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Robust Scale Estimation for the Generalized
Gaussian Probability Density Function

Rozenn Dahyot! and Simon Wilson?

Abstract

This article proposes a robust way to estimate the scale parameter of a gener-
alised centered Gaussian mixture. The principle relies on the association of samples
of this mixture to generate samples of a new variable that shows relevant distribu-
tion properties to estimate the unknown parameter. In fact, the distribution of this
new variable shows a maximum that is linked to this scale parameter. Using non-
parametric modelling of the distribution and the MeanShift procedure, the relevant
peak is identified and an estimate is computed. The whole procedure is fully auto-
matic and does not require any prior settings. It is applied to regression problems,
and digital data processing.

1 Introduction

Many problems in computer vision involve the separation of a set of data into two classes,
one of interest in the context of the application and the remaining one. For instance, edge
detection in images requires the thresholding of the gradient magnitude to discard noisy
flat areas from the edges. The challenge is then to automatically select the appropriate
threshold (Rosin, 1997).

Regression problems also involve the simultaneous estimation of the variance or stan-
dard deviation of the residuals/errors. The presence of a large number of outliers makes
difficult the estimation of the parameters of interest. Performance of robust estimators is
highly dependent on the setting of a threshold or scale parameter, to separate the good
data (inliers) that fit the model, from the gross errors (outliers) (Chen and Meer, 2003).
The scale parameter, needed in M-estimation and linked to the scale parameter of the
inliers residuals, is often set a priori or estimated by the Median Absolute Deviation. Ap-
plications of robust regression (Chen and Meer, 2003) are, for instance, line fitting (Wang
and Suter, 2004), or camera motion estimation (Bouthémy et al., 1999). Those estimates
also require the setting of a threshold (or scale parameter) to discard gross errors (outliers)
from the relevant ones (inliers).

This paper proposes a solution for the estimation of the scale parameter that can be
used iteratively along with location parameter estimation (Miller and Stewart, 1996; Chen
and Meer, 2003; Wang and Suter, 2004) when there are many outliers, by assuming a
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mixture model. This method is based on the definition of two random variables Y and
Z computed from the samples of variable X using a non-linear transformation. The
distributions of those new variables have properties that allow us to define new estimates
for the scale parameter. The computation of those new estimates requires us to detect a
particular maximum over the distribution of the new variables. This is achieved using
nonparametric kernel-based modelling of probability density functions. The resulting
method is then both robust and unsupervised.

Section 2 presents related works. Section 3 presents our new estimates. Section 4
presents the computation. Paragraph 5 proposes to use this procedure for scale estimation
iteratively with a location parameter estimation. Section 6 presents experimental results
showing the robustness of the approach, and an application to robust object recognition.

2 Related works

Several works have been carried out on robust regression in the vision community (Stew-
art, 1999), offering complementary views to statistics (Huber, 1981; Hampel et al., 1986).
Wang has recently proposed a clear overview in both domains (Wang, 2004), underlining
several differences. In particular, in the vision community, the breakdown point is usually
expected far below 50% of outliers to deal with real world applications, and proofs of
robustness are usually inferred through experimental results. In statistics, formal proofs
of robust estimator properties usually prevail (even if those are only valid under strict
assumptions that may never be encountered in practice) as it provides insights into the
approaches (Hampel et al., 1986).
We consider the problem of robust regression:

v=f(u,0)+e

The mapping function f is assumed to be described by the vector # (location parameter).
From a set of observations {(v;, u;)}, the goal of regression is to estimate 6.

Maximum likelihood is a popular estimation method. It relies on the modelling of
the probability density function of the residual e that expresses the error between each
observation and its prediction by the mapping. Standard parametric modellings for the pdf
of the residuals include Gaussian and Laplacian density functions (Hasler et al., 2003).
Those models fail when gross errors or outliers occur in the observations. In this case, the
pdf of the residuals can be expressed as a mixture:

P(elf,0) = P(e|C,0,0) - P(C) + P(e|C) - P(C) .1

where C is the inlier class for the model designed by the location parameter ¢ and o the
scale parameter. The distribution of the inliers P(¢|C, , o) is modelled by a parametric
distribution, e.g. centered Laplacian (Hasler et al., 2003) or Gaussian (Wang and Suter,
2004), depending on the location parameter 6 to be estimated and the scale parameter o
also usually unknown. Those parametric models usually offers a good description in real
world applications.

