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Proposition of a Hybrid Stochastic Lee-Carter
Mortality Model

Agnieszka Rossa1 and Lesław Socha2

Abstract

In the paper, a stochastic hybrid mortality model (EHLC) treated as a solution of
stochastic differential equations is introduced. The model is defined analogously to
the well-known Lee-Carter mortality model (LC). A parameter estimation procedure
including a switching rule are proposed. A comparison of the predictive accuracy of
the LC and EHLC models based on the mortality data for Poland has shown that the
new model yields better results.

1 Introduction
The analysis of mortality is one of the basic problems faced by mathematical demogra-
phy. First mortality models appeared in the literature in the 19th century (see Gompertz
1825, Thiele 1872). Since that time, much work has been done to develop the methodo-
logy. Complex mortality models have recently been the subject of several research papers
authored, for instance, by Booth (2006), Cairns et al. (2008), Plat (2009), Haberman and
Renshaw (2011).

Mortality models can be divided into two main groups. The larger group consists of
static and stationary models (see, e.g. Cairns et al. 2008, Cairns et al. 2009, Cairns et
al. 2011, Renshaw and Haberman 2003a, 2003b, 2006, Haberman and Renshaw 2008,
2009, 2011, Hatzopoulos and Haberman 2011, Pitacco 2004, Luciano et al. 2008, Plat
2009), where the log-odds of death probabilities or mortality rates are often expressed in
a parametric form as the functions of age and calendar time.

The second group encompasses dynamic models, where death probabilities or morta-
lity rates are expressed as solutions of stochastic differential equations without jumps (see
for instance Russo et al. 2011, Bayraktar et al. 2009, Luciano et al. 2008, Dahl 2004,
Schrager 2006, Janssen and Skiadas 1995, Giacometti et al. 2011, Biffis 2005) or with
jumps (Bravo and Braumann 2007, Bravo 2009, Coelho et al. 2010, Biffis 2005, Hainaut
and Devolder 2008).

When the performance of a mortality model is tested with empirical data, then its
parameter estimates are found not to be constant in time – they depend on the period
under study. For instance, parameter estimates based on the 1930-1950 time series may

1 Institute of Statistics and Demography, University of Łódź, Poland; agrossa@uni.lodz.pl
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be significantly different from those obtained for the period 1960-1980 (Giacometti et al.
2011). It therefore seems reasonable to account for the changes the estimated parameter
in the dynamic stochastic context by considering a switching rule.

Similar problems have also occurred in other areas of research, including control the-
ory, economics, biology or chemistry. The concept of a switching rule has been con-
sidered with respect to the stochastic dynamic hybrid (switched) systems (e.g. Liberzon
2003, Boukas 2005), which are defined as systems composed of several parametric struc-
tures described in deterministic or stochastic terms. These structures change depending
on the switching rule.

There is a whole range of studies on the estimation methodology applicable to stochas-
tic dynamic hybrid (switched) systems (see, for instance Yin et al. 2002, 2003). Drawing
on this methodology, we propose a new concept of stochastic hybrid mortality model.

The paper is organized as follows. In Section 2, the standard Lee-Carter model and
basic notations and definitions are introduced. In Section 3, the Lee-Carter model is
considered as a solution of stochastic differential equations. Thereafter, in Section 4, its
modified representation termed Extended Hybrid Lee-Carter model (EHLC) is proposed.
The parameter estimation procedure and the definition of a switching rule are discussed in
Section 5. The parameter estimates calculated for the LC and EHLC models with Polish
mortality data and a comparison between the models are provided in Section 6. The last
Section 7 contains concluding remarks.

2 The Lee-Carter model
Before a new mortality model is discussed in the next sections, let us consider a mortality
model proposed by Lee and Carter (Lee, Carter 1992). The model allows age-specific
mortality rates to be forecasted based on long-term trends.

For the purpose of introducing the Lee-Carter model, let us consider crude age-specific
period mortality rates mx,t defined as follows (Cairns at el. 2009)

mx,t =
Dx,t

N̄x,t

, x = 0, 1, . . . , ω, t = 1, 2, . . . , T, (2.1)

where

x = 0, 1, . . . , ω – index of one-year age groups,

t = 1, 2, . . . , T – index of a calendar year under observation,

Dx,t – number of deaths in a year t (aged x last birthday),

N̄x,t – death risk exposure (an average population size in a year t, aged x last birth-
day).

