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Abstract

Let Mn be the algebra of all n × n complex matrices, and for a natural number 2 ≤
k ≤ n denote by Ek (x) the kth elementary symmetric function on the eigenvalues of
x ∈ Mn. For two maps φ,ψ : Mn → Mn, one of them being surjective, we prove that if
Ek(λx+ y) = Ek(λφ (x) + ψ (y)) for each λ ∈ C and x, y ∈ Mn, then φ = ψ on Mn,
the common value being a linear map from Mn into itself. In particular, for 3 ≤ k ≤ n the
general form of φ and ψ can be computed explicitly.
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1 Introduction and statement of the result
For a natural number n, let us denote by Mn the algebra of all n × n matrices over the
complex field C. By In ∈ Mn we shall denote the n × n identity matrix. For x ∈ Mn,
by tr (x) we shall denote its usual trace, and by det (x) its determinant. Also, by xt ∈ Mn

we shall denote the transpose of x.
For k ∈ {1, ..., n}, a k-by-k principal submatrix of x ∈ Mn is the submatrix of xwhich

lies in the rows and columns of x indexed by J ⊆ {1, ..., n} with |J | = k. Equivalently, we
eliminate from the matrix x the rows and the columns which are not in J . The determinant
of the k-by-k principal submatrix given by J ⊆ {1, ..., n} is called a k-by-k principal
minor, and shall be denoted by ∆J (x). There are

(
n
k

)
different k-by-k principal minors,

and put
Ek (x) =

∑
|J|=k

∆J (x) (x ∈ Mn, k = 1, n). (1.1)
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In particular, k = 1 in (1.1) gives E1 (x) = tr (x) and k = n gives En (x) = det (x) for
each x ∈ Mn.

For k ∈ {1, ..., n}, the kth elementary symmetric function on the complex numbers
λ1, ..., λn is

Sk (λ1, ..., λn) =
∑

1≤i1<···<ik≤n

k∏
j=1

λij . (1.2)

(We have a sum of
(
n
k

)
products in (1.2).) For x ∈ Mn, if the spectrum σ (x) of x (taking

into account multiplicities) is {α1, ..., αn}, the equality

det (λIn + x) = λn + λn−1E1 (x) + · · ·+ En (x) (x ∈ Mn, λ ∈ C)

implies that
Ek (x) = Sk(σ (x)) (x ∈ Mn, k = 1, n).

Thus, for each k ∈ 1, n and x ∈ Mn we have that Ek (x) is the kth elementary symmetric
function on the eigenvalues of x.

Frobenius studied in [5] linear maps on Mn which preserve the determinant. He proved
that if ϕ : Mn → Mn is a bijective linear map such that det (ϕ (x)) = det(x) for each
x ∈ Mn, there exist then invertible matrices a, b ∈ Mn satisfying det (ab) = 1 such
that either ϕ (x) = axb for each x ∈ Mn, or ϕ (x) = axtb for each x ∈ Mn. One
way to generalize this result is to relax the linearity assumption on the map ϕ. In [4],
Dolinar and Šemrl proved that we arrive at the same conclusion if we merely suppose that
ϕ : Mn → Mn is a surjective map such that

det (λx+ y) = det(λϕ(x) + ϕ(y)) (x, y ∈ Mn, λ ∈ C). (1.3)

(In this case, the linearity for the map ϕ is part of the conclusion.) Another way to gener-
alize the result of Frobenius is to consider the elementary symmetric functions Ek instead
of the determinant. The following theorem was proved by Marcus and Purves in [7] for
4 ≤ k < n and by Beasley in [1] for 3 = k < n.

Theorem 1.1 ([7, Theorem 3.1] and [1, Theorem 1.1]). Let 3 ≤ k < n and let ϕ : Mn →
Mn be a linear map such that

Ek (x) = Ek(ϕ(x)) (x ∈ Mn).

There exist then an invertible matrix a ∈ Mn and η ∈ C satisfying ηk = 1 such that either

ϕ (x) = ηaxa−1 (x ∈ Mn),

or
ϕ (x) = ηaxta−1 (x ∈ Mn).