Two main strategies have been proposed to overcome the lack of robustness. The first
weights the residuals in the objective function to lessen the influence of gross error on
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the estimate. Weights are then a function of the residuals. The second approach consists
in using sampling strategies and in estimating from several randomly selected subsets
of observations. The final selection is then performed by comparing each estimate and
keeping the optimal one. In a way, it can be seen as a similar approach to weighting the
residuals in taking null weights on left out data at each round. However, this approach
is different as weights are set randomly on data and do not depend on the values of the
residuals. M-estimators or R-estimators are examples of objective functions that use a
weighting strategy (Huber, 1981; Hampel et al., 1986). By their efficiency and their
rather low computation cost, M-estimators in particular, have been widely applied to many
computer vision applications such as camera motion estimation (Odobez and Bouthémy,
1995), object class learning (la Torre and Black, 2001), object detection (Dahyot et al.,
2004a) and recognition (Black and Jepson, 1998). Using sampling has been made popular
by Fischler and Bolles with the RANSAC estimator (Fischler and Bolles, 1981). It has
been successfully applied to camera calibration and image matching (Fischler and Bolles,
1981).

Both the M-estimator and RANSAC depend on the scale parameter ¢ that needs to
be robustly assessed along with 6. Statistical solutions for the scale estimate include in
particular the Median Absolute Deviation (Hampel et al., 1986) and Least Median Square
(Miller and Stewart, 1996). Those methods have been used for online estimation from
current observations. It can also be set by hand (Fischler and Bolles, 1981), or learned a
priori off-line, and then set once and for all in the context of specific applications (Dahyot
et al., 2000; Hasler et al., 2003). For the modelling of the distribution of outliers, P(6|E),
nonparametric representation using histograms have also been proposed (Hasler et al.,
2003) to define a more dedicated M-estimator for image matching.

However, in most applications, the scale parameter cannot be inferred, and needs to be
estimated in parallel to # with a much lower breakdown than 50%. Recently several strate-
gies involving nonparametric representations of the distribution of the residuals P (|0, o)
have been proven efficient. For instance, Chen et al. (Chen and Meer, 2003) proposed
to re-express the M-estimator objective function on the residuals, as a kernel density like
estimator where the scale parameter is substituted by a bandwidth. After localising the
main central peak, surrounding basins of attraction are detected heuristically and are used
as thresholds to separate inliers from outliers. The segmented inliers are then processed
further to produce an estimate of §. Similarily in (Wang and Suter, 2004), the distribution
of the residuals is modelled using a nonparametric kernel modelling. The central peak is
assumed to be corresponding to the inliers, and is isolated from the rest of the pdf using
a Meanshift based algorithm searching for surrounding valleys. From this rough classi-
fication, the scale parameter is then robustly estimated by computing the Median. This
two step scale estimation (TSSE) is coupled with a location parameter  estimation in a
similar fashion to RANSAC (Fischler and Bolles, 1981).

However looking for minima in pdf where few data occur (Chen and Meer, 2003;
Wang and Suter, 2004), is a more difficult operation than looking for maxima. Searching
to maximize a pdf is also a more natural way for parameter estimation. We then propose
another nonparametric approach in the next section that estimates the unknown scale pa-
rameter by searching for particular maxima in specific distributions. Another difference
from (Chen and Meer, 2003; Wang and Suter, 2004) is that only a maximum localisation
is necessary to infer the scale parameter. It is similar to the Hough transform approach
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in that peaks in the estimated distribution are directly related to the unknown parameters
(Goldenshluger and Zeevi, 2004).

3 New estimates for o

Another approach for scale parameter estimation has been proposed in (Dahyot et al.,
2004b) based on some properties of independent samples from a Gaussian distribution.
Indeed assuming a Gaussian distribution for the inliers, the distribution of square root
of the sum of squares of several independent samples is a y distribution that shows a
maximum directly related to the scale parameter. This approach is further studied in this
article.