The Lee-Carter model (LC) can be defined as

lnmx,t = ax + bxkt + ξx,t, (2.2)
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or equivalently
mx,t = exp {ax + bxkt + ξx,t}, (2.3)

where

kt – time parameters indexed by t = 1, 2, . . . , T ,

ax, bx – age-specific parameters indexed by x = 0, 1, . . . , ω,

ξx,t – random errors assumed to be iid, ξxt ∼ N(0, σ2
ξ ).

To ensure the unique representation of (2.2) or (2.3), some additional constraints are im-
posed (see Lee, Carter 1992) in the following way

T∑

t=1

kt = 0,
ω∑

x=0

bx = 1, so that ax =
1

T

T∑

t=1

lnmx,t. (2.4)

Parameters ax describe the general profile of mortality rates. Indices kt reflect the
dominant temporal pattern in the decline of mortality (Tuljapurkar et al. 2000), while the
coefficients bx express the tendency of mortality rates to change when kt changes. For
example, small values of bx for some x indicate that mortality at x varies a little with
changes in the general level of mortality kt (it is often the case at older ages). Parameters
bx usually have the same sign, but in some cases their movement in the opposite directions
is also possible. Consequently, the Lee-Carter model assumes that mortality rates move
in tandem, but not in the same direction or by the same amount.

The performance of the Lee-Carter model has been covered in many studies (see,
e.g. Lee, Miller 2001). According to the concept underlying this methodology, param-
eters ax, bx, kt are estimated with the empirical data on the considered population. Lee
and Carter have used in their paper the Singular Value Decomposition (SVD) method
(Lee, Carter 1992). Two other methods of estimation are also proposed, i.e. Weighted
Least Squares (WLS) and the Maximum Likelihood (ML) approach (see Wilmoth 1993,
Brouhns et al. 2002a,b).

The estimated values of kt form a time series, with one value for each year. Because
of that, the statistical methods of time series modelling can be employed. Lee and Carter
considered a stochastic model of random walk with a (negative) drift. Its discrete repre-
sentation is the following

kt = kt−1 + c+ et, (2.5)

where c is a constant drift, and et, t = 1, ..., T are independent, normally distributed
random errors.

The projected kt, based on (2.5), and the estimates of ax, bx are used to forecast mor-
tality rates and any other life-table characteristics, e.g. the expected remaining lifetime.

The estimation of the drift c is based on the following formula

ĉ = (kT − k1)/(T − 1). (2.6)

The variance estimator of the error term is defined by

σ̂2
e =

1

T − 1

T∑

t=2

(kt − kt−1 − ĉ)2 . (2.7)

It can be treated as the measure of uncertainty in forecasting of kt.
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3 Lee-Carter model versus stochastic differential equa-
tions

We will consider a stochastic process µx(t) representing a hazard rate for a person aged
x at time t. The rate will be defined by means of the following stochastic differential
equation

dµx(t) =

(
αx(t) +

1

2
σ2
x

)
µx(t)dt+ σxµx(t)dW (t), (3.1)

with
αx(t) = bxk

′(t), µx(0) = eax+bxk(0), x = 0, 1, 2, . . . ω, (3.2)

where ax, bx, σx are constant model parameters, k(t) is a differentiable deterministic func-
tion of time t, and W (t) stands for the Wiener process.

One can show that the solution of (3.1)-(3.2) takes the form

lnµx(t) = ax + bxk(t) + σxW (t) (3.3)

or in an equivalent representation

µx(t) = exp {ax + bxk(t) + σxW (t)} (3.4)

4 The extended hybrid Lee-Carter model
In the next step, we shall consider a slightly modified equation (3.1) of the following form

dµx(t) =

(
αx(t) +

1

2
q2x

)
µx(t)dt+ σxµx(t)dW (t), (4.1)

with
αx(t) = bxk

′(t), µx(0) = eax+bxk(0), (4.2)

where q2x is treated as correction term, whereas σ2
x > 0 represent the age-specific

volatility parameters.
Using the Ito formula we can express (4.1)-(4.2) in the form (see e.g. Oksendal 1995)

lnµx(t) = ax + bxk(t) +
1

2

(
q2x − σ2

x

)
t+ σxW (t). (4.3)

By observing the trends appearing in k(t) (Rossa 2011, p. 124) we have concluded
that the estimates of k(t) can be modelled with linear functions of time t over separate
time intervals Is = (τs−1, τs], s = 1, 2, . . . , S, which will be termed mortality regimes.
Accordingly, we propose to define k(t) as a piecewise differentiable function

k(t) =





k1(t) for t ∈ I1,
k2(t) for t ∈ I2,

...
...