The result of Frobenius shows that the conclusion of Theorem 1.1 does not hold if
k = n. The same happens if k = 1 (see, for example, [6, Section 2]) or k = 2 (see, for
example, [7, Section 4] or [6, Section 3].) However, if the linear map ϕ : Mn → Mn

preserves both the trace and the determinant, then there exists an invertible matrix a ∈ Mn

such that either
ϕ (x) = axa−1 (x ∈ Mn), (1.4)
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or
ϕ (x) = axta−1 (x ∈ Mn). (1.5)

(See, for example, [8, Theorem 1] or [9, Theorem 3].) Thus, ifEk(x) = Ek(ϕ(x)) for each
k ∈ {1, n} and x ∈ Mn, then ϕ is of the form given by (1.4) or (1.5). Also, if the linear
map ϕ : Mn → Mn satisfies Ek (x) = Ek(ϕ(x)) for each k ∈ {2, n} and x ∈ Mn, there
exists then an invertible matrix a ∈ Mn such that either

ϕ (x) = ηaxa−1 (x ∈ Mn), (1.6)

or
ϕ (x) = ηaxta−1 (x ∈ Mn), (1.7)

where η = 1 if n is odd, and η = −1 or η = 1 if n is even. (See, for example, [9,
Theorem 4].)

The aim of this article is to improve the results of Theorem 1.1 in a way that is similar
to [4, Theorem 1.1]. Thus, we eliminate the linearity assumption on the map ϕ and we
impose a strengthened preservation condition which is suggested by (1.3). Incidentally, the
result holds with a preservation condition which is stated for two maps φ and ψ on Mn

instead of a single map ϕ.

Theorem 1.2. Let 2 ≤ k ≤ n and consider two maps φ,ψ : Mn → Mn, one of them
being surjective, such that

Ek (λx+ y) = Ek(λφ(x) + ψ (y)) (x, y ∈ Mn, λ ∈ C). (1.8)

Then φ = ψ on Mn, the common value being a linear map of Mn into itself.

As a corollary, we obtain the following generalization of Theorem 1.1.

Corollary 1.3. Let 3 ≤ k < n and consider two maps φ,ψ : Mn → Mn, one of them
being surjective, such that (1.8) holds. There exist then an invertible matrix a ∈ Mn and
η ∈ C satisfying ηk = 1 such that either

φ (x) = ψ (x) = ηaxa−1 (x ∈ Mn),

or
φ (x) = ψ (x) = ηaxta−1 (x ∈ Mn).

Of course, if we suppose that (1.8) holds for k ∈ {1, n}, then φ = ψ on Mn, the
common value being a linear map of the form (1.4) or (1.5), and if we suppose that (1.8)
holds for k ∈ {2, n}, then φ = ψ on Mn, the common value being a linear map of the
form (1.6) or (1.7).

Since Theorem 1.2 also holds for k = n, we obtain a different proof for the following
slight generalization of [4, Theorem 1.1]. (See also [2, Theorem 1] and [3, Theorem 1].)

Corollary 1.4. Consider two maps φ,ψ : Mn → Mn, one of them being surjective, such
that

det (λx+ y) = det(λφ(x) + ψ (y)) (x, y ∈ Mn, λ ∈ C).

There exist then invertible matrices a, b ∈ Mn satisfying det (ab) = 1 such that either

φ (x) = ψ (x) = axb (x ∈ Mn),

or
φ (x) = ψ (x) = axtb (x ∈ Mn).
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2 Preliminary lemmas
Let 2 ≤ k ≤ n. For x, y ∈ Mn, consider the complex polynomial (with respect to λ) given
by

λ 7→ Ek(λx+ y).