3.1 Assumptions

Let us define the random variable X that follows a two class mixture model. We call
inliers the data that belong to the class of interest: x € C, and outliers the other data
x € C. It is possible to make some relatively loose assumptions about the distribution
of the class C of interest, to allow its statistics to be estimated from an observed mixture
distribution Px (z) (Hasler et al., 2003). In this work, we assume the distribution of the
inliers to be a Generalized centered Gaussian (Aiazzi et al., 1999):

711/04
Px(@|C,0) = griayape XP [%}

3.D

Setting v = 1 (Laplacian law) and o = 1/2 (Gaussian law) in equation (3.1), are two pop-
ular hypotheses (Hasler et al., 2003; Dahyot et al., 2004b). Assuming the shape parameter
« known, we focus on the estimation of the scale o.

3.2 Definition of new variables

The variables Z = Y7_ |X,|/* and Y = Z¢ are defined with independent random
variables X, that follow the same probability density function (3.1).
Forn = 1 and Z = | X|"/, the pdf P, (z|C) corresponds to the gamma distribution:

2ol z

G182 :—exp{——}, z2>0 (3.2)
Zl(e,8) (%) ) e 3

When n > 1, the variable Z is then defined by the sum of i.i.d. variables that follow a
gamma distribution. Using the characteristic function of the gamma distribution ®(t) =
(1 —2Bt)~?, the characteristic function of Pz (z|C, o) is:

n

Oy(t) = [ @(t) = (1 —2pt)™ (3.3)

n=1
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By Inverse Fourier transform, the p.d.f Pz(2|C, o) is the gamma function Gz|ma,g)(2).
From the distribution of Z, it is easy to infer the pdf of Y:

(n-1)
PHIC.) = s o0 | =

The maximum of the distributions Pz(z|C, o) and Py (y|C, o) can be then computed (ig-
noring the solution z = 0 as a special case):

],yzo (3.4)

Zmaxczﬁ'(n(l/_l), noa > 1

(3.5)
Yiaxe =[(n—1) a f]*, n > 1

Those maxima depend on the parameter o by definition of 3 (cf. eq. (3.1)).

3.3 New estimates for o

From equation (3.5), we propose to estimate o using:

o 112
oz = (Zsg)” 127, ma>1

(3.6)

1/2
oy = (n—l)o‘~Ca°‘ [F(a) ] ; n>1
The maximum of the distributions of Y and Z has first to be located. This can be made
difficult by outliers occurring in the observations such that the observed distribution for

X is a mixture (as for Y and 2):
Px(z|0) = Px(z|0,C) - Px(C) + Px(z|C) - Px(C) (3.7)

Depending on the proportion and the values of the outliers, the localisation of the maxi-
mum needed in the estimation gets more difficult. We assume that the relevant maximum
for the estimation is the closest peak to zero in the distributions Py (y|o) and Pz(z|o).
Note that robust estimation using M-estimator for Gamma distribution has been proposed
in the literature (Marazzi A., 1996). But this nonparametric method is shown to be more
robust in Section 6.

3.4 Remarks

Figure 1 presents the pdfs of the inlier class for Y and Z. Instinctively, the higher the
maximum, the better its localisation should be in the mixture of observations. A priori,
considering the density of variable Y for the estimation of the scale parameter should
then perform better than the variable Z. However on the other hand, the transformation
from X to Z is spreading the range of variations of the observations, and consequently
decreasing locally the density of the outliers.

Expressions of the maxima are given by:

PZ(ZmaxC|C7J) = (n?(_nla)-,@

)na—l

exp [—(na — 1)]
(3.8)

n—1a (n—1)o
Py (Yimaxc|C,0) = % exp|[—(n — 1)a]
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Figure 1: Probability density functions Py (y|o,C) and Pz(z|o,C) (n = 3 and av = 0.5).

4 Robust non-parametric estimation

Section 4.1 gives details on the computation of samples of the variable Y and Z from the
samples of X. Paragraph 4.2 presents the nonparametric approach taken to perform the
computation of the relevant maxima in the estimation of the scale parameter.

4.1 Computing samples

From a set of observed independent samples B, = {xi}ie{l...i}, we need first to compute
the samples B, = {2;};c(1..j3 and B, = {y;}jeq1..j; of Z and Y. It is performed by ran-
domly selecting n samples from B, to compute samples z; and y; (Efron and Tibshirani,
1998). This should be done without replacement to insure independence of samples of X .
However, if i is large, it can also be performed with replacement.