...,
kS(t) for t ∈ IS.

(4.4)
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4.1 Discrete time representation
A discrete representation of (4.3) has the form

lnmx,t = lnmx,t−1 + bx[k(t)− k(t−1)]+
1

2

(
q2x−σ2

x

)
+σxεx,t, (4.5)

where mx,t is defined in (2.1) and εx,t = W (t)−W (t−1). From the properties of the
standard Wiener process, it follows that the expectation of the error term εx,t is equal to 0,
and the variance of εx,t equals 1.

We will further assume, that k(t) is a piecewise linear function

k(t) =





c1 + δ1t for t = 1, 2, . . . , τ1,

c2 + δ2t for t = τ1+1, τ1+2, . . . , τ2,

. . . . . . . . . ,

cS + δSt for t = τS−1+1, τS−1+2, . . . , T,

(4.6)

where τs are switching points determining different mortality regimes Is, and

bx, σ
2
x, q

2
x, δs, cs, x=0,1, . . . , ω, s=1, 2, . . . , S, (4.7)

form a set of model parameters, under the constraints of (2.4).
The model defined by (4.5)-(4.6) will be termed Extended Hybrid Lee-Carter model

(EHLC).

4.2 Discussion of the model parameters
In the proposed EHLC model we have introduced two parameters q2x and k(t). The in-
troduction of the parameter q2x follows from the definition of the family of stochastic
integrals. The Ito stochastic differential equations corresponding to the definitions of the
Ito and Stratonovich stochastic integrals are respectively

dµx(t) = αx(t)µx(t)dt+ σxµx(t)dW (t), (4.8)

and

dµx(t) =

(
αx(t) +

1

2
σ2
x

)
µx(t)dt+ σxµx(t)dW (t), (4.9)

respectively.
The term 1

2
σ2
x is treated as a Stratonovich correction term. In a general case, a correc-

tion term corresponding to the definition of the stochastic integral can be treated as 1
2
q2x.

The interpretation of the proposed term for real physical processes draws on the interpreta-
tion of the approximation of the white noise process, which, in fact, is an abstract process
used for mathematical modelling purposes as a convenient mathematical tool. The real
physical process that approximates the white noise process is a coloured noise (stationary
wide-band process) (Willems and Aeyels 1976). This problem has been discussed in the
literature (see, for instance Wong 1971 and Socha 2008). However, interpretation of q2x
for a demographic model has not been developed yet.

The proposition to represent k(t) as (4.6), where ki(t) are linear functions of t seems
to be the most straightforward one. Functions that are more complex will be considered
during future research.
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5 Estimation of the EHLC model

5.1 Switching time points estimation
The estimation of the EHLC model starts with the identification of the switching time
points τs that distinguish successive mortality regimes Is = (τs−1, τs].

Therefore, we first estimated kt using the SVD estimation of the standard Lee-Carter
model and then we determined the unknown switching points τs, s = 1, 2, . . . S − 1 in
the time series {kt} using the statistical adaptive test JL proposed by Janic-Wróblewska
and Ledwina (2000).
The underlying concept is as follows. Consider random variables Ut, t = 1, . . . , T −1,
defined by the differences

Ut = kt+1 − kt. (5.1)

If for any τ (1<τ <T ) each of the variables U1, U2, . . . , Uτ has the same probability
distribution as variables Uτ+1, Uτ+2 . . . , UT−1, then there is no switching point, otherwise
there is at least one switching point τ . The significant switching points in the time series
{kt} can be identified with the JL test (see Appendix for details).