This section is devoted to the study of these polynomials. As a general property, let us
observe that its degree is always at most k, the coefficient of λk being exactly Ek (x). In
particular, the degree of the polynomial is also bounded by the rank of the matrix x. Also,
if we fix x ∈ Mn, then the coefficient of λk−1 is linear with respect to y ∈ Mn. Indeed,
this comes from (1.1) and the fact that for J ⊆ {1, ..., n} with |J | = k we have

∆J(λx+ y) = λk∆J (x) + λk−1tr(adj(xJ)yJ) + · · ·+∆J (y) ,

where xJ (respectively, yJ ) is the principal submatrix of x (respectively, y) corresponding
to J , and for z ∈ Mk by adj (z) ∈ Mk we have denoted the (classical) adjoint of the
matrix z, obtained from its cofactors.

This coefficient will play an important role in our approach to prove Theorem 1.1, and
shall be studied thoroughly in this section.

Lemma 2.1. Let 2 ≤ k ≤ n, and let 1 ≤ i, j ≤ n, with i ̸= j. There exists then a matrix
x0 ∈ Mn such that, for each y ∈ Mn we have that the coefficient of λk for the polynomial
λ 7→ Ek(λx0 + y) is zero, and the coefficient of λk−1 for the same polynomial is yij .

Proof. Suppose, without lost of generality, that i = 1 and j = 2. Put then J0 = {1, ..., k},
and let

x0 =


0 0
−1 0

0 0

0 Ik−2 0
0 0 0n−k

 ∈ Mn.

For y ∈ Mn, let us observe that

∆J0
(λx0 + y) = det


y11 y12

−λ+ y21 y22

· · · y1k
· · · y2k

...
...

yk1 yk2
λIk−2 + (yst)3≤s,t≤k


= 0 · λk + y12λ

k−1 + · · · .

Also, if |J | = k and J ̸= J0, then the degree of λ 7→ ∆J(λx0 + y) with respect to λ is
at most k − 2, since we have at most k − 2 appearances of λ in the principal submatrix of
λx0 + y corresponding to J . We use now (1.1) to finish the proof.

The remaining of this section is devoted to prove that the same type of statement as the
one of Lemma 2.1 also holds for i = j. This requires a little extra work.

Lemma 2.2. Let 2 ≤ k ≤ n, and let J0 ⊆ {1, ..., n} with |J0| = k − 1. There exists then
a matrix x0 ∈ Mn such that, for each y ∈ Mn we have that the coefficient of λk for the
polynomial λ 7→ Ek(λx0 + y) is zero, and the coefficient of λk−1 for the same polynomial
is
∑

j /∈J0
yjj .
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Proof. Suppose, without lost of generality, that J0 = {1, ..., k − 1}. Let then

x0 =

[
Ik−1 0
0 0n−k+1

]
∈ Mn.

For y ∈ Mn, let us observe that for each j ∈ {1, ..., n}\J0 we have that

∆J0∪{j}(λx0 + y) = 0 · λk + yjjλ
k−1 + · · · .

Also, if |J | = k and |J ∩ J0| ≤ k−2, then the degree of λ 7→ ∆J(λx0+y) with respect to
λ is at most k− 2, since we have at most k− 2 appearances of λ in the principal submatrix
of λx0 + y corresponding to J . We use again (1.1) to finish the proof.

Corollary 2.3. Let 2 ≤ k ≤ n, and let 1 ≤ i, j ≤ n, with i ̸= j. There exist then
matrices x1, x2 ∈ Mn such that, for each y ∈ Mn we have that the coefficient of λk for
the polynomial λ 7→ Ek(λx1 + y) − Ek(λx2 + y) is zero, and the coefficient of λk−1 for
the same polynomial is yjj − yii.

Proof. Consider J ⊆ {1, ..., n}\{i, j} such that |J | = k− 2. We apply then Lemma 2.2 to
J ∪ {i} to find a matrix x1 ∈ Mn such that, for each y ∈ Mn we have that the coefficient
of λk for the polynomial λ 7→ Ek(λx1 + y) is zero, and the coefficient of λk−1 for the
same polynomial is

∑
t/∈(J∪{i}) ytt, and we apply the same lemma to J ∪ {j} to find a

matrix x2 ∈ Mn such that, for each y ∈ Mn we have that the coefficient of λk for the
polynomial λ 7→ Ek(λx2+ y) is zero, and the coefficient of λk−1 for the same polynomial
is
∑

t/∈(J∪{j}) ytt. To finish the proof, observe that (
∑

t/∈(J∪{i}) ytt)−(
∑

t/∈(J∪{j}) ytt) =
yjj − yii.