It is assumed that the observed samples {z;} (or {y,}) are generated from a mixture
P, (z|c) of Py (2|C, o) (inliers) and P(z|C) (outliers). A priori, the proportion of the
inliers Py (C) in B, and Pz(C) in B, (i.e. when z; and y; are computed using z,, €
C, Vn € [1;n]) is equal to (Px(C))™. However this proportion can be increased using
properties of the data. More precisely, audio and video data present strong spatio-temporal
correlations that allow us to assume that data from a neighbourhood belong to the same
class (C or C) (Dahyot et al., 2004b). Using this assumption, samples for Y and Z are
carefully generated in order to limit the proportion of outliers by mis-coupling samples
of X. As a consequence, it is possible to compute samples of Y and Z such that the
proportion of inliers in B,, Px(C), is rather close to the proportions of inliers in 53, and
B.: Px(C) ~ Py (C) ~ Pz(C).



Robust Scale Estimation for the Generalized Gaussian Probability. . . 27

4.2 Non-parametric estimation
4.2.1 Estimating distributions

From the collection 3, of samples of Y, a kernel estimate of the density function Py (y)
can be computed:

with k(-) chosen as a Gaussian N(0,1). The variable bandwidths {h,, };—1..; are se-
lected automatically following Comanicciu et al. scheme (Comaniciu et al., 2001). The
only change concerns the initial setting of the center point bandwidth: instead of the rule

of thumb plug-in, the more efficient Sheather-Jones plug-in bandwidth hg; is computed
(Sheather, 2004).

: 1 1 Y — yi
OB S (
I;hyi h

Yi

4.2.2 Relation between bandwidths

For a = % (Gaussian distribution for the inliers), using the relation z; = y? between
samples in B, and B,, variable bandwidths are automatically computed for samples in
B,, and then inferred for samples in B, by:

hzi = hyi ' \/ 4 yi2 +2 hyi (41)

This relation between ., and h,, is derived by assuming a Gaussian variable y ~ N (y;, hf/)
(from the kernel Gaussian assumption) and then by inferring the variance hz of the vari-
1

able z = y2. For other values of «, using the relation z; = y;, the relation between the
bandwidths is approximated using first order Taylor series:

h,y =—-y> - hy, “4.2)

4.2.3 MeanShift

The closest mode to zero can be computed using mean shift from the minimum value of
the samples (Dahyot et al., 2004b; Comaniciu et al., 2001):

Init y© = min,, B,

. 2> 4.3)

till convergence Yace = y™

with g(t) = %\/}/{) The same procedure is used to estimate Z .. Using equation (3.6),

estimates for the scale parameter can be inferred.
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5 Robust regression

For simplicity, we consider linear regression where observations B, = {(v;, u;)}i=1..4
follow the linear mapping v; = u! 0 +¢;, Vi. The joint estimation of # and o is performed
by using the scale estimate introduced in the previous paragraphs, iteratively with a least
squares' estimation of 6 performed on a subset S,,,, of p observations (p is chosen superior
or equal to the dimension of #). This is similar to the RANSAC approach with an added
scale estimate. The algorithm can be described as:

e Repeat B times (see (Fischler and Bolles, 1981) for the choice of B)

1. Select a subset SS;) of p points randomly selected from B,,,,
. Least Squares estimation of the location parameter 6*) on S
. Compute the residuals {¢; = v; — u?0®},_;.;, and samples of Y and Z.

2

3

4. Compute the bandwidths {h,, } and {h.,} as explained in Section 4.2.

5. Estimate the scale parameter o®) using procedure (4.3) and relations (3.6).
6

. Compute the objective function 7 (9®), 5®).

e Infer (é, &) from arg max 7 (ou arg min depending on the chosen objective func-
tion).

In this article, a similar objective function as Wang et. al has been chosen (Wang and
Suter, 2004).

S 16| < 250}

i-0

J(0,0) =

S.D

Note that, with our algorithm, a fixed # leads to an estimate of o, hence the space of
all possibilities (0, o) is not fully explored but only the space (0, 0y). As a consequence
the objective function [J has only 6 as a variable. Some representations of the objective
function are presented in the experimental results in Section 6.2. Similarily to the Hough
transform (Goldenshluger and Zeevi, 2004), the problem of recovering several models (or
multi-lines when 6 is of dimension p = 2) is to find all maxima (or minima) in 7.