5.2 Parameter estimation
The estimation procedure of (4.6)-(4.7) is stepwise. The switching time points allow the
mortality regimes Is, s = 1, . . . , S to be determined. For instance, if there is one switch-
ing point τ then two mortality regimes occur. In this case, four parameters δ1, δ2, c1, c2 of
the model (4.6) can be considered and the model is the following

k(t) =

{
c1 + δ1t, t = 1, 2, . . . , τ,

c2 + δ2t, t = τ + 1, . . . , T.
(5.2)

It is worth noting that the parameters of (5.2) can be easily estimated with the standard
Least Squares method.
The parameters σ2

x represent the volatility terms. We define the estimator of σ2
x as the

variance of yx,t=lnmx,t+1−lnmx,t

σ̂2
x =

1

T − 1

T∑

t=1

(yx,t − ȳx)2 , (5.3)

where ȳx is a mean of the sequence {yx,t} over t.
In order to estimate the remaining parameters, bx and q2x we use the nonlinear Least

Squares method, i.e. we minimize the sum

T∑

t=1

[
lnmx,t−

(
lnmx,t−1 + bx[k(t)− k(t−1)]+

1

2

(
q2x−σ2

x

))]2
, (5.4)

using k(t), σ2
x obtained in the previous steps.
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6 The results of model estimation

6.1 Estimation of LC and EHLC models for Poland
To illustrate the model estimation results, we estimated the LC and EHLC models us-
ing the 1958-2000 mortality data on Poland based on the period age-specific death rates
available from www.mortality.org (Human Mortality Data Base).

Figure 1 presents the estimates of ax’s in the LC model defined in (2.4). Estimates
of bx’s in the LC and EHLC models are very close to each other, thus they have been
plotted together in Figure 2. Figure 3 presents the estimates of kt derived for the LC
model and the forecasts to 2012 based on (2.5). The mortality regimes Is, s = 1, 2, 3 in
years, 1958-1966, 1967-1990, and 1991-2000 (males), and 1958-1966, 1967-1988, 1989-
2000 (females) have been also determined, and the parameter estimates of the function
(4.6) derived. The estimated functions k(t) are plotted in Figures 4 and 5. Figures 6 and
7 show the estimates of σ2

x and q2x.

Figure 1: Estimates of ax (males and females).

Figure 2: Estimates of bx (males and females).
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Figure 3: Estimates of kt in the LC model and their forecasts to 2012 (males and females).

Figure 4: Estimates of kt in the LC model and k(t) in the EHLC model (males).

Figure 5: Estimates of kt in the LC model and k(t) in the EHLC model (females).



Proposition of a Hybrid Stochastic Lee-Carter Mortality Model 9

Figure 6: Estimates of σ2x (males and females).

Figure 7: Estimates of q2x (males and females).

6.2 Goodness-of-fit measures for the LC and EHLC models

To compare the quality of the LC and EHLC models, two well-known measures of good-
ness-of-fit were applied, i.e. the Mean Squared Error and the Mean Absolute Deviation,
and the ex-post errors were assessed for the period 2001-2009. The obtained results are
summarized in tables 1 and 2.

The Mean Squared Error and the Mean Absolute Deviation were estimated separately
to each year t in both models. The measures were denoted MSE

(LC)
t ,MSE

(EHLC)
t and

MAD
(LC)
t ,MAD

(EHLC)
t , respectively. Hence we have

MSE
(LC)
t =

√√√√ 1

105

104∑

x=0

[lnmx,t − (ax + bxkt)]
2,

MAD
(LC)
t =

1

105

104∑

x=0

|lnmx,t − (ax + bxkt)| ,
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MSE
(EHLC)
t =

√√√√ 1

105

104∑

x=0

[
lnmx,t−

(
lnmx,t−1+bx[k(t)− k(t−1)]+

1

2
(q2x−σ2

x)

)]2
,

MAD
(EHLC)
t =

1

105

104∑

x=0

∣∣∣∣lnmx,t−
(

lnmx,t−1 + bx[k(t)− k(t−1)] +
1

2

(
q2x − σ2

x

))∣∣∣∣ .

Table 1: Ex post comparison of the LC and EHLC by means of MSE

Years Males Females

t LC EHLC LC EHLC

2001 0,226 0,145 0,130 0,148
2002 0,220 0,139 0,164 0,158
2003 0,249 0,152 0,149 0,142
2004 0,254 0,152 0,156 0,133
2005 0,262 0,155 0,163 0,173
2006 0,255 0,172 0,166 0,168
2007 0,275 0,189 0,203 0,192
2008 0,308 0,224 0,190 0,171
2009 0,316 0,228 0,205 0,214

