−1)
n

= φ2.
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That further implies that, for large enough n, the coefficient xi =
F

(r)
n−i+1

F
(r−1)
n−i+1

falls into

(φ2 − δi, φ2 + δi) for all i, and hence

f

(
F

(r)
n

F
(r−1)
n

, . . . ,
F

(r)
n−m+1

F
(r−1)
n−m+1

)
= det(B(r)

m,n) > 0.

That completes the proof.

3 Main results
We let Tr,n denote the matrix of order r + 2 consisting of hyperfibonacci numbers of the
r-th generation,

Tr,n :=


F

(r)
2n+1 F

(r)
2n · · · F

(r)
2n−r

F
(r)
2n+2 F

(r)
2n+1 · · · F

(r)
2n−r+1

...
...

. . .
...

F
(r)
2n+r+2 F

(r)
2n+r+1 · · · F

(r)
2n+1

 .

Lemma 3.1. For n ∈ N and the hyperfibonacci sequence
(
F

(1)
n

)
n≥0 the matrix

T1,n =

F
(1)
2n+1 F

(1)
2n F

(1)
2n−1

F
(1)
2n+2 F

(1)
2n+1 F

(1)
2n

F
(1)
2n+3 F

(1)
2n+2 F

(1)
2n+1


is totally positive.

Proof. According to Proposition 2.1 the three initial minors of order 2 of T1,n are positive.
It is immediately seen from Theorem 1.4 that determinant det(T1,n) is positive. These facts
complete the proof.

Note that the matrix T1,n = [ti,j ] is a Toeplitz matrix, with the element t1,1 being
hyperfibonacci number of the first generation having odd index. If we allow both even and
odd indices for t1,1 then the property of total positivity is lost. Such determinant of order 3
in not positive for even indices (by Theorem 1.4), while it keeps the positivity of minors of
order 2. We express this fact, that follows from the proof of Lemma 3.1, in Corollary 3.2.

Corollary 3.2. For n ∈ N and the hyperfibonacci sequence
(
F

(1)
n

)
n≥0 the matrix

T ′1,n =

F
(1)
n F

(1)
n−1 F

(1)
n−2

F
(1)
n+1 F

(1)
n F

(1)
n−1

F
(1)
n+2 F

(1)
n+1 F

(1)
n


is TP2.

Lemma 3.3. For n ≥ 4 and the hyperfibonacci sequence
(
F

(2)
n

)
n≥0 the matrix

T2,n =


F

(2)
2n+1 F

(2)
2n F

(2)
2n−1 F

(2)
2n−2

F
(2)
2n+2 F

(2)
2n+1 F

(2)
2n F

(2)
2n−1

F
(2)
2n+3 F

(2)
2n+2 F

(2)
2n+1 F

(2)
2n

F
(2)
2n+4 F

(2)
2n+3 F

(2)
2n+2 F

(2)
2n+1


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is totally positive.

Proof. According to Proposition 2.1 the five initial minors of order 2 of T2,n are positive.
Furthermore, the three initial minors of order 3 are positive when n ≥ 3 by Corollary 2.3.
However, when n = 3 determinant det(T2,n) is negative (by Theorem 1.4) so the matrix
T2,n is totally positive for n ≥ 4.

Having in mind Proposition 2.1 and the fact that the matrix B(2)
3,n has positive determi-

nant for n ≥ 7 we immediately derive Corollary 3.4.

Corollary 3.4. For n ≥ 8 and the hyperfibonacci sequence
(
F

(2)
n

)
n≥0 the matrix

T ′2,n =


F

(2)
n F

(2)
n−1 F

(2)
n−2 F

(2)
n−3

F
(2)
n+1 F

(2)
n F

(2)
n−1 F

(2)
n−2

F
(2)
n+2 F

(2)
2n+1 F

(2)
n F

(2)
n−1

F
(2)
n+3 F

(2)
2n+2 F

(2)
2n+1 F

(2)
n


is TP3.

Furthermore, it holds true that

det(B
(3)
4,n) > 0, n ≥ 15

det(B
(4)
4,n) > 0, n ≥ 5.

When r ≥ 5 there is no constraint on the value of nwhen asking for positivity of det(B
(r)
4,n).