6 Experimental results

Assessment of the robustness of the proposed method is done using simulations. Those
simulations are performed under certain conditions explained below. That reflect real sit-
uations of interest encountered in data analysis. In Section 6.1, two scenarios are tried :
outliers with uniform distribution and pseudo-outliers with a Gaussian distribution. Re-
sults for robust regression are reported in Section 6.2.

'The inliers are assumed here to be Gaussian: o = 0.5.
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6.1 Scale estimate

In the following experiments, we chose o = %, or a Gaussian distribution for the inliers,
i = 1000 (cardinal of By and By), the groundtruth scale parameter o = 2 and the degree
of freedomn = 3:

e Vn=1,---,n,sets B,, are used to compute sets 3, and B3, such that the proportion
of inliers Vn, Px,(C) = Py(C) = Pz(C). Outliers follow a uniform distribution
Vn, Py, (x|C) = U(]—50;50]).

o Psecudo-outliers follows a Gaussian distribution with the same variance as the inliers
and a mean p. The proportion of the inliers is fixed such that Vn, Px, (C) =
Py(C) =Pz(C) =0.1.

6.1.1 Robustness to outliers

Figure 2 presents the mean of the estimates depending on the proportion of the inliers
computed over 50 tries. As the proportion of inliers increases, the accuracy improves.
Althought o is less accurate than oy, it shows a better robustness to the proportion of
outliers. It is understood that the peak localisation for the estimation is easier performed
on the distribution of Z than Y. In fact, when too many outliers occur, the inlier peak is
not anymore distinguishable in the pdf of Y.
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Figure 2: Robustness to outliers: Estimates oy (top) and oz (bottom) with standard
deviation, w.r.t. the proportion of inliers Py (C) = Pz(C). The red line corresponds to the
groundtruth scale parameter.

6.1.2 Robustness to pseudo-outliers

Figure 3 presents the mean of the scale estimates oy and o with standard deviation,
depending on the mean of the pseudo-outliers, computed over 50 tries. The estimate
oy 1s shown to be accurate when the mean p of the pseudo-outliers is above 30. The
estimate o is rather accurate already when p > 2.50. Figure 4 presents the distributions
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Figure 3: Robustness to pseudo-outliers: Estimates oy (top) and oz (bottom) with standard
deviation, w.r.t. the mean of the Gaussian of pseudo-outliers expressed as a multiplicative of
o (i.e. abscissa equal to 2 means pu = 20).

Px(z|o), Py (y|o) and Pz(z|o) for different values of the mean 1 of the pseudo-outliers.
The distributions are estimated using the kernel modelling as explained in Section 4.2.
When the inlier and pseudo-outlier Gaussians are too close, their respective maxima are
not anymore distinguishable.

6.1.3 Remarks

Similar results have been obtained for various inliers distribution i.e. different values of
a (in between 0.5 to 1) and n = 2, 3. In practice, the choice of n should be as low as
possible to simplify the computation of samples of Y and Z.

6.2 Robust regression

In a similar experience as in (Wang and Suter, 2004), line parameters are estimated it-
eratively with the scale parameter of the residuals (Miller and Stewart, 1996; Wang and
Suter, 2004), following the procedure described in Section 5. Figure 5 shows the result
of the estimation when 90% of outliers, uniformly distributed, appear in the observations.
This result has been obtained using the estimate oy and 0. Several simulations have
been run on different randomly generated sets of observations. Ten estimates of the line
are reported on the graph.

The previous experience is repeated with an added line of 50 points generated with
the equation v = v. Figure 6 shows the observations where alignements are barely dis-
tinguishable (left). Both lines can however be recovered in analysing maxima of the
objective function. Figure 7 presents the objective function J as a function of the 2-
dimensional . Two peaks are clearly localised at the neighborhouds of # = (1,0) and
0 = (—1,100), corresponding to the two lines coefficients. Numerically the first two
maxima computed correspond to 6 = (—0.9710, 98.4041) and 6 = (1.0135, —0.1504).
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Figure 4: Distributions Px (x|o) (top) , Py (y|o) (middle), Pz(z|o) (bottom). The relevant
maximum for the estimation of the scale parameter becomes distinguishable after ;1 > 30.
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Figure 5: Robust line fitting. Inliers: 50 points on a line x € [0 — 100], v = —v + 100 and
o = 1; Outliers: 450 points uniformaly distributed (Wang and Suter, 2004). The red line
represents the groundtruth, and the green lines represent the estimates perform on 10 trials
using oy (left) and oz (right).
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Figure 6: A two line fitting problem: Observations and estimated lines (green lines) with
ground truth (red).