Lemma 2.4. Let 2 ≤ k ≤ n, and let j ∈ {1, ..., n}. There exist then q > 0, m, p ≥ 0
in Z and matrices x0, x1, .., xm+p ∈ Mn such that, for each y ∈ Mn we have that the
coefficient of λk for the polynomial

λ 7→
m∑
i=0

Ek(λxi + y)−

(
m+p∑

i=m+1

Ek(λxi + y)

)

is zero, and the coefficient of λk−1 for the same polynomial is q · yjj .

Proof. Consider J ⊆ {1, ..., n}\{j} such that |J | = k − 1. We apply Lemma 2.2 to J
to find a matrix x0 ∈ Mn such that, for each y ∈ Mn we have that the coefficient of λk

for the polynomial λ 7→ Ek(λx0 + y) is zero, and the coefficient of λk−1 for the same
polynomial is

∑
t/∈J ytt = yjj +

∑
t/∈(J∪{j}) ytt. For each t /∈ (J ∪ {j}) in {1, ..., n}, we

apply Corollary 2.3 to t ̸= j to find matrices x(1)t , x
(2)
t ∈ Mn such that, for each y ∈ Mn

we have that the coefficient of λk for the polynomial λ 7→ Ek(λx
(1)
t + y)−Ek(λx

(2)
t + y)

is zero, and the coefficient of λk−1 for the same polynomial is yjj−ytt. To finish the proof,
observe that ∑

t/∈J

ytt +

 ∑
t/∈(J∪{j})

(yjj − ytt)

 = q · yjj ,

for some strictly positive integer q.
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3 Proof of the main result
Let 2 ≤ k ≤ n. Let us first observe that if φ,ψ : Mn → Mn satisfy (1.8), dividing
by λ ∈ C\{0} we obtain that Ek (x+ µy) = Ek(φ(x) + µψ (y)) for all x, y ∈ Mn

and µ ∈ C\{0}. By continuity, the same holds for µ = 0, too. Thus

Ek (x+ µy) = Ek(φ(x) + µψ (y)) (x, y ∈ Mn, µ ∈ C). (3.1)

That is, the same type of equalities as the ones in (1.8) hold, with the role of φ and ψ
interchanged. Thus, without lost of generality, we may suppose for the remaining of the
paper that the map φ is surjective. (If not, then ψ must be surjective, and we work with
(3.1) instead of (1.8).)

Another immediate observation is the fact that if φ and ψ satisfy (1.8), for λ = 0 in
(1.8) and µ = 0 in (3.1) we see that Ek (y) = Ek(ψ (y)) for all y ∈ Mn, respectively
Ek (x) = Ek(φ(x)) for all x ∈ Mn.

As a corollary of Lemma 2.1 and Lemma 2.4, the following result holds.

Theorem 3.1. Suppose 2 ≤ k ≤ n, and let i, j ∈ {1, ..., n}. There exist then a nonzero
scalar α, positive integers m and p and matrices x0, x1, .., xm+p ∈ Mn such that, for
each y ∈ Mn we have that the coefficient of λk for the polynomial

λ 7→
m∑
s=0

Ek(λxs + y)−

(
m+p∑

s=m+1

Ek(λxs + y)

)

is zero, and the coefficient of λk−1 for the same polynomial is α · yij .

As a direct corollary of Theorem 3.1, we obtain the following test for the equality to
0 ∈ Mn in terms of the functions Ek. (See also [7, Lemma 3.1].)

Corollary 3.2. Suppose 2 ≤ k ≤ n. Let y ∈ Mn such that

Ek(x+ y) = Ek (x) (x ∈ Mn). (3.2)

Then y = 0.