Theorem 3.5. For the hyperfibonacci sequence
(
F

(r)
n

)
n≥0 there is q ∈ N such that the

matrix Tr,n of order r + 2

Tr,n =


F

(r)
2n+1 F

(r)
2n · · · F

(r)
2n−r

F
(r)
2n+2 F

(r)
2n+1 · · · F

(r)
n−r+1

...
...

. . .
...

F
(r)
n+r+2 F

(r)
2n+r+1 · · · F

(r)
2n+1


is totally positive for n ≥ q.

Proof. First we prove that 2n+ 1 initial minors of order 2 are positive. These submatrices
are of the form B

(r)
2,m2

where m2 > 2n − r, so there they have positive determinant for
r ≥ 1 and n ≥ 1, according to Corollary 2.3. Obviously, another initial minors are of the
form

B
(r)
3,m3

, B
(r)
4,m4

, . . . , B
(r)
r+1,mr+1

.

According to Corollary 2.3 there exist numbers q3, q4, . . . , qr+1 ∈ N such that

det(B
(r)
3,m3

) > 0, m3 ≥ q3
det(B

(r)
4,m4

) > 0, m4 ≥ q4
...

det(B
(r)
r+1,mr+1

) > 0, mr+1 ≥ qr+1.



T. Došlić et al.: Total positivity of Toeplitz matrices of recursive hypersequences 137

It remains to show that det(Tr,n) is itself positive. We start by noticing that Tr,n can
be obtained from Ar,2n−r by reversing the order of columns. That corresponds to right
multiplication of Ar,2n−r by Ur+2, where Ur+2 is a square matrix of order r + 2 whose
elements are (Ur+2)i,j = 1 if i + j = r + 3 and zero otherwise. It is immediately seen
that det(Ur+2) = (−1)b(r+2)/2c. Now we have det(Tr,n) = det(Ar,2n−r) det(Ur+2),
and Theorem 1.4 implies

det(Tr,n) = (−1)
2n−r+b(r+3)/2c+b(r+2)/2c

= (−1)2 = 1,

for all r. That completes the proof.

We conclude the section with another result that follows directly from Corollary 3.4.

Corollary 3.6. For the hyperfibonacci sequence
(
F

(r)
n

)
n≥0 there is q ∈ N such that the

matrix T ′r,n of order r + 2

T ′r,n =


F

(r)
n F

(r)
n−1 · · · F

(r)
n−r−1

F
(r)
n+1 F

(r)
n · · · F

(r)
n−r

...
...

. . .
...

F
(r)
n+r+1 F

(r)
n+r · · · F

(r)
n


is TPr+1 for n ≥ q.

4 Concluding remarks
In this paper we have considered several classes of Toeplitz matrices associated to se-
quences of hyperfibonacci numbers of given generation. We have established various pos-
itivity results for such matrices. In particular, we showed that such matrices with odd-
indexed hyperfibonacci numbers on the main diagonal are totally positive for large enough
values of index n. When the restriction to odd-valued indices is omitted, the total positivity
is not preserved, but we established that those matrices are TPr+1 for a given generation r
and large enough n. That implies (at least asymptotical) log-concavity of hyperfibonacci
numbers of all generations r ≥ 1. Our results thus extend and strengthen results of refer-
ence [24] established by a different approach. It would be interesting to have combinatorial
proofs of log-concavity of F (r)

n for r ≥ 1; at the moment, we are not aware of any.
We have also tried to explore the form of dependence of qr on r. The numerical evi-

dence, collected in Table 1, suggests that 2qr +1, the index in the upper left corner, behaves
as 7r − 5 for even r and 7r − 4 for r odd. It would be interesting to examine whether the

Table 1: Some values of parameter qr in Theorem 3.5.

r 1 2 3 4 5 6 7 8 9 10 11

2qr + 1 5 9 17 23 31 37 45 51 59 65 73

pattern (or at least a linear dependence) persists for larger r, and if it does, to find some
explanation.

We are fairly confident that the methods and results presented here could be extended
so as to encompass also other sequences defined by two-term recurrences and their iterated
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partial sums. It would be worthwhile to explore whether the same approach could be appli-
cable to the sequences defined by longer linear recurrences with constant coefficients, such
as the sequence of tribonacci numbers.
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