Table 2: Ex post comparison of the LC and EHLC by means of MAD

Years Males Females

t LC EHLC LC EHLC

2001 0,179 0,088 0,100 0,095
2002 0,182 0,097 0,126 0,106
2003 0,203 0,105 0,124 0,102
2004 0,214 0,115 0,130 0,098
2005 0,224 0,123 0,133 0,122
2006 0,225 0,141 0,139 0,122
2007 0,230 0,151 0,164 0,143
2008 0,256 0,180 0,160 0,135
2009 0,269 0,187 0,170 0,158

6.3 Comparison of residuals
In this subsection we compare the quality of the LC and EHLC models using the residual
analysis. Residuals in the LC model are defined as

εx,t = lnmx,t − (ax + bxkt) , (6.1)

whereas residuals in the EHLC model have the form

ε̃x,t = lnmx,t−
(

lnmx,t−1 + bx[k(t)− k(t−1)] +
1

2

(
q2x − σ2

x

))
. (6.2)

In both models an assumption is embedded that standardized residuals are approxi-
mately independent standard normal variables. The simple way of testing this assumption
is studying the so-called contour plots. They are plotted in Figures 8-11 for both models.
The assumption implies that there should be a random pattern of negative (in white) and
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positive (in black) random errors. If the plot reveals some clustering of positive or neg-
ative residuals then the assumption becomes inappropriate. Thus, the contour plots are
visual tests of the underlying assumption.

We can see strong clustering of positive and negative residuals for the LC model (Fig-
ures 8, 10), whereas the contour plots look reasonably random in the case of the EHLC
model (Figures 9, 11). However, closer inspection of Figures 9 and 11 reveals horizontal
bands, which may suggest some genuine period effects.

Figure 8: Contour plot of residuals in the LC model (males).

Figure 9: Contour plot of residuals in the EHLC model (males).

Figure 10: Contour plot of residuals in the LC model (females).

Figure 11: Contour plot of residuals in the EHLC model (females).
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7 Concluding remarks
In the paper a mortality model representing the family of stochastic differential equations
is proposed. It is based on the Lee-Carter model (LC) treated as a solution of stochastic
differential equations. The new stochastic model has been termed an Extended Hybrid
Lee-Carter model (EHLC). The switching rule for mortality decline has been derived
for the EHLC model from the statistical adaptive test developed by Janic-Wróblewska
and Ledwina. Both EHLC and LC were applied to model age-specific mortality rates in
Poland. The results have shown the EHLC model to perform better than a standard LC
model regarding the ex-post predictive accuracy. Further research will seek to define a
more complex switching rule and another representation of a mortality model as a solution
of stochastic partial differential equations.
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Appendix: Adaptive Test of Janic-Ledwina (JL)

Let us assume that we observe a sequence of continuous random variablesU1, U2, . . . , UN .
Each variable Ut is distributed according to a distribution function Ft. We will consider
an adaptive statistical test proposed by Janic-Wróblewska and Ledwina (2000) to verify
the null hypothesis H0

H0 : F1 = F2 = . . . = FN ,

against the alternative hypothesis H1

H1 : ∃η∈(0,1), F1 = F[Nη] 6= F[Nη+1] = . . . = FN ,

where [Nη] denotes the integer part of the number Nη.
The test statistics MN is defined as follows

MN(e, pN) = max
[eN ]≤m≤[(1−e)N ]

T (S(m, pN),m) ,

where

N – sample size,

e ∈
(
0, 1

2

)
– fixed value (in the paper it is assumed that e = 0, 1),

pN = 1, 5 logN – positive value,

S(m, pN) – statistics defined as

S(m, pN)=

=min{k : 1≤k≤dN ; T (k,m)−k ·pN≥T (l,m)−l·pN ; l=1,. . . ,dN} ,

dN > 0 – integer value representing the complexity of the problem (e.g. dN = 10),

T (k,m) =
k∑

n=1

L2(m, bn)

L(m, bn) =
N∑

t=1

cmt · bn
(
Rt − 0, 5

N

)
,

Rt – rank of Ux,t (for each fixed x),

cmt – weights defined as

cmt =





√
m(N−m)

N
· 1
m
, t = 1, 2, . . . ,m,

−
√

m(N−m)
N

· 1
N−m , t = m+ 1, . . . , N.

bn, n = 1, . . . , k – the Legendre orthonormal polynomials on the interval [0, 1].

Large values of MN support rejecting the null hypothesis in favor of the alternative.
The authors have derived critical values of the test by using the Monte-Carlo methods.
They have also proved that for k = 1 the JL test reduces to the well-known Wilcoxon
rank test.