Proof. Observe that (3.2) gives

Ek(λx+ y) = λkEk (x) (x ∈ Mn, λ ∈ C). (3.3)

Let i, j ∈ {1, ..., n}. By Theorem 3.1, there exist α ̸= 0, positive integers m and p and
matrices x0, x1, .., xm+p ∈ Mn such that, for all λ ∈ C,

m∑
s=0

Ek(λxs + y)−

(
m+p∑

s=m+1

Ek(λxs + y)

)
= 0 · λk + (αyij) · λk−1 + · · · .

Using (3.3), for all λ ∈ C we have that

m∑
s=0

Ek(λxs + y)−

(
m+p∑

s=m+1

Ek(λxs + y)

)
= λk

(
m∑
s=0

Ek(xs)−

(
m+p∑

s=m+1

Ek(xs)

))
= 0.

Thus αyij = 0, and therefore yij = 0. Since this holds for any i and j, we obtain that
y = 0 ∈ Mn.
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Theorem 3.1 gives us also linearity for the maps φ and ψ from the statement of Theo-
rem 1.1.

Proof of Theorem 1.1. Let us prove first that (1.8) and the surjectivity of φ implies that ψ
is linear on Mn. To see this, consider i, j ∈ {1, ..., n} and let us prove that ψij : Mn → C
is linear, where ψij is the (i, j) entry of the map ψ. By Theorem 3.1, there exist α ̸= 0
in C, natural numbers m and p and matrices x0, x1, .., xm+p ∈ Mn such that, for each
y ∈ Mn we have that the coefficient of λk for the polynomial

λ 7→
m∑
s=0

Ek(λxs + y)−

(
m+p∑

s=m+1

Ek(λxs + y)

)

is zero, and the coefficient of λk−1 for the same polynomial is αyij . Since φ is supposed
surjective, let w0, w1, .., wm+p ∈ Mn such that φ (wj) = xj for j = 0, ...,m + p. Then
for each z ∈ Mn, we have that the coefficient of λk for the polynomial

λ 7→
m∑
s=0

Ek(λφ (ws) + ψ (z))−

(
m+p∑

s=m+1

Ek(λφ (ws) + ψ (z))

)

is zero, and the coefficient of λk−1 for the same polynomial is αψij (z). Using (1.8), for
all λ ∈ C we have that

m∑
s=0

Ek(λφ (ws) + ψ (z))−

(
m+p∑

s=m+1

Ek(λφ (ws) + ψ (z))

)

equals
m∑
s=0

Ek(λws + z)−

(
m+p∑

s=m+1

Ek(λws + z)

)
.

The remark at the beginning of Section 2 shows that the coefficient of λk−1 for the polyno-
mial λ 7→

∑m
s=0Ek(λws+z)−(

∑m+p
s=m+1Ek(λws+z)) is linear with respect to z ∈ Mn.

Therefore, ψij is linear with respect to z ∈ Mn.
Thus ψ : Mn → Mn is linear and Ek (x) = Ek (ψ (x)) for each x ∈ Mn. If

ψ (y) = 0, then for each x ∈ Mn we have that

Ek (x) = Ek (ψ (x)) = Ek (ψ (x) + ψ (y)) = Ek (ψ (x+ y))

= Ek (x+ y) .

Then Corollary 3.2 gives y = 0. Thus the linear map ψ is injective on Mn, and therefore
bijective. Using (1.8), the linearity of ψ and the fact that Ek (z) = Ek(ψ

−1 (z)) for each
z, then for each x, y ∈ Mn we have that

Ek (x+ y) = Ek(φ(x) + ψ (y)) = Ek(ψ
−1(φ(x) + ψ (y)))

= Ek((ψ
−1 ◦ φ)(x) + y).

Denoting z = x + y, we conclude that Ek (z) = Ek(((ψ
−1 ◦ φ)(x) − x) + z) for each

x, z ∈ Mn. Then Corollary 3.2 gives (ψ−1 ◦ φ)(x) − x = 0, equality which holds for
every x ∈ Mn. Thus φ = ψ on Mn.
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