0.07~.

Figure 7: Objective function computed during the estimation. Two lines are present in the
observations with parameter # = (—1,100) and # = (1, 0). Both can be recovered by
localising the two main peaks.

Figure 7 presents the computed objective function as it is performed in the robust
estimation proposed in paragraph 5. For comparison, we computed the objective function
for all values (6, o) on a finite domain and the graph is reported in figure 8.

6.3 Applications in computer vision

Application to edge detection in images of this scale parameter estimation is suggested
(Rosin, 1997). Applications to silence detection in audio data streams, and region seg-
mentation in colour images have been proposed in (Dahyot et al., 2004b). We consider
here the problem of robust object recognition (Leonardis and Bischof, 2000) in colour
images (Dahyot et al., 2000).
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Figure 8: Simulated objective function.

A linear mapping is estimated by applying Principal Component Analysis (Dahyot et
al., 2000) on 72 training colour images (image pixel values are arranged in a vector in
lexicographic order) representative of an object class (cf. fig. 9). Eigenvectors associated
with the highest eigenvalues summarize the informative visual content over the training
set. The representative eigenspace is chosen of dimension 3 for this experiment. Figure

t180 ta70

Figure 9: Example of training colour images for one object varying under different
viewpoints (Nene et al., 1996).

10 presents the eigenbasis including the mean image and the first three eigenvectors. The
last image is the reconstruction of the template ¢, performed on this basis. Considering an

K Uy

Figure 10: Mean and eigenvectors selected to represent the object class, and the
reconstruction of one of the training template in this eigenspace.

u;
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unknown observation (image), its recognition consists in two tasks. The first is to estimate
its coordinate on the eigenspace (corresponding to the 3-dimensional location parameter
). Then the recognition is completed by comparing this estimate with the coordinates
indexing the training images. The estimation problem can be written as follows:

Ri = pit + (u)'0 + ¢
Gi = puf + (uf) 0 + € (6.1)
B = pf + (uP)"0 + ¢

where (R;, G, B;) are the colour values at the pixel i in the observed image, and (uft, u$, uP)

and (uf, uf, u?) are the mean and the eigenvector values at pixel i (from the learning).
Residuals on each colour band are independent (n = 3). Noise is assumed Gaussian
(av = 0.5) and outliers typically occur because of a changing background or partial occlu-
sions.

The estimation of 6 is performed as described in Section 5. A comparison with ro-
bust recognition using M-estimators (Dahyot et al., 2000) is proposed and several results
are presented in figure 11. Observations present the object with added Gaussian noise,
different colour background and possible partial occlusions. The observations with a yel-
low background (same yellow as the main colour of the object itself) is tricky for the
M-estimator based recognition method. In fact, M-estimation tries to match as many pix-
els as possible in the observation and consequently matches templates with the highest
number of yellow pixels. Our method however, with its objective function taking into ac-
count both the scale and location parameter estimates from the current observation, gives
a more accurate match for recognition.

7 Conclusion

The main idea of this article is to consider the generation of new variables whose distribu-
tions show relevant properties for the estimation of an unknown parameter of the original
variable. In particular, modes or maxima related to the unknown parameter can be lo-
cated using non-parametric modelling. Accuracy of this estimation relies on the accuracy
of the estimated density function, here performed by nonparametic modelling using ker-
nels. The association with location parameter estimation performs very well in terms of
robustness to outliers. The proposed method is fully automatic, one drawback being the
computation of samples of Y or Z that must be carefully done to limit the proportion of
outliers.

Acknowledgments

This work has been funded by the European Network Of Excellence on Multimedia
Understanding through Semantics, Computation and Learning, MUSCLE FP6-5077-52
(www.muscle-noe.org).



Robust Scale Estimation for the Generalized Gaussian Probability. . . 35

t180 175 1355 180

Figure 11: Observations (top), recognition performed with M-estimators as in (Dahyot et

al.,

2000) (middle), recognition with simultaneous robust estimation of the scale and location
parameters (bottom).